
Machine Learning (2019) 108:1019–1056
https://doi.org/10.1007/s10994-018-5772-7

A simple homotopy proximal mapping algorithm for
compressive sensing

Tianbao Yang1 · Lijun Zhang2 · Rong Jin3 · Shenghuo Zhu3 · Zhi-Hua Zhou2

Received: 23 February 2018 / Accepted: 7 November 2018 / Published online: 16 November 2018
© The Author(s) 2018

Abstract
In this paper, we present novel yet simple homotopy proximal mapping algorithms for recon-
structing a sparse signal from (noisy) linear measurements of the signal or for learning a
sparse linear model from observed data, where the former task is well-known in the field of
compressive sensing and the latter task is known as model selection in statistics and machine
learning. The algorithms adopt a simple proximal mapping of the �1 norm at each iteration
and gradually reduces the regularization parameter for the �1 norm. We prove a global linear
convergence of the proposed homotopy proximal mapping (HPM) algorithms for recover-
ing the sparse signal under three different settings (i) sparse signal recovery under noiseless
measurements, (ii) sparse signal recovery under noisy measurements, and (iii) nearly-sparse
signal recovery under sub-Gaussian noisy measurements. In particular, we show that when
the measurement matrix satisfies restricted isometric properties (RIP), one of the proposed
algorithms with an appropriate setting of a parameter based on the RIP constants converges
linearly to the optimal solution up to the noise level. In addition, in setting (iii), a practical
variant of the proposed algorithms does not rely on the RIP constants and our results for
sparse signal recovery are better than the previous results in the sense that our recovery error
bound is smaller. Furthermore, our analysis explicitly exhibits that more observations lead
to not only more accurate recovery but also faster convergence. Finally our empirical studies
provide further support for the proposed homotopy proximal mapping algorithm and verify
the theoretical results.

Keywords Compressive sensing · Sparse signal recovery · Proximal mapping · Linear
convergence

1 Introduction

The problem of sparse signal recovery is to reconstruct a sparse signal given a number of
linear measurements of the signal. The problem has been studied extensively in the literature
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related to compressive sensing (Candès andWakin 2008; Donoho 2006) and model selection
in statistics and machine learning (Tibshirani 1996; Efron et al. 2004; Kyrillidis and Cevher
2012). Let x∗ ∈ R

d denote a target (nearly) sparse signal and y = Ux∗+e ∈ R
n denote n < d

measurements of x∗, whereU ∈ R
n×d is a measurement matrix and e encodes potential noise

in the observations. The task is to recover x∗ from y andU (maybe with some knowledge of
noise e and the sparsity of x∗). In this paper, we will use the terminologies from the field of
compressive sensing for our presentation. One can easily map the terminologies to the ones
that are common in statistics and machine learning, e.g., sparse signal is also called sparse
linear model, the measurement matrix is also known as input data matrix, the observations
in y are also called output.

To facilitate the presentation and discussion below, we first introduce some notations. A
vector x∗ ∈ R

d is said to be an s-sparse signal if the number of non-zero elements in x∗ is s.
Let |S| denote the cardinality of a subset S ⊆ {1, . . . , d}, and let xs ∈ R

d denote the vector
x ∈ R

d with all but the s largest entries (in magnitude) set to zero. Denote by ‖x‖2, ‖x‖1,
‖x‖∞ and ‖x‖0 the �2, �1, �∞ and �0 norm, respectively.

Numerous algorithms and results have been developed for sparse signal recovery under
different settings and different conditions. In the earliest studies of compressive sensing
(Candès and Tao 2005; Candès 2008; Chen et al. 2001; Donoho and Tsaig 2008), the sparse
signal recovery is cast into a convex programming problem:

min
x∈Rd

‖x‖1
s.t . ‖Ux − y‖2 ≤ ε.

(1)

It was shown that when the measurement matrix U satisfies RIP with small RIP constants
(c.f. Definition 1), the solution to (1) denoted by x̄ can recover the sparse signal x∗ up to the
noise level ‖e‖2. In their seminal work (Candès and Tao 2005), Candès and Tao proved that
when e = 0, i.e, there is no noise in the observations, x∗ is the unique solution to (1) provided
that RIP constants ofU satisfy δs +δ2s+δ3s < 1, where s is the number of non-zero elements
in x∗. The recovery result was later generalized to a more general setting of nearly-sparse
signal recovery with noisy observations, under the condition δ2s ≤ √

2 − 1 and ε ≥ ‖e‖2
(Candès 2008). Similar recovery results have been obtained for the Dantzig selector (Candès
and Tao 2007)

min
x∈Rd

‖x‖1
s.t . ‖U
(Ux − y)‖∞ ≤ λ

(2)

with λ ≥ ‖U
e‖∞. The sparse signal recovery is also closely related to the basis pursuit
denoising problem (BPDN) (Chen et al. 1998), which aims to solve the following uncon-
strained �1 regularized least-squares minimization problem:

min
x∈Rd

1

2
‖Ux − y‖22

︸ ︷︷ ︸

f (x)

+λ‖x‖1, (3)

where λ is a regularization parameter. Various properties of the optimal solution x̄ to (3)
have been investigated (Meinshausen and Bühlmann 2006; Tropp 2006b; Zhao and Yu 2006;
Zhang and Huang 2008; Zhang 2009; Bickel et al. 2009; van de Geer and Bühlmann 2009;
Wainwright 2009). In particular, it is known that under RIP forU , as long as λ > c‖U
e‖∞,
where c is a universal constant, the optimal solution x̄ to (3) can recover an s-sparse signal
x∗ up to the noise level.
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In this paper, we study the problem of sparse signal recovery by directly analyzing the
convergence of a new design of optimization algorithms. The algorithms adopt a proximal
mapping for the �1 norm regularization at each iteration:

xt+1 = argmin
x∈Rd

1

2

∥

∥

∥x −
(

xt −U
(Uxt − y)
)∥

∥

∥

2

2
+ λt‖x‖1,

with a gradually reduced regularization parameter λt . It is not difficult to show that the
proximal mapping above is one proximal gradient step (Nesterov 2007) for solving (3) with
λt , i.e.,

xt+1 = arg min
x∈Rd

1

2
‖x − xt‖22 +

[

f (xt ) + (x − xt )
∇ f (xt )
]

+ λt‖x‖1

= arg min
x∈Rd

1

2
‖x − xt‖22 + x
U
(Uxt − y) + λt‖x‖1,

where the terms in the square bracket can be considered as a first-order Taylor expansion
of f (x) around xt . We name the proposed algorithms as homotopy proximal mapping algo-
rithms, where the term “homotopy” is similarly used in Xiao and Zhang (2013) to name their
method, which refers to the gradually decreasing strategy of λt .1

We prove that under RIP conditions for U the solution xt will converge linearly to a
solution x̄ that recovers the sparse signal up to the noise level. The definition of involved RIP
constant is given below.

Definition 1 (s-restricted isometry constant) Let δs ≥ 0 be the smallest constant such that
for any subset T ⊆ {1, . . . , d} with |T | ≤ s and x ∈ R

|T |,

(1 − δs)‖x‖22 ≤ ‖UT x‖22 ≤ (1 + δs)‖x‖22,
where UT denotes a sub-matrix of U with column indices from T .

In particular, we establish the convergence results in three settings.

Setting I Sparse signal recovery under noiseless observations. For any s-sparse vector
x∗, if e = 0 and U satisfies the RIP such that

γ = δs + √
2δ2s + δ3s < 1, (4)

then with an appropriate setting of λt the proposed algorithm (Algorithm 1) produces a
sequence of solutions xt+1, which converges linearly to x∗, i.e.,

‖xt+1 − x∗‖2 ≤ γ tΔ1,

where Δ1 is an upper bound of ‖x1 − x∗‖2 , here and in Settings II and III.
Setting II Sparse signal recovery under noisy observations. For any s-sparse vector x∗, if
U satisfies the RIP such that (4) holds, then with an appropriate setting of λt the proposed
algorithm (Algorithm 1) produces a sequence of solutions xt+1, which converges linearly
to a region in which any point recovers x∗ up to the noise level, i.e.,

‖xt+1 − x∗‖2 ≤ γ tΔ1 + 1 + √
2

1 − γ

√
s‖U
e‖∞,

where γ is given in (4).

1 It is notable that the decreasing strategy of the homotopy parameter in this paper uses an exogenously
specified sequence unlike that in other homotopy-type methods that is adaptively changed (Asif and Romberg
2014; Brauer et al. 2018).
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Setting III Nearly sparse signal recovery under a sub-Gaussian measurement matrix
U . For a fixed vector x∗, then with an appropriate setting of λt the proposed algorithm
(Algorithm 2) produces a sequence of solutions xt+1, which converges linearly to a
solution x̄ that recovers xs∗ up to the noise level under a condition that the number of
measurements n is large enough. In particular, assuming that there exists η > 0 such
that c

√

(τ + s log[d/s])/n ≤ η < 1/(1 + √
2) holds for some universal constant c > 0

(from the JL lemma of sub-Gaussianmeasurement matrixU , e.g., 16 for a Gaussianmea-
surement matrix) and some τ > 0, then with high probability 1 − 2te−τ the following
inequality holds

‖xt+1 − xs∗‖2 ≤ ((1 + √
2)η)tΔ1 + 1 + √

2

1 − γ
Λ, (5)

where Λ is defined as

Λ = √
s‖U
e‖∞ + c

√

τ + s log[d/s]
n

‖x∗ − xs∗‖2 + c‖(x∗ − xs∗)s‖2.
In addition, in all three settingswe show that |supp(xt )\supp(xs∗)| ≤ s, where supp(x) denotes
the support set of x, which implies that the number of non-zero elements beyond supp(xs∗)
is no more than s.

We give few remarks about differences of theoretical/algorithmic results for Setting I, II
and Setting III. The results in Settings I and II of the proposed algorithm hinge on appropri-
ately setting the sequence of regularization parameters λt that depend on the RIP constants.
In Setting III, we develop a more practical algorithm (Algorithm 3) with no algorithmic
dependence on the RIP constants. As a tradeoff, the results in Setting III are developed for a
random matrixU that satisfies the JL lemma (Johnson and Lindenstrauss 1984). In contrast,
the results for the first two settings are deterministic by assuming U satisfies the RIP con-
ditions. As a consequence, the results in Setting I and II hold for any sparse vector x∗ and
the result in Setting III only holds for a fixed x∗ with high probability. In Sect. 2, we briefly
discuss the above results in comparison with previous work.

2 Related work

We first compare our recovery results with state of the art results for (nearly) sparse signal
recovery and then discuss the optimization algorithms for sparse signal recovery. We note
that there exist studies focusing on the phase transition phenomenon of compressive sensing
(Donoho et al. 2013, 2011; Donoho and Tanner 2009; Maleki and Donoho 2010). However,
we will focus on sparse recovery under RIP of the measurement matrix and the convergence
analysis of the proposed algorithms.

2.1 Sparse signal recovery with noiseless observations

Candès and Tao (2005) analyzed the recovery result for solving the �1 minimization prob-
lem (1) with noiseless observations y = Ux∗, and showed that for any s-sparse signal x∗
when U satisfies RIP2 such that

2 Using the restricted orthogonality constant θs,s′ defined inDefinition 2, a better condition on RIP constants
can be established in their result as well as in our analysis. We use the restricted isometry constant δs in order
to compare with other works and benefit from previous methods that estimate δs .
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δs + δ2s + δ3s < 1, (6)

then the optimal solution to (1) with ε = 0 is unique and is equal to x∗. Comparing the
inequality (4) and (6), our condition for exact recovery is close to the above condition. The
exact recovery was also indicated in Candès’ later work (Candès 2008) but with a slightly
different RIP condition δ2s <

√
2 − 1.

2.2 Sparse signal recovery with noisy observations

Candès (2008) also proved a recovery result for noisy observations. For any s-sparse vector
x∗, whenU satisfies RIP such that δ2s <

√
2−1, the optimal solution x̄ to (1) with ε ≥ ‖e‖2

obeys

‖x̄ − x∗‖2 ≤ C2ε,

where C2 is a constant depending on δ2s . In comparison, our recovery error in Setting II
depends on

√
s‖Ue‖∞ which could be smaller than ‖e‖2 (e.g., when the entries in U are

sub-Gaussian as stated in Proposition 6 in the “Appendix”).

2.3 Nearly sparse signal recovery with noisy observations

Amore general recovery resultwas also established inCandès (2008). For any vectorx∗, when
U satisfies RIP such that δ2s <

√
2 − 1, the optimal solution x̄ to (1) with ε ≥ ‖e‖2 obeys

‖x̄ − x∗‖2 ≤ C0
‖x∗ − xs∗‖1√

s
+ C2ε,

where C0 is a constant depending on δ2s . Similar results have also been developed for the
Dantzig selector (2) (Candès and Tao 2007). Namely, when the RIP constant δ2s ofU satisfies
δ2s <

√
2 − 1, the optimal solution x̄ to (2) with λ ≥ ‖U
e‖∞ satisfies

‖x̄ − x∗‖2 ≤ C0
‖x∗ − xs∗‖1√

s
+ C3

√
sλ,

where C3 is a constant depending on δ2s . A recovery result for nearly sparse signal under
noisy observations in this paper is presented under our Setting III. There are two major
differences between our result in Setting III and the previous recovery results (Candès 2008;
Candès and Tao 2007). First, our result is probabilistic, which is directly established for a
sub-Gaussian measurement matrix. In contrast, the mentioned previous results are determin-
istic by assuming RIP conditions of the measurement matrix. Second, our recovery error
bound (5) could be smaller than that mentioned above (cf. the discussion below at the end of
the second paragraph on page 7).

It is worth mentioning that there exist some studies on establishing sharper conditions on
the RIP constants for exact or accurate recovery [see Cai and Zhang (2014) and references
therein], which, however, is not the focus of this paper.

2.4 Instance-level recovery result

A weaker recovery result is that given a fixed signal x∗, we can draw a random measurement
matrix U and with a high probability expect certain performance for the recovery of the
signal x∗. We refer to this type of guarantee as instance-level recovery result (Eldar and
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Kutyniok 2012). An advantage of the instance-level recovery is thatwe can achieve a recovery
error in the form of ‖x̄ − xs∗‖2 ≤ C‖x∗ − xs∗‖2 with C being a constant and x̄ being the
recovered signal. However, such a result is impossible for any signal x∗ without using a
large number of observations, or in other words, such a result is only possible for any signal
x∗ when n ≥ cd for a constant c > 0 (i.e., n = Ω(d)). In Eldar and Kutyniok (2012), it
was shown that when the observations are free of noise and U ∈ R

n×d is a sub-Gaussian
random matrix with n = O(s log(d/s)/δ22s), then for a fixed signal x∗, with probability
1 − 2 exp(−c1δ22sn) − exp(c0n), the optimal solution x̄ to (1) with ε = 2‖x∗ − xs∗‖2 obeys

‖x̄ − xs∗‖2 ≤ 2C2‖x∗ − xs∗‖2, (7)

‖x̄ − x∗‖2 ≤ (2C2 + 1)‖x∗ − xs∗‖2, (8)

where C2 > 4 is a constant depending on δ2s . In contrast, our sparse signal recovery result
for ‖x̄−xs∗‖2 in Setting III (considering no noise) could be much better than that in (7) since
our error is dominated by c‖(x∗ −xs∗)s‖2 + c

√
s log[d/s]/n‖x∗ −xs∗‖2 and ‖(x∗ −xs∗)s‖2 ≤

‖x∗ − xs∗‖2 and
√
s log[d/s]/n‖x∗ − xs∗‖2 ≤ ‖x∗ − xs∗‖2 , where c is a universal constant3

and ‖(x∗ − xs∗)s‖2 is the �2 norm of the largest s elements in x∗ − xs∗. To the best of our
knowledge, this is the first such result in the literature.

There are also many studies on analyzing the properties of the optimal solution x̄ to the �1
regularized minimization problem in (3) (Meinshausen and Bühlmann 2006; Tropp 2006b;
Zhao and Yu 2006; Zhang and Huang 2008; Zhang 2009; Bickel et al. 2009; van de Geer
and Bühlmann 2009; Wainwright 2009). It is known that under RIP condition for U and
λ > c‖U
e‖∞ (for some universal constant c), we can obtain a recovery bound for any
s-sparse signal x∗

‖x̄ − x∗‖2 ≤ O(
√
sλ).

In comparison, our analysis also exhibits that the final value of λt is Ω(‖U
e‖∞) for sparse
signal recovery (cf. Thereom 2). More literature on sparse signal recovery can be found in
Eldar and Kutyniok (2012).

2.5 Optimization algorithms

There has been extensive research on solving the �1 minimization problems in (1) and (2),
and the �1 regularized minimization problem in (3). Various algorithms have been developed,
including greedy algorithms (Davis et al. 2004; Tropp 2006a; Needell and Tropp 2010;Mallat
and Zhang 1993; Tropp and Gilbert 2007; Donoho et al. 2012; Needell and Vershynin 2009),
interior-point methods (Chen et al. 2001; Turlach et al. 2005; Kim et al. 2008), proximal
gradient methods (Nesterov 2007; Tseng 2008; Beck and Teboulle 2009; Becker et al. 2011),
homotopy-type path-following methods (Osborne et al. 2000, 1999; Efron et al. 2004),
iterative hard-thresholding methods (Garg and Khandekar 2009; Blumensath and Davies
2009; Foucart 2011; Kyrillidis and Cevher 2014), and many other methods (van den Berg
and Friedlander 2008; Wright et al. 2009; Lorenz et al. 2014a; Asif and Romberg 2014;
Brauer et al. 2018; Wen et al. 2010; Hale et al. 2008). It is notable that this list is by no means

3 The constant c is just a positive constant that does not depend on the RIP constants of the matrix U like
C0,C2. Its exact value depends on the parameters of sub-Gaussian distribution. For example, if X follows a

sub-Gaussian distribution that satisfies Pr(|X | ≥ t) ≤ C
∫ ∞
t e−γ t2dt , then c is a constant depends on C and

γ (Hanson andWright 1971). WhenUi, j is a Gaussian variable followingN (0, 1/
√
n), one can easily derive

that c ≥ 16 works by following the analysis. C0,C2 are constants depending on δ2s , please refer to Davenport
et al. (2012) for the exact expressions.
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complete. In Garg and Khandekar (2009) and Lorenz et al. (2014b), the authors gave a
nice review of the convergence rates and their computational costs for different optimization
algorithms. Below, we focus on two classes of algorithms that are closely related to the
proposed work, with one employing the iterative hard-thresholding and the other exploiting
the iterative soft-thresholding.

The hard-thresholding amounts to updating the solution based on the exact sparsification,
i.e.,

xt+1 = Hs

(

xt − 1

γ
U
(Uxt − y)

)

,

where γ is a constant and Hs(x) = xs is the hard-thresholding operator that gives the best
s-sparse approximation of a vector x, i.e., setting all elements in x to zeros except for the s
largest elements in magnitude. In Blumensath and Davies (2009), the authors analyzed the
iterative hard-thresholding algorithm with γ = 1. They show that whenU satisfies RIP with
δ3s < 1/

√
32, the sequence {xt } converges linearly to the best attainable solution up to a

constant, namely,

‖xt − x∗‖2 ≤ 2−t‖x∗‖2 + 6

[

‖e‖2 + ‖x∗ − xs∗‖2 + 1√
s
‖x∗ − xs∗‖1

]

. (9)

Similarly, Garg and Khandekar (2009) analyzed the iterative hard-thresholding with γ =
1+δ2s under theSettings I and II, and showed the sequence {xt } converges to a solution x̄ that
recovers any s-sparse signal x∗ signal up to the noise level, i.e., ‖x̄−x∗‖2 ≤ 4/(1−δ2s)‖e‖2
with a rate of ((8δ2s)/(1 − δ2s))

t , under the condition δ2s < 1/3. In contrast, the proposed
algorithm inSettings I and II only requires δs+

√
2δ2s+δ3s < 1,which is less restrictive than

the condition δ3s < 1/
√
32 in Blumensath and Davies (2009) (due to that δs ≤ δ2s ≤ δ3s).

In Setting III, we proved a recovery for a fixed signal x∗ with high probability for a sub-
Gaussian measurement matrix. We can literally compare the non-diminishing terms in (5)
and (9)4 by ignoring the constant factors. First,

√
s‖U
e‖∞ in (5) is much smaller than ‖e‖2

in (9) when n ≥ Ω(s log d) as implied by “Appendix E”. Second, ‖(x∗ − xs∗)s‖ in (5) is
smaller than ‖x∗ − xs∗‖2 in (9). Third,

√

(τ + s log[d/s])/n‖x∗ − xs∗‖2 in (5) is smaller than
‖x∗ − xs∗‖1/

√
s when ‖x∗ − xs∗‖2/‖x∗ − xs∗‖1 ≤ √

n/(s(τ + s log d/s)).
The iterative soft-thresholding algorithm (ISTA) is based on the proximal mapping of �1

regularization for solving the �1 regularized minimization problem (3), where the updates
are given by

xt+1 = arg min
x∈Rd

1

2

∥

∥

∥

∥
x − 1

γt
U
(Uxt − y)

∥

∥

∥

∥

2
+ λ

γt
‖x‖1,

where 1/γt is a step size. The proximal mapping springs from Nesterov’s first order method
for composite optimization (Nesterov 2007). In Bredies and Lorenz (2008) and Hale et al.
(2008), the authors studied the soft-thresholding update with a constant step size and estab-
lished local linear convergence rates as the iterates are close enough to the optimum.Although
the update of the proposed algorithms is very similar to that of ISTA, there are several strik-
ing differences between ISTA and the proposed algorithms, including Algorithms 1, 2 and 3.
First, ISTA solves exactly the �1 regularized least-squares problem (i.e., the BPDN problem)
with a fixed regularization parameter. The proposed algorithms are to directly reconstruct a
sparse signal from noisy measurements with a target sparsity as an input parameter. Second,

4 Though the two results are not directly comparable because (9) is a deterministic result.
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ISTA for optimizing the BPDN formulation to recover a sparse signal requires a regulariza-
tion parameter λ such that λ ≥ Ω(‖U
e‖∞). The proposed Algorithm 3 does not need any
knowledge about the order of ‖U
e‖∞ but instead need a target sparsity as an input param-
eter. It uses the proximal mapping of an �1 norm regularizer with a gradually decreasing
regularization parameter λt until the solution exceeds the target sparsity by two times. Third,
the proposed algorithms enjoy global linear convergence, while ISTA has only local linear
convergence when the solution is close enough to the optimal solution. Last but not least, the
presented algorithms and analysis provide a unified framework of optimization and recovery
of sparse signals. In contrast, ISTA is only an optimization algorithm which solely provides
no guarantee on the recovery of underlying true sparse signal. By a unified framework we
mean that the convergence in terms of optimization and recovery of the target signal (please
see Theorem 2, Part I and Part II) can be simultaneously achieved. In contrast, ISTA itself is
just an optimization algorithm for solving �1 regularized problem with a fixed regularization
parameter, which only has convergence guarantee for optimization. If one wants to make a
statement about recovery error, one has to utilize other analysis tools for analyzing the �1
regularized formulation with an appropriate parameter, which is separate from the analysis
for optimization.

Recently, several algorithms were shown to exhibit global linear convergence for the
BPDN problem. Agarwal et al. (2010) studied a more general problem than (3) for statistical
recovery, where the first quadratic term is replaced by Ln(x) := 1

n

∑n
i=1 �(x; zi )with �(x; zi )

denoting a loss of the model x measured on the data zi . They used a different update

min
x∈X x
∇Ln(xt ) + γu

2
‖x − xt‖22 + λ‖x‖1, (10)

where X = {x ∈ R
d | ‖x‖1 ≤ ρ}, and γu is a parameter related to the restricted smoothness

of Ln(x). They proved a global linear convergence of the above update with ρ = Θ(‖x∗‖1)
for finding a solution up to the statistical precision, meaning the typical distance between
the true unknown parameter x∗ and an optimal solution to the �1 regularized problem. Xiao
and Zhang (2013) studied a proximal-gradient homotopy gradient method for solving (3).
They iteratively solve the problem (3) by the proximal gradient descent with a decreasing
regularization parameter λ and an increasing accuracy at each stage, and use the solution
obtained at each stage to warm start the next stage. Global linear convergence was also
established. Several improvements and extensions over Xiao and Zhang’s results were made
in Lin and Xiao (2015) and Eghbali and Fazel (2017). For example, Lin and Xiao (2015)
proposed an adaptive accelerated proximal gradient method and a homotopy variant for
solving BPDN problem with improved convergence. Eghbali and Fazel (2017) generalized
the linear convergence rate analysis of the homotopy algorithm studied in Xiao and Zhang
(2013) to problem (3) with the �1 norm replaced by a general class of decomposable norms.

Although there are many parallels between this work and Agarwal et al. (2010) and Xiao
and Zhang (2013), there are big differences. (i) The proposed work is dedicated to sparse
signal recovery, exhibiting the conditions in different settings under which the recovery
is optimal. (ii) Different from Agarwal et al. (2010) that updates the solution using the
constrained proximal mapping in (10), our algorithms solve a simple proximal mapping of
the �1 norm regularization at each iteration. (iii) Different from Xiao and Zhang (2013) that
updates the solution using a stage-wise proximal gradient descent with more parameters that
need to be tuned in practice, the proposed homotopy proximal mapping algorithm as well
as the analysis are much simpler. (iv) Our algorithm and analysis provide arguably better
guarantees for the solutions. First, both the convergence rates and the recovery error of the
proposed algorithms imply thatmore observations lead to not onlymore accurate recovery but
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also faster convergence, which shed more insights about the sparse signal recovery problem
and our algorithms, and was also observed by Oymak et al. (2018) on a relevant problem.
Second, our algorithm can guarantee that the support sets of the intermediate solutions do
not exceed the target support set by s, the target sparsity. In contrast, Agarwal et al. (2010)
provides no explicit guarantee of sparsity bound for the intermediate solutions, and in Xiao
and Zhang (2013) the support sets of the intermediate solutions beyond the target support set
could be much larger than s.

3 Sparse signal recovery

Below, we first give some notations and definitions that will be used in the sequel. Then we
present the algorithms, main results and their proofs.

3.1 Notations and definitions

We denote by S(x) the support set (or support for short) for x that includes all the indices of
the non-zero entries in x, i.e.,

S(x) = {i ∈ {1, . . . , d} : [x]i = 0} , (11)

where [x]i denote the i th element in x. Denote by S1\S2 a subset of S1 that contains all
elements in S1 but not in S2. We also denote by S(x) = {1, . . . , d}\S(x) the complementary
set (or complement for short) of S(x). In particular, we use S∗,S∗ to denote the support set
and its complementary set of x∗.

Considering a vector x ∈ R
d and a matrix M ∈ R

n×d , given a set S ⊆ {1, . . . , d}, we
denote by [x]S ∈ R

|S| the vector that only includes the entries of x in the subset S, and
by MS a sub-matrix that only contains the columns of M indexed by S. Given two subsets
A ⊆ {1, . . . , d} and B ⊆ {1, . . . , d}, we denote by [M]A,B a sub-matrix that includes all
the entries (i, j) in matrix M with i ∈ A and j ∈ B. ‖M‖2 denotes the spectral norm of a
matrix M .

Let U ∈ R
n×d be a measurement matrix and

y = Ux∗ + e (12)

be the corresponding n observations of the target signal x∗. Similar to many works in com-
pressive sensing,we assume themeasurementmatrixU satisfies the following some restricted
isometry property (RIP) (with an overwhelming probability). Besides s-restricted isometry
constant δs , we will also use the following RIP constant.

Definition 2 (s, s-restricted orthogonality constant) Let θs,s be the smallest constant such
that for any two disjoint subsets T , T ′ ⊆ {1, . . . , d} with |T | ≤ s, |T ′| ≤ s, 2s ≤ d , and for
any x ∈ R

|T |, x′ ∈ R
|T ′|,

|〈UT x,UT ′x′〉| ≤ θs,s‖x‖2‖x′‖2.

Remark 1 Although the results in the following are stated using δs and θs,s , we can easily
obtain the results with only restricted isometry constants by noting that θs,s ≤ δ2s (Candès
and Tao 2005).

Based on the definitions of δs and θs,s , we can derive the following facts.
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Fact 1 For any subset T ⊆ {1, . . . , d} with |T | ≤ s, the definition of δs implies that
U

T UT has all of its eigen-values in [1− δs, 1+ δs]. As a result ‖(U


T UT − I )x‖2 ≤ δs‖x‖2.
Fact 2 for any two disjoint subsets T , T ′ ⊆ {1, . . . , d} with |T | ≤ s, |T ′| ≤ s, 2s ≤ d ,

the definition of restricted orthogonality constant implies that ‖U

T UT ′ ‖2 ≤ θs,s .

The above two constants are standard tools in the analysis of compressive sensing. It
has been shown that several random measurement matrices, including sub-Gaussian, partial
Fourier and incoherent matrices, satisfy the RIP with small δs and θs,s (Candès et al. 2006).
However, it should be noted that it is NP-hard to evaluate the RIP and compute RIP constants
in general (Tillmann and Pfetsch 2014).

3.2 Algorithms andmain results

To motivate our approach, we first consider the following optimization problem

min
x∈Rd

L(x) = 1

2
‖x − x∗‖22. (13)

Evidently, the optimal solution to (13) is x∗. We now consider a gradient descent method for
optimizing the problem in (13), leading to the following updating equation for xt

xt+1 = argmin
x∈Rd

1

2
‖x − (xt − ∇L(xt ))‖22 , (14)

where ∇L(xt ) = xt − x∗. Since the problem in (13) is both smooth and strongly convex,
the above updating enjoys a linear convergence rate with, in fact, only one step, allowing an
efficient reconstruction of x∗.

However, the updating rule in (14) can not be used because it requires knowing x∗, the full
information of the sparse signal to be recovered. In compressive sensing, the only available
information about the target signal x∗ is through a set of n < d observations given in (12).
Using the observations, we construct an approximate gradient as

̂∇L(xt ) = U
(Uxt − y) = U
U (xt − x∗) −U
e. (15)

As can be seen if UTU (xt − x∗) is close to xt − x∗ and U
e is not significantly large in
magnitude, ̂∇L(xt ) would provide a useful estimate of ∇L(xt ). To ensure this, we should
assume certain restrictive conditions on U and a small noise e.

Next, we will use ̂∇L(xt ) as an approximation of ∇L(xt ) and update the solution by
performing the following proximal mapping:

xt+1 = argmin
x∈Rd

λt‖x‖1 + (x − xt )
̂∇L(xt ) + 1

2
‖x − xt‖22, (16)

where λt > 0 is a �1 norm regularization parameter that decreases over iterations. The
updating rule given in (16) differs from (14) in that (i) the true gradient ∇L(xt ) is replaced
with an approximate gradient̂∇L(xt ) and (ii) an �1 regularization term λt‖x‖1 is added.With
appropriate choice of λt , this regularization term will essentially remove the noise arising
from the gradient approximation and consequentially lead to a global linear convergence rate
as shown in the following.

To give the solution of xt+1 in a closed form, we write (16) as

xt+1 = argmin
x∈Rd

1

2

∥

∥

∥x −
(

xt −U
(Uxt − y)
)∥

∥

∥

2

2
+ λt‖x‖1. (17)
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Algorithm1HomotopyProximalMapping (HPM)Algorithm forRecovering aSparse Signal

1: Input: The measurement matrix U ∈ R
n×d , observations y = Ux∗ + e, a sequence of regularization

parameters λ1, . . . , λT
2: Initialize x1 = 0.
3: for t = 1, . . . , T do
4: Compute x̂t = xt −U
(Uxt − y)
5: Update the solution xt+1 = sign(̂xt ) [|̂xt | − λt ]+
6: end for
7: Output the final solution xT+1

It is commonly known that the value of xt+1 is given by Beck and Teboulle (2009)

xt+1 = sign(̂xt ) [|̂xt | − λt ]+ , (18)

where x̂t denotes the intermediate solution before soft-thresholding given by

x̂t = xt −U
(Uxt − y), (19)

and [v]+ = max(0, v).We present the detailed steps of the proposed algorithm inAlgorithm1
for reconstructing the sparse signal given a set of noiseless/noisy observations. To end this
section, we present our main result in the following two theorems regarding the sparse signal
recovery with noiseless observations and with noisy observations.

Theorem 1 Let x∗ ∈ R
d be an s-sparse signal and y = Ux∗ be a set of n measurements of

x∗. Assume U satisfies RIP such that

γ = δs + √
2θs,s + δ3s < 1.

Let {Δ1, . . . , Δt } be a sequence such that ‖x1 − x∗‖2 ≤ Δ1, and

Δt+1 = (δs + √
2θs,s + δ3s)Δt .

If we run Algorithm 1 with λt = Δt (δs + √
2θs,s)/

√
s, then for all t ≥ 0 we have

(1) |St+1\S∗| ≤ s and,
(2) ‖xt+1 − x∗‖2 ≤ γ tΔ1.

Remark 2 Similar to iterative hard-thresholding algorithms (Garg and Khandekar 2009; Blu-
mensath and Davies 2009), Algorithm 1 also requires knowledge of sparsity s and RIP
constants in order to enjoy the guarantee stated in Theorem 1. These requirements (espe-
cially the knowledge of RIP constants) make Algorithm 1 quite restrictive. In the next
section, we present a more practical algorithm. For the requirement of an upper bound Δ1

on ‖x1 − x∗‖2 = ‖x∗‖2 ≤ Δ1, in practice one might be able to derive such an upper bound
given some prior knowledge on the magnitude of the target signal. For example, if each entry
of the target signal is known to be in some range [a, b], then one can easily derive an upper
bound of ‖x∗‖2.
Theorem 2 Let x∗ ∈ R

d be an s-sparse signal and y = Ux∗ + e be a set of n noisy
measurements of x∗. Assume U satisfies RIP such that

γ = δs + √
2θs,s + δ3s < 1.

Let {Δ1, . . . , Δt } be a sequence such that ‖x1 − x∗‖2 ≤ Δ1, and

Δt+1 = γΔt + (1 + √
2)

√
s‖U
e‖∞, t ≥ 1.
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Part I: If we run Algorithm 1 with

λt = δs + √
2θs,s√
s

Δt + ‖U
e‖∞,

then for all t ≥ 0 we have

(1) |St+1\S∗| ≤ s and,

(2) ‖xt+1 − x∗‖2 ≤ γ tΔ1 + 1 − γ t

1 − γ
(1 + √

2)
√
s‖U
e‖∞.

Part II: In addition, ifmax(2δ6s, γ +(δs+
√
2θs,s)/

√
s) < 1, the sequence {xt } converges to a

unique fixed-point x̄ such that |S(x̄)\S∗| ≤ s and ‖x̄−x∗‖2 ≤ √
s‖U
e‖∞(1+√

2)/(1−γ ).
Moreover, x̄ is an optimal solution to the following �1-regularized problem:

min
x∈Rd

1

2
‖Ux − y‖22 + λ̄‖x‖1,

where λ̄ = (
√
2(δs + √

2θs,s) + 1 − δ3s)‖U
e‖∞/(1 − γ ).

Remark 3 Similar to solving Dantzig selector (2) and the �1 regularized problem (3) for
sparse signal recovery that requires λ ≥ c‖U
e‖∞, the regularization parameters in our
algorithm are also larger than ‖U
e‖∞ and eventually λt ≥ c‖U
e‖∞, where c depends on
RIP constants.

Remark 4 While Theorems 1 and 2 are theoretically interesting, the value of λt depends on
the RIP constants. In Sect. 4, we present more practical algorithms for (nearly) sparse signal
recovery with a sub-Gaussian measurement matrix.

3.3 Proof of Theorem 1

To pave the path for proving Theorem 1, we will present and prove a series of propositions
and lemmas. We first prove the following proposition regarding the magnitude of elements
in [̂xt ]S∗ .

Proposition 1 Let St be the support set of xt (the tth iterate of Algorithm 1) and S∗ be the
support set of x∗. Define Sc

t = St ∪ S∗, Sa
t = St\S∗ and x̃t = xt − U
U (xt − x∗). If we

assume |St\S∗| ≤ s, then there are at most s entries of [̃xt ]S∗ with magnitude larger than

(δs + √
2θs,s)‖xt − x∗‖2/√s.

Proof For any subset S ′ ⊂ S∗ of size s, let S ′
1 = S ′ ∩ Sa

t and S ′
2 = S ′\Sa

t . First, we have

‖[̃xt ]S ′ ‖2 =
∥

∥

∥[U
U (xt − x∗)]S ′ − [xt ]S ′
∥

∥

∥

2

=
∥

∥

∥U

S ′US∗ [xt − x∗]S∗ +U


S ′USa
t
[xt ]Sa

t
− [xt ]S ′

∥

∥

∥

2
,

where the second equality is due to that the support of xt − x∗ is Sc
t and we split that

into two disjoint subsets Sa
t and S∗. By noting that S ′ can be split into two subsets S ′

1 and
S ′
2 that do not intersect with each other and that ‖[v]S ′ ‖2 ≤ ‖[v]S ′

1
‖2 + ‖[v]S ′

2
‖2 with
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v = U
USa
t
[xt ]Sa

t
− xt , we have

∥

∥

∥U

S ′US∗ [xt − x∗]S∗ +U


S ′USa
t
[xt ]Sa

t
− [xt ]S ′

∥

∥

∥

2

≤
∥

∥

∥U

S ′US∗ [xt − x∗]S∗

∥

∥

∥

2
+

∥

∥

∥U

S ′USa

t
[xt ]Sa

t
− [xt ]S ′

∥

∥

∥

2

≤
∥

∥

∥U

S ′US∗ [xt − x∗]S∗

∥

∥

∥

2
+

∥

∥

∥U

S ′
2
USa

t
[xt ]Sa

t
− [xt ]S ′

2

∥

∥

∥

2
+

∥

∥

∥U

S ′
1
USa

t
[xt ]Sa

t
− [xt ]S ′

1

∥

∥

∥

2

=
∥

∥

∥U

S ′US∗ [xt − x∗]S∗

∥

∥

∥

2
+

∥

∥

∥U

S ′
2
USa

t
[xt ]Sa

t

∥

∥

∥

2
+

∥

∥

∥U

S ′
1
USa

t
[xt ]Sa

t
− [xt ]S ′

1

∥

∥

∥

2

≤
∥

∥

∥U

S ′US∗

∥

∥

∥

2

∥

∥[xt − x∗]S∗
∥

∥

2 +
∥

∥

∥U

S ′
2
USa

t

∥

∥

∥

2

∥

∥[xt ]Sa
t

∥

∥

2
+

∥

∥

∥U

Sa
t
USa

t
[xt ]Sa

t
− [xt ]Sa

t

∥

∥

∥

2

=
∥

∥

∥U

S ′US∗

∥

∥

∥

2

∥

∥[xt − x∗]S∗
∥

∥

2 +
∥

∥

∥U

S ′
2
USa

t

∥

∥

∥

2

∥

∥[xt ]Sa
t

∥

∥

2
+

∥

∥

∥(U

Sa
t
USa

t
− I ) [xt ]Sa

t

∥

∥

∥

2

≤ θs,s‖[xt − x∗]S∗‖2 + θs,s‖[xt ]Sa
t
‖2 + δs‖[xt ]Sa

t
‖2

= θs,s‖[xt − x∗]S∗‖2 + θs,s‖[xt − x∗]Sa
t
‖2 + δs‖[xt − x∗]Sa

t
‖2

≤ (δs + √
2θs,s)‖xt − x∗‖2.

where the first equality uses the fact that [xt ]S ′
2

= 0 , the third inequality uses the fact that
S ′
1 ⊆ Sa

t , the fourth inequality uses the RIP conditions (see Fact 1 and Fact 2) by noting
that |Sa

t | ≤ s, |S ′
2| ≤ s, |S ′| ≤ s and |S∗| ≤ s, and the last inequality uses the fact that

a+b ≤ √

2(a2 + b2) for a = ‖[xt −x∗]S∗‖2 and b = ‖[xt −x∗]Sa
t
‖2. Combining the above

inequalities we have
‖[̃xt ]S ′ ‖2 ≤ (δs + √

2θs,s)‖xt − x∗‖2. (20)

Since the above inequality holds for any subset S ′ ⊆ S∗ of size s, we form a particular set S ′
by including the largest s entries in absolute value of [̃xt ]S∗ . Then the smallest absolute value

in [̃xt ]S ′ is less than ((δs+
√
2θs,s)/

√
s)‖xt−x∗‖2. If not, then ‖[̃xt ]S ′ ‖2 ≥ √

s δs+
√
2θs,s√
s

‖xt−
x∗‖2 = (δs + √

2θs,s)‖xt − x∗‖2, which contradicts the result in (20). By the construction
of S ′, the smallest entry (in magnitude) in S ′ is the sth largest entry (in magnitude) in
[xt−U
U (xt−x∗)]S∗ , we conclude that atmost s entries in [̃xt ]S∗ = [xt−U
U (xt−x∗)]S∗
are larger than ((δs + √

2θs,s)/
√
s)‖xt − x∗‖2 in magnitude. ��

As an immediate result of Proposition 1, we prove the following Corollary.

Corollary 1 Assume the noiseless setting e = 0. Let St be the support set of xt and S∗ be the
support set of x∗. If |St\S∗| ≤ s and λt ≥ ((δs + √

2θs,s)/
√
s)‖xt−x∗‖2, then |St+1\S∗| ≤ s

and |S∗ ∪ St ∪ St+1| ≤ 3s.

Proof Note that in the noiseless setting when e = 0, the intermediate solution x̂t defined
in (19) is equal to

x̂t = xt −U
(Uxt − y) = xt −U
U (xt − x∗). (21)

As shown in (18), xt+1 is given by

xt+1 = sign(̂xt )
[∣

∣

∣xt −U
U (xt − x∗)
∣

∣

∣ − λt

]

+ .

By Proposition 1, we know that there are at most s entries in
[

xt −U
U (xt − x∗)
]

S∗ whose

absolute values are larger than (δs +√
2θs,s)‖xt −x∗‖2/√s. Therefore, [xt+1]S∗ has at most
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s non-zero entries by setting the value of λt ≥ ((δs + √
2θs,s)/

√
s)‖xt − x∗‖2. We conclude

that |St+1\S∗| ≤ s and |S∗ ∪ St ∪ St+1| ≤ 3s. ��
Proposition 2 Assume the noiseless setting e = 0. Let St be the support set of xt and S∗ be
the support set of x∗. If |St\S∗| ≤ s, ‖xt − x∗‖2 ≤ Δt , and λt = ((δs + √

2θs,s)/
√
s)Δt ,

then we have

‖xt+1 − x∗‖2 ≤ (δs + √
2θs,s + δ3s)Δt .

To prove the above proposition, we need the following lemma, whose proof is deferred to
the “Appendix”.

Lemma 1 Let x by any s-sparse vector and xt+1 given by (18), we have

‖xt+1 − x‖22 ≤λt
√
s‖xt+1 − x‖2 + |(xt+1 − x)
(U
(Uxt − y) − (xt − x))|.

Proof of Proposition 2 Let T = S∗ ∪ St ∪ St+1; by Corollary 1, we have |T | ≤ 3s. By the
definition of δs , ‖U


T UT − I‖2 ≤ δ3s (see Fact 1). First, since y = Ux∗ we have

(xt+1 − x∗)

(

U
 (Uxt − y) − (xt − x∗)
)

= (xt+1 − x∗)
(U
U − I )(xt − x∗).

Due to RIP of U and |S∗ ∪ St ∪ St+1| ≤ 3s, we have

|(xt+1 − x∗)
(U
U − I )(xt − x∗)| ≤ δ3s‖xt+1 − x∗‖2‖xt − x∗‖2.
Thus, by applying Lemma 1 with x = x∗, we have

‖xt+1 − x∗‖22 ≤ λt
√
s‖xt+1 − x∗‖2 + δ3s‖xt+1 − x∗‖2‖xt − x∗‖2.

If xt+1 = x∗, we are done. Otherwise, dividing by ‖xt+1 − x∗‖ we get

‖xt+1 − x∗‖2 ≤ λt
√
s + δ3s‖xt − x∗‖2.

Assuming ‖xt − x∗‖2 ≤ Δt and plugging in the value of λt , we have

‖xt+1 − x∗‖2 ≤ (δs + √
2θs,s + δ3s)Δt .

��
Proof of Theorem 1 We aim to prove ‖xt+1 − x∗‖2 ≤ γ tΔ1 and |St+1\S∗| ≤ s by induction.
This is true when t = 0 due to the initialization and the assumption ‖x1 − x∗‖2 ≤ Δ1. Next,
assume we have ‖xt − x∗‖2 ≤ γ t−1Δ1 and |St\S∗| ≤ s for any t ≥ 1. We prove that it also
holds for t + 1. By the definition of Δt , we have Δt = γ t−1Δ1. Thus ‖xt − x∗‖2 ≤ Δt .
By the value of λt , we have λt = ((δs + √

2θs,s)/
√
s)Δt ≥ ((δs + √

2θs,s)/
√
s)‖xt − x∗‖2.

Hence, the condition in Corollary 1 hold, and as a result |St+1\S∗| ≤ s. From Proposition 2,
we also have ‖xt+1 − x∗‖2 ≤ (δs + θs,s + δ3s)Δt = γΔt = γ tΔ1. ��

3.4 Proof of Theorem 2

The logic for proving Theorem 2 is similar to proving Theorem 1.

Corollary 2 Let St be the support set of xt and S∗ be the support set of x∗. If |St\S∗| ≤ s and
λt ≥ ‖U
e‖∞ + ((δs + √

2θs,s)/
√
s)‖xt −x∗‖2, then |St+1\S∗| ≤ s and |S∗ ∪St ∪St+1| ≤

3s.
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Proof xt+1 is given by

xt+1 = sign(̂xt )
[∣

∣

∣xt −U
(Uxt − y)
∣

∣

∣ − λt

]

+ .

Due to y = Ux∗ + e, we have

xt −U
(Uxt − y) = xt −U
U (xt − x∗) +U
e.

By Proposition 1, there are at most s entries in
[

xt −U
U (xt − x∗)
]

S∗ with magnitude

larger than δs+
√
2θs,s√
s

‖xt − x∗‖2. As a result, [xt − U
(Uxt − y)]S∗ has at most s entries

whose magnitudes larger than ‖U
e‖∞ + (δs + √
2θs,s)‖xt − x∗‖2/√s. Therefore, given

the assumed bound on λt , [xt+1]S∗ has at most s entries larger than zero. We conclude that
|St+1\S∗| ≤ s and |S∗ ∪ St ∪ St+1| ≤ 3s. ��
Proposition 3 Let St be the support set of xt and S∗ be the support set of x∗. If |St\S∗| ≤ s,
‖xt − x∗‖2 ≤ Δt and λt = ‖U
e‖∞ + ((δs + √

2θs,s)/(
√
s))Δt , then we have

‖xt+1 − x∗‖2 ≤ (δs + √
2θs,s + δ3s)Δt + (1 + √

2)
√
s‖U
e‖∞.

Proof Since y = Ux∗ + e, we have

(xt+1 − x∗)
U
 (Uxt − y) − (xt − x∗) =(xt+1 − x∗)
(U
U − I )(xt − x∗)
− (xt+1 − x∗)
U
e.

Due to the restricted isometry property, we have

|(xt+1 − x∗)
(U
U − I )(xt − x∗)| ≤ δ3s‖xt+1 − x∗‖2‖xt − x∗‖2,
and by the Cauchy-Schwartz inequality, we have

|(xt+1 − x∗)
U
e| ≤ √
2s‖U
e‖∞‖xt+1 − x∗‖2,

where we use the fact that |St+1\S∗| ≤ s due to Corollary 2. Thus, by combining the two
inequalities with Lemma 1 applied to x = x∗, we have

‖xt+1 − x∗‖22 ≤λt
√
s‖xt+1 − x∗‖2 + δ3s‖xt+1 − x∗‖2‖xt − x∗‖2

+ √
2s‖U
e‖∞‖xt+1 − x∗‖2.

Then we get

‖xt+1 − x∗‖2 ≤ λt
√
s + δ3s‖xt − x∗‖2 + √

2s‖U
e‖∞.

Plugging in the value of λt , we have

‖xt+1 − x∗‖2 ≤(δs + √
2θs,s + δ3s)‖xt − x∗‖2 + (1 + √

2)
√
s‖U
e‖∞.

��
Proof of Theorem 2 First, we assume ‖xt − x∗‖2 ≤ Δt . Then by Proposition 3, we have

‖xt+1 − x∗‖2 ≤ γΔt + (1 + √
2)

√
s‖U
e‖∞ � Δt+1.

Similarly, we can use Corollary 2 to show that |St+1\S∗| ≤ s given |St\S∗| ≤ s. Since
S1 = ∅ and ‖x1 − x∗‖ ≤ Δ1, the claim of Part I follows by induction.
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To prove Part II, let us define x̄t+1 = (xt+1,Δt+1)

 and M(x̄t ) � x̄t+1. Define a metric

space (X ,D) such that X = {

(x,Δ)
 ; |S(x)\S∗| ≤ s,Δ ≥ ‖x − x∗‖2
}

and D(x̄1, x̄2) =
‖x1 − x2‖2 + |Δ1 − Δ2|. The first part of this theorem implies that x̄t ∈ X .

We will show that M is a contraction mapping. Let M1(x,Δ) denote the component of
M corresponding to x andM2(x,Δ) denote the component ofM corresponding toΔ. Then

M1(x,Δ)

= argmin
u∈Rd

1

2

∥

∥

∥u −
(

x −U
(Ux − y)
)∥

∥

∥

2

2
+

(

δs + √
2θs,s√
s

Δ + ‖U
e‖∞

)

‖u‖1
︸ ︷︷ ︸

Hx(u)

, (22)

and M2(x,Δ) = γΔ + (1 + √
2)

√
s‖U
e‖∞. Let x̄ = (x,Δ)
 and x̄′ = (

x′,Δ′)


be two points from X . Without loss of generality, let us assume Δ ≥ Δ′. According to
Corollary 2 we have |S(M1(x,Δ))\S∗| ≤ s. Similarly, since Δ ≥ Δ′ ≥ ‖x′ − x∗‖2,
we also have |S(M1(x′,Δ))\S∗| ≤ s. As a result, the cardinality of the support set of
M1(x,Δ) − M1(x′,Δ) is at most 3s. Let T1 and T2 denote the support set of x − x′ and
M1(x,Δ) − M1(x′,Δ), respectively. By the strong convexity of the problem (22), we can
prove that

1

2
‖M1(x,Δ) − M1(x′,Δ)‖22 ≤ Hx(M1(x′,Δ)) − Hx(M1(x,Δ))

= Hx′(M1(x′,Δ)) − Hx′(M1(x,Δ))

− (M1(x,Δ) − M1(x′,Δ))

[(

x −U
(Ux − y)
)

−
(

x′ −U
(Ux′ − y)
)]

≤ ‖(M1(x,Δ) − M1(x′,Δ))T2‖2
×

∥

∥

∥

∥

[(

x −U
(Ux − y)
)

−
(

x′ −U
(Ux′ − y)
)]

T2

∥

∥

∥

∥

2
.

By the closed form ofM1(x,Δ) according to that similar to (18), it is not difficult to prove

that ‖M1(x′,Δ) − M1(x′,Δ′)‖2 ≤ δs+
√
2θs,s√
s

|Δ − Δ′|. Then

‖M1(x,Δ) − M1(x′,Δ′)‖2 ≤ ‖M1(x,Δ) − M1(x′,Δ)‖2
+ ‖M1(x′,Δ) − M1(x′,Δ′)‖2

≤ 2

∥

∥

∥

∥

[(

x −U
(Ux − y)
)

−
(

x′ −U
(Ux′ − y)
)]

T2

∥

∥

∥

∥

2
+ δs + √

2θs,s√
s

|Δ − Δ′|

≤ 2‖(I −U

T1∪T2

UT1∪T2)(x − x′)T1∪T2‖2 + δs + √
2θs,s√
s

|Δ − Δ′|

≤ 2δ6s‖x − x′‖2 + δs + √
2θs,s√
s

|Δ − Δ′|.

In addition, |M2(x,Δ) − M2(x′,Δ′)| ≤ γ |Δ − Δ′|. Thus,

D(M(x̄),M(x̄′)) ≤ 2δ6s‖x − x′‖2 +
(

γ + δs + √
2θs,s√
s

)

|Δ − Δ′|

≤ max

(

2δ6s, γ + δs + √
2θs,s√
s

)

D(x̄, x̄′).
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Thus, under the condition that max(2δ6s, γ + (δs + √
2θs,s)/

√
s) < 1,M(x̄) is indeed a

contractionmapping. Since (xt+1,Δt+1)

 = M

(

(xt ,Δt )

)

, byBanachfixed-point theorem
(Amster 2014) we have that xt+1 converges to a unique fixed point x̄.

Finally, we prove that x̄ is the solution to an �1-regularized problem with a certain regu-
larization parameter λ̄ = (

√
2(δs + √

2θs,s) + 1 − δ3s)‖U
e‖∞/(1 − γ ). By the optimality
condition of (17), we have

xt+1 − xt +U
(Uxt − y) + λtpt = 0, where pt ∈ ∂‖xt+1‖1,
where ∂‖ · ‖1 denotes the subdifferential of the �1 norm function. Since limt→∞ xt = x̄
and limt→∞ λt = λ̄, then there exists p̄ such that limt→∞ pt = p̄. Since ‖x‖1 is a closed
proper convex function, the sequence xt+1 converges to x̄ and the sequence pt ∈ ∂‖xt+1‖1
converges to p̄, according to Rockafellar (1970, Theorem 24.4) we have p̄ ∈ ∂‖x̄‖1. As a
result,

U
(U x̄ − y) + λ̄p̄ = 0, where p̄ ∈ ∂‖x̄‖1,
which implies that x̄ is the optimal solution to the following problem:

min
x∈Rd

1

2
‖Ux − y‖22 + λ̄‖x‖1.

��

4 Nearly-sparse signal recovery

In this section, we present algorithms and analysis for finding a sparse solution that approx-
imates a nearly-sparse signal x∗ with a small error.

4.1 Algorithms andmain results

In order to derive a practical algorithm and a better recovery result, we assume that the random
measurement matrixU ∈ R

n×d contains sub-Gaussian measurements, i.e., each elementUi j

is a sub-Gaussian random variable and has mean zero and variance 1/n. The details of the
algorithm are presented in Algorithm 2. The values of Δ1 and Λ can be set according to our
analysis. In the section, we abuse the notation S∗ to denote the support set of xs∗. We first
state the main theorem regarding the nearly-sparse signal recovery of Algorithm 2.

Theorem 3 Assume that the random measurement matrix U ∈ R
n×d contains sub-Gaussian

measurements, i.e., each element Ui j is a sub-Gaussian random variable and has mean zero
and variance 1/n. For any τ > 0 and some universal constant c > 0 define:

Λ�
√
s‖U
e‖∞ + cD(x∗, xs∗), (23)

D(x∗, xs∗)�‖(x∗ − xs∗)s‖2 +
√

τ + s ln[d/s]
n

‖x∗ − xs∗‖2. (24)

Assume that n is large enough such that for n ≥ (c2(τ + s log[d/s]))/η2 holds for the given
input parameter η <

√
2 − 1 of Algorithm 2 and some τ > 0 and some universal constant

c > 0. Letγ = (1+√
2)η, {Δt , t = 1, . . . , T }bea sequence such thatΔ1 ≥ max

(‖xs∗‖2,Λ
)

,
and

Δt+1 = γΔt + (1 + √
2)Λ.
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Algorithm 2 Homotopy Proximal Mapping Algorithm for Recovering a Sparse Signal
(HPM1)

Input: initial size Δ1 ≥ max(‖xs∗‖2, Λ), the target sparsity s, a random measurement matrix U ∈ R
d×n and

measurements y ∈ R
n , and 0 < η <

√
2 − 1, where Λ is defined in (23).

1: Initialize x1 = 0, γ = (1 + √
2)η

2: for t = 1, 2, . . . , T do
3: λt = (Λ + ηΔt )/

√
s

4: x̂t+1 = xt −U
(Uxt − y)
5: xt+1 = sign(̂xt+1)

[

x̂t+1 − λt
]

+
6: Δt+1 = γΔt + (1 + √

2)Λ
7: end for
Return xT+1

Forany t ≥ 0, with probability1−2te−τ , the iterates {x1, . . . , xt+1}generated byAlgorithm2
satisfy

|Si+1\S∗| ≤ s, ‖xi+1 − xs∗‖2 ≤ Δi+1,∀i ∈ {0, . . . , t}.
In particular, let T0 be the smallest value such that

γ T0Δ1 ≤ Λ

1 − γ
.

We run Algorithm 2 with T0 iterations and denote by x̄ the output solution. with probability
1 − 2T0e−τ , we have

‖x̄ − xs∗‖2 ≤
√
2(1 + √

2)

1 − γ
Λ. (25)

Remark 5 First, we note that the above result is meaningful when Λ ≤ ‖xs∗‖2, otherwise a
zero vector would recover xs∗ with an error less thanΛ. Second, we note that the final solution
returned by Algorithm 2 is at most 2s-sparse. We can also take the s-largest element in x̄ to
form an s-sparse approximation. Proposition 5 in the “Appendix” guarantees that the error
‖x̄s − xs∗‖2 is only amplified by a constant factor of

√
3.

Remark 6 It can be seen that when x∗ = xs∗, i.e., the signal is sparse, the problem boils down
to sparse signal recovery with noisy observations and the result in Theorem 3 is similar to
Theorem 2 except that the RIP constants are replaced with a quantity dependent on n since
we directly bound RIP constants of a sub-Gaussian matrix. Further, when e = 0, then we
can set Λ = 0 in Algorithm 2 and the result in Theorem 3 is similar to that in Theorem 1 for
sparse signal recovery under noiseless observations.

Remark 7 The result in Theorem 3 also implies that more observations (i.e., larger n) may
lead to more accurate recovery and fast convergence. Also, we note that the key property of
the measurement matrixU is that it satisfies the JL lemma with a high probability. Therefore,
any JL transforms can be used, including sparse JL transforms based on random hashing
(Dasgupta et al. 2010; Kane and Nelson 2014), which can speed up the computation.

One issue of Algorithm 2 is that it needs to estimate ‖U
e‖∞ and cD(x∗, xs∗) for setting λt
and for stopping the algorithm, which could be difficult in many circumstances. In addition,
an overestimatedΛ could increase the number of iterations and the recovery error. To alleviate
this issue, belowwepresent amore practical algorithm for nearly sparse signal recoverywhich
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Algorithm 3 Homotopy Proximal Mapping Algorithm for Recovering a Sparse Signal
(HPM2)

Input: the target sparsity s, a random measurement matrix U ∈ R
d×n and measurements y ∈ R

n and η > 0,
and the total number of iterations T .
1: Initialize x1 = 0, γ = 2(1 + √

2)η, and λ1 = 2ηΔ1/
√
s

2: for t = 1, 2, . . . , T do
3: x̂t+1 = xt −U
(Uxt − y)
4: xt+1 = sign(̂xt+1)

[

x̂t+1 − λt
]

+
5: λt+1 = γ λt
6: if ‖xt+1‖0 > 2s then
7: Set x̂ = xt
8: Break
9: end if
10: end for
Return x̂

performs better in absence of prior knowledge. The key idea is motivated by Theorem 3. At
earlier stages of Algorithm 2, we would expect thatΛ ≤ O(Δt ) and therefore we can absorb
Λ into Δt for setting λt . For stopping the algorithm, we note that as long as |St+1| ≤ 2s, we
can have the recovery error bounded by Δt+1 (Theorem 5) or O(Λ) (Theorem 6); therefore
we stop the algorithm when |St+1| > 2s. The detailed steps of the practical algorithm are
presented in Algorithm 3. The recovery error of Algorithm 3 is provided by the following
theorem.

Theorem 4 Suppose the same random assumption on U holds as in Theorem 3. Let Δ1 ≥
‖xs∗‖2 be a constant. Let x̂ be the solution output from Algorithm 3 and T is the maximum
number of iteration allowed. Assume

c

√

τ + s log(d/s)

n
≤ η ≤ 1

2(1 + √
3)

Then, with probability at least 1 − 6T e−τ , we have

‖̂x − xs∗‖2 ≤ max

(

Λ

η
, γ TΔ1

)

where γ = 2(1 + √
2)η < 1, Λ = √

s‖U
e‖∞ + cD(x∗, xs∗), D(x∗, xs∗) is defined in
Theorem 3 and c is some universal constant.

Remark 8 Although in Algorithm 3 we still use an estimateΔ1 ≥ ‖xs∗‖2 for setting the initial
value of λ, in practice we can set it to a sufficiently large value (e.g., ‖U
y‖∞) such that
x2 = 0.

Remark 9 The universal constant c in Theorem 4 should not be treated literally the same as in
Theorem 3. In numerical simulations, we observe that Algorithm 3 is more robust to smaller
values of η than Algorithm 2.

Remark 10 Theorem 4 reveals a tradeoff in setting the value of η. A smaller value of η will
lead to faster convergence but larger recovery error.
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4.2 Proof of Theorem 3

The proof of Theorem 3will be presented at the end of this subsection after a series of results.
We first give the following lemma.

Lemma 2 Assume U ∈ R
n×d is a sub-Gaussian measurement matrix, where each element in

U has zero mean and variance 1/n. If |St\S∗| ≤ s, then with probability 1− 2e−τ , we have
∥

∥

∥(U
 (Uxt − y) − (xt − xs∗))s
∥

∥

∥

2
≤√

s‖U
e‖∞ + cD(x∗, xs∗)

+ c

√

τ + s log[d/s]
n

‖xt − xs∗‖2,

where D(x∗, xs∗) is defined in Theorem 3 and c is some universal constant.

Lemma 2 is proved in the “Appendix”. Following Lemma 2, we prove the following corollary.

Corollary 3 Let St and St+1 be the support sets of xt and xt+1, respectively. If |St\S∗| ≤ s,
then with probability 1 − 2e−τ , we have

|St+1\S∗| ≤ s,

provided that

λt ≥‖U
e‖∞+ cD(x∗, xs∗)√
s

+ c√
s

√

τ + s log[d/s]
n

‖xt − xs∗‖2. (26)

Proof The proof is similar to that of Corollary 2. Recall that xs denotes the vector x with all
but the s largest entries (in magnitude) set to zero, and S∗ denotes the support of the s-largest
entries in x∗. From Lemma 2, we can conclude that [xt − U
 (Uxt − y)]S∗ has at most s
entries with magnitude larger than the quantity in the right hand side of (26). This can be
verified by contradiction. Suppose there exists A ⊆ S∗ such that |A| > s and for all i ∈ A,

[xt −U
 (Uxt − y)]i ≥ ‖U
e‖∞+ cD(x∗, xs∗)√
s

+ c√
s

√

τ + s log[d/s]
n

‖xt − xs∗‖2.

Let As ⊆ A such that |As | = s. Then

‖[xt − xs∗ −U
 (Uxt − y)]As‖2 ≥ √
s‖U
e‖∞

+ cD(x∗, xs∗) + c

√

τ + s log[d/s]
n

‖xt − xs∗‖2,

where we use the fact that [xs∗]As = 0. However, the above inequality contradicts Lemma 2.
Since xt+1 is given by

xt+1 = sign(̂xt )
[∣

∣

∣xt −U
(Uxt − y)
∣

∣

∣ − λt

]

+ ,

therefore, given the assumed bound on λt , [xt+1]S∗ has at most s entries larger than zero.
We conclude that |St+1\S∗| ≤ s. ��

Based on the above corollary, we can prove the following proposition that serves as the
key to proving the main theorem.
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Proposition 4 Assume |St\S∗| ≤ s, ‖xt − xs∗‖2 ≤ Δt , and define

Λ �
√
s‖U
e‖∞ + cD(x∗, xs∗). (27)

Let λt = Λ + ηΔt√
s

. Then, with probability 1 − 2e−τ , we have

|St+1\S∗| ≤ s, ‖xt+1 − xs∗‖2 ≤ Δt+1 � (1 + √
2)ηΔt + (1 + √

2)Λ,

provided

c

√

τ + s log[d/s]
n

≤ η.

Proof It is easy to verify that the condition for λt in Corollary 3 is satisfied. Combining with
the fact that xt is a 2s-sparse vector, we have |St+1\S∗| ≤ s due to Corollary 3. Applying
Lemma 1 with x = xs∗, we have

‖xt+1 − xs∗‖22 ≤ λt
√
s
∥

∥xt+1 − xs∗
∥

∥

2 +
∣

∣

∣(xt+1 − xs∗)
(U
 (Uxt − y) − (xt − xs∗))
∣

∣

∣ . (28)

According to Lemma 2, with probability 1 − 2e−τ , we have
∥

∥

∥

(

U
 (Uxt − y) − (xt − xs∗)
)s∥

∥

∥

2
≤ Λ + ηΔt . (29)

Thus,
∣

∣

∣

∣
(xt+1 − xs∗)


(

U
(

U
xt − y
)

− (xt − xs∗)
)
∣

∣

∣

∣

≤
∣

∣

∣

∣
[xt+1 − xs∗]
S∗

[

U
(

U
xt − y
)

− (xt − xs∗)
]

S∗

∣

∣

∣

∣

+
∣

∣

∣

∣
[xt+1 − xs∗]
St+1\S∗

[

U
(

U
xt − y
)

− (xt − xs∗)
]

St+1\S∗

∣

∣

∣

∣

≤ (∥

∥[xt+1 − xs∗]S∗
∥

∥

2 + ∥

∥[xt+1 − xs∗]St+1\S∗
∥

∥

2

)

(Λ + ηΔt )

≤ √
2(Λ + ηΔt )‖xt+1 − xs∗‖2,

where we use the fact that |S∗| ≤ s and |St+1\S∗| ≤ s, and inequality (29), and the last
inequality uses the fact that a+b ≤ √

2(a2 + b2). Combining the above inequality with (28),
with probability 1 − 2e−τ , we have

‖xt+1 − xs∗‖22 ≤
(

λt
√
s + √

2ηΔt + √
2Λ

)

‖xt+1 − xs∗‖2
≤ [(1 + √

2)ηΔt + (1 + √
2)Λ]‖xt+1 − xs∗‖2.

Therefore,

‖xt+1 − xs∗‖2 ≤ (1 + √
2)ηΔt + (1 + √

2)Λ. (30)

��
Proof of Theorem 3 Following Proposition 4 and by induction, we can prove that for any t ,
|St+1\S∗| ≤ s and ‖xt+1 − xs∗‖2 ≤ Δt+1 hold with probability 1 − 2te−τ . Since Δt+1 =
γΔt + (1 + √

2)Λ, we have

Δt+1 ≤ γ tΔ1 + 1 − γ t

1 − γ
(1 + √

2)Λ ≤ γ tΔ1 + 1

1 − γ
(1 + √

2)Λ.
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Letting t = T0 such that γ T0Δ1 ≤ Λ/(1 − γ ), we then have

‖xT0+1 − xs∗‖2 ≤
√
2(1 + √

2)Λ

1 − γ

with probability 1 − 2T0e−τ , which completes the proof of Theorem 3. ��

4.3 Proof of Theorem 4

Wefirst state two theorems that are central to our analysis. Theorem5 reveals that the recovery
error of Algorithm 3will decrease by a constant factor at the beginning, and Theorem 6 shows
that the recovery error will stay small in the later stages.

Theorem 5 Let Δ1 ≥ ‖xs∗‖2 be a constant, γ = 2(1+ √
2)η, and {xt , t = 1, . . .} be iterates

generated by Algorithm 3. Assume |St\S∗| ≤ s, ‖xt − xs∗‖ ≤ Δt , and Λ ≤ ηΔt . Then, with
probability at least 1 − 2e−τ , we have

|St+1\S∗| ≤ s and ‖xt+1 − xs∗‖2 ≤ Δt+1�γΔt ,

provided the condition in Theorem 4 is true.

Proof The proof is very similar to that of Proposition 4 by noting that λt = 2ηΔt/
√
s >

(Λ + ηΔt )/
√
s satisfies the condition in Corollary 3. Then we can bound (30) by 2(1 +√

2)ηΔt = γΔt , which finishes the proof. ��
Theorem 6 Let {xt , t = 1, . . .} be iterates generated by Algorithm 3. Assume |St | ≤ 2s,
‖xt − xs∗‖ ≤ Λ/η, and Λ > ηΔt . If |St+1| ≤ 2s, then with probability at least 1− 2e−τ , we
have

‖xt+1 − xs∗‖2 ≤ 2(1 + √
3)Λ ≤ Λ/η,

provided the condition in Theorem 4 is true.

Proof First we note that xt − xs∗ is at most 3s-sparse. With a slight change of the universal
constant, we still have Lemma 2 (cf. the proof of Lemma 2 in the “Appendix”). Then, with
probability at least 1 − 2e−τ , we have

∥

∥

∥

[

U
(

U
xt − y
)

− (xt − xs∗)
]s∥

∥

∥

2
≤ Λ + c

√

τ + s log(d/s)

m
‖xt − xs∗‖2

≤ Λ + η‖xt − xs∗‖2 ≤ 2Λ.

Notice that xt+1 − xs∗ is 3s-sparse in this case, and we can verify that
∣

∣

∣(xt+1 − xs∗)

(

U
(

U
xt − y
)

− (xt − xs∗)
)∣

∣

∣ ≤ 2
√
3Λ‖xt+1 − xs∗‖2.

To see this, we can split xt+1 − xs∗ = a + b + c into three components, each with at most s
non-zero entries and non-overlapping support. Then

∣

∣

∣(xt+1 − xs∗)

(

U
(

U
xt − y
)

− (xt − xs∗)
)∣

∣

∣

≤ (‖a‖2 + ‖b‖2 + ‖c‖2)
∥

∥

∥

[

U
(

U
xt − y
)

− (xt − xs∗)
]s∥

∥

∥

2

≤ (‖a‖2 + ‖b‖2 + ‖c‖2)2Λ ≤ 2
√
3Λ‖xt+1 − xs∗‖2.
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where we use the fact that a+ b+ c ≤ √

3(a2 + b2 + c2). Applying Lemma 1 with x = xs∗,
we have, with probability at least 1 − 2e−τ ,

‖xt+1 − xs∗‖22 ≤ λt
√
s‖xt+1 − xs∗‖2 + |(xt+1 − xs∗)
(U
(Uxt − y) − (xt − xs∗))|

≤
(

λt
√
s + 2

√
3Λ

)

‖xt+1 − xs∗‖2 ≤ 2(1 + √
3)Λ‖xt+1 − xs∗‖2,

where we use the fact that η = 2ηΔt√
s

≤ 2Λ√
t
due to the assumption Λ > ηΔt . Thus,

‖xt+1 − xs∗‖2 ≤ 2(1 + √
3)Λ.

��
Proof of Theorem 4 Let k = min {t : Λ > ηΔt }. Assume k ≥ 1, otherwise Theorem 4 holds
with T = 1. In the following, we consider the two cases T < k and T ≥ k, where T is the
input to the algorithm.
T < k: Since the condition Λ ≤ ηΔt holds for t = 1, . . . , T , we can apply Theorem 5 to
bound the recovery error in each iteration. Thus, with probability at least 1 − 2T e−τ , we
have

‖̂x − xs∗‖2 = ‖xT+1 − xs∗‖2 ≤ ΔT+1 = γ TΔ1.

T ≥ k: From the above analysis, with probability at least 1 − 2(k − 1)e−τ , we have ‖xk −
xs∗‖2 ≤ Δk and |Sk\S∗| ≤ s, which also means our algorithm arrives at the kth iteration (i.e.,
it does not terminate before kth iteration). In the kth iteration, one of the two cases holds:
|Sk+1| > 2s and |Sk+1| ≤ 2s. In the first case, our algorithm terminates and returns xk as
the final solution, implying

‖̂x − xs∗‖2 = ‖xk − xs∗‖2 ≤ Δk ≤ Λ/η.

In the second case, Algorithm 3 keeps running, and we can bound the recovery error by
Theorem 6. In particular, if at T ′ ≥ k, |ST ′+1| > 2s, our algorithm terminates and returns
xT ′ as the final solution, which implies |St | < 2s and t ≤ T ′. Thus, by applying induction
of Theorem 6 from t = k, we have

‖̂x − xs∗‖2 = ‖xT ′ − xs∗‖2 ≤ 2(1 + √
3)Λ ≤ Λ/η.

��

5 Numerical simulations

In this section, we conduct numerical simulations to verify the proposed algorithms and the
developed analysis, and also comparewith previous algorithms.We implemented all involved
algorithms using Matlab R2017a and evaluate them in the same computing environment—a
linux machine with 3.10GHz CPU and 264G memory. All algorithms were run using single
computational thread option on Matlab.

5.1 Verifying Theorem 3

Wefirst conduct some empirical studies to verify the results in Theorem3.We generate amea-
surement matrix U ∈ R

n×d such that each element follows an i.i.d distribution N (0, 1/n).
To generate an s-sparse target signal, we sample the non-zeros elements from the standard
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Fig. 2 Algorithm 2: recovery error and sparsity versus iterations in setting II
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Fig. 3 Algorithm 2: recovery error and sparsity versus iterations in setting III
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Fig. 4 Algorithm 2: recovery error and sparsity versus iterations in setting I for different values of η
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Fig. 5 Algorithm 2: recovery error and sparsity versus iterations in setting II for different values of η

normal distribution followed by �2 norm normalization. To generate a nearly sparse target
signal, we set the i th element of x∗ to i−1 followed by �2 norm normalization. The noise
vector e is drawn from uniform distribution [−σ, σ ]. We run Algorithm 2 with hundreds of
iterations and plot recovery error (‖xt − xs∗‖2) and sparsity versus the number of iterations
in Figs. 1, 2 and 3 for n = 2000, d = 10000, s = 20, σ = 0.001 under three different
settings, respectively. The value of Δ1 is set to ‖xs∗‖2, the value of η is set to 0.4, 0.4, 0.3
for three different settings, respectively, and the value of Λ is set to 0,

√
s‖U
e‖∞ and√

s‖U
e‖∞ +η‖x∗ −xs∗‖2, respectively. The curves of recovery error in Figs. 1a, 2a and 3a
demonstrate that the recovery error is upper bounded by Δt , which clearly validates the
recovery error bounds in Theorem 3. The curves of sparsity level in Figs. 1b, 2b and 3b
demonstrate that the number of non-zero elements of all iterates xt does not exceed s = 20,
which are consistent with the result about support sizes of xt in Theorem 3.
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Fig. 6 Algorithm 2: recovery error and sparsity versus iterations in setting III for different values of η

5.2 Varying�

We conduct more experiments to demonstrate that the robustness of the proposed HPM
algorithm (Algorithm 2) with respect to the value of η. The data is generated similarly
as before for the three settings with n = 1000, d = 10000, s = 20, σ = 0.001. The
results are shown in Figs. 4, 5 and 6 for different values of η, not exceeding its upper limit√
2 − 1 ≈ 0.414. The smallest value of η in each figure is the smallest one5 that guarantees

convergence. From these results, we have several interesting observations: (i) from noisy to
noiseless observations and from sparse signal to nearly sparse signal, the algorithm becomes
more robust for smaller values ofη and less robust for larger values ofη. For example in setting
I, the smallest value of η that guarantees convergence is 0.32, but when adding some noise to
the observations, the smallest value of η reduces to 0.3. However, the value η = 0.41, which
originally works for noiseless observations, will cause the algorithm to diverge in setting II.
(ii) As long as convergence is observed, a smaller value of η yields faster convergence in
all cases and more accurate recovery in settings II and III. (iii) Even though the sparsity of
intermediate solutions exceeds 2s, the algorithm still converges.

5.3 Varying n

We also verify that more observations lead to faster convergence and more accurate recov-
ery. To this end, we generate data similarly as before with different values of n =
1000, 1500, 2000, 2500. For each value of n, we choose the smallest η that can guaran-
tee the convergence. The results for the first two settings are shown in Fig. 7, which clearly
demonstrate that the with more observations, we can use smaller η to get a faster convergence
and a more accurate recovery in setting II. Similar result has been observed for setting III.

5.4 HPM1 versus HPM2

We also compare HPM2 with HPM1 in setting III to demonstrate the benefit of HPM2. The
data is generated similarly as before with n = 1000, d = 10,000, s = 20, σ = 0.001. The

5 We start a value of η = 0.41 and decrease by 0.01 until we observe divergence.
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Fig. 7 Algorithm 2: recovery error versus different n. The value of η is chosen as the best one for each value
of n
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Fig. 8 a HPM1 versus HPM2 with different values of η in setting III. b, c Recovery error and sparsity of
solutions in HPM2 versus iterations in setting III for different values of η resp
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Fig. 9 HPM2 versus PGH. Two different values of η are used in HPM2. PGH requires 96 proximal updates
and HPM2 requires 51 and 61 proximal updates with η = 0.182 and η = 0.185, respectively. The error of the
final solution returned by PGH is 0.0365, and the error of the final solution returned by HPM2 with the two
different values of η is 0.0317, and 0.0227, respectively. The recovery error of the 100-sparse solution formed
by taking the top 100 elements in the returned solution by HPM2 is 0.0312 and 0.0223, and that by PGH is
0.0362

result is shown in Fig. 8a. The initial value of λ in HPM2 is set to ‖U
y‖∞. It shows that
HPM2 with an appropriate value of η can achieve similar convergence speed and even more
accurate recovery than HPM1. We also plot the recovery error and sparsity of intermediate
solutions for HPM2 in Fig. 8b, c. The curves exhibit a tradeoff in setting the value of η,
namely a smaller value of η leads to a faster convergence but a worse recovery, which is
consistent with Theorem 4.

5.5 Comparing with proximal-gradient homotopymethod (PGH)

We compare HPM2 with the PGH method that solves the BPDN problem for sparse signal
recovery (Xiao and Zhang 2013). The data is generated exactly the same as in Xiao and
Zhang (2013). In particular, we generate a random measurement matrix U ∈ R

n×d with
n = 1000 and d = 5000. The entries of the matrix U are generated independently with the
uniform distribution over the interval [−1,+1] and are scaled to have a variance 1/n. The
vector x∗ ∈ R

d is generated with the same distribution at 100 randomly chosen coordinates
(i.e., S∗ = 100). The noise e ∈ R

n is a dense vector with independent random entries with
the uniform distribution over the interval [−σ, σ ], where σ is the noise magnitude and is set
to 0.01. Finally the vector y was obtained as y = Ux∗ + e. The target value of λ in PGH is
chosen to be λtarget = 1 according to Xiao and Zhang (2013). The parameters in PGH (e.g.,
γinc, γdec, η, δ) are exactly the same as those used inXiao and Zhang (2013). The initial value
of λ for both PGH and HPM2 is set to ‖U
y‖∞. We plot the recovery error and sparsity of
generated solutions versus the number of proximal updates in Fig. 9. We can see that HPM2
achieves faster convergence and better recovery than PGH for sparse signal recovery.

5.6 Comparing with iterative soft thresholding algorithm (ISTA) and iterative hard
thresholding (IHT)

Finally, we compare HPM2 with two other algorithms, namely ISTA and IHT (Garg and
Khandekar 2009). The measurement matrixU and the noise vector e are generated the same
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Fig. 10 HPM2 versus ISTA and IHT. From left to right: a x∗ is sparse with only 100 non-zero entries and the
parameter s in HPM2 and IHT is set to 100; b x∗ is sparse with only 100 non-zero entries and the parameter
s in HPM2 and IHT is set to 200; c x∗ is sparse with only 100 non-zero entries and the parameter s in HPM2
and IHT is set to 400; d x∗ is nearly sparse and the parameter s in HPM2 and IHT is set to 100

as above, i.e., U ∈ R
1000×5000 and each entry is sampled from a uniform distribution over

[−1,+1] and is scaled to have a variance of 1/n. For the ground-truth signal x∗, we consider
two scenarios: (i) a sparse signal with 100 randomly chosen coordinates sampled from the
uniform distribution over [−1,+1]; (ii) a nearly sparse signal such that the entries follow an
exponential decay, i.e., [x∗]i = e−i . Since the proposed HPM2 and IHT require a parameter
s that estimates the sparsity of the target signal, in the first scenario we vary s among three
values s = 100, s = 200 and s = 400. In the second scenario, we fix s = 100. For other
parameters that each algorithm relies on (e.g., η in HPM2, the step size parameter 1/γ in
IHT and the regularization parameter λ in ISTA), we tune them among numerous values and
report the performance of the best one. We vary the value of η in [0.1, 0.2], the value of γ

in [1, 10] and the value of λ in [0.001, 1]. The recovery error measured by the difference
between the top s components of the returned solution and the top s components of the
ground-truth signal is plotted in Fig. 10. From the results, we observe that (i) IHT and HPM2
convergemuch faster than ISTA; (ii) when the ground-truth signal is sparse and the parameter
s is set to the exact number of non-zeros in the ground-truth signal, IHT performs better than
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HPM2; (iii) however, when the parameter s is overestimated and the ground-truth signal is
not exactly sparse, the proposed algorithm HPM2 performs better than IHT, where the latter
case is consistent with our comparison in Sect. 2.

6 Conclusions

In this paper, we have presented simple homotopy proximal mapping algorithms for recon-
structing a sparse signal from (noisy) linear measurements of the signal. We proved a global
linear convergence for the proposed homotopy proximal mapping algorithms under three dif-
ferent settings. For sparse signal recovery, one of the proposed algorithmswith an appropriate
setting of a parameter based on the RIP constants converges linearly to the optimal solution
up to the noise level. For nearly sparse signal recovery with a sub-Gaussian measurement
matrix, our high probability result is better than previous results for instance-level recovery
in terms of the order of recovery error. In addition, we develop a practical algorithm that
runs without any knowledge of noise level but requires the target sparsity level and an upper
bound of the target signal’s Euclidean norm. Numerical simulations verify the proposed algo-
rithms and the established theorems. As future work, we will consider how to incorporate
hard thresholding into the proposed HPM schemes and prove the convergence and recovery
bounds. We will also consider how to develop more practical algorithms without relying on
prior knowledge of the target sparsity and the upper bound of the target signal’s Euclidean
norm.
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A Proof of Lemma 1

Define Lt (x) as

Lt (x) = 1

2

∥

∥

∥x −
(

xt −U
(Uxt − y)
)∥

∥

∥

2

2
+ λt‖x‖1.

Since xt+1 is the optimal solution to minx Lt (x), we have for any x

(xt+1 − x)
∂Lt (xt+1) ≤ 0,

where ∂Lt (·) denotes the subdifferential of the function Lt (·), i.e., there exists a gt+1 ∈
∂‖xt+1‖1 such that

(xt+1 − x)
(xt+1 − xt ) + (xt+1 − x)
U
 (Uxt − y) + λt (xt+1 − x)
gt+1 ≤ 0.

Let x be an s-sparse vector with support set S. Then we have

(xt+1 − x)
(xt+1 − xt ) + (xt+1 − x)
U
 (Uxt − y) + λt‖[xt+1]St+1\S‖1 ≤ λt‖[xt+1 − x]S‖1,
where we use ([xt+1]St+1\S)
gt+1 = ‖xt+1‖1 and ‖gt+1‖∞ ≤ 1. Note that

(xt+1 − x)
(xt+1 − xt ) + (xt+1 − x)
U
 (Uxt − y)

= ‖xt+1 − x‖22 + (xt+1 − x)

(

U
 (Uxt − y) − (xt − x)
)

.
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We complete the proof by noting that λt‖[xt+1]St+1\S‖1 ≥ 0 and

‖[xt+1 − x]S‖1 ≤ √
s‖xt+1 − x‖2.

��

B Proof of Lemma 2

We first decompose U
 (Uxt − y) − (xt − xs∗) into 3 components:

U
 (Uxt − y) − (xt − xs∗)
= U
 (Uxt −Ux∗ − e) − (xt − xs∗)
= U
U (xs∗ − x∗)

︸ ︷︷ ︸

:=wa

+ (U
U − I )(xt − xs∗)
︸ ︷︷ ︸

:=wb

−U
e
︸︷︷︸

:=wc

.

Then, we have
∥

∥

∥

[

U
 (Uxt − y) − (xt − xs∗)
]s∥

∥

∥

2
≤ ‖ws

a‖2 + ‖ws
b‖2 + ‖ws

c‖2. (31)

The last term can be bounded by ‖ws
c‖2 ≤ √

s‖U
e‖∞. In the following analysis, we intend
to bound ‖(U
Uz)s‖2 for a fixed vector z, and

∥

∥((UU
 − I )z)s
∥

∥

2 for any sparse vector z.
We will address these two bounds in the following two subsections.

B.1 Bounding ‖(U�Uz)s‖2 for a fixed z

First, we define

Kd,s =
{

w ∈ R
d : ‖w‖2 ≤ 1, ‖w‖0 ≤ s

}

,

and

Es(z) = max
w∈Kd,s

w
U
Uz.

It is easy to verify that

‖(U
Uz)s‖2 = Es(z).

This can be seen that the maximum in the definition of Es(z) is achieved when the support
set of w is the support set of the top s-elements (in magnitude) in U
Uz. Hence, to bound
‖(U
Uz)s‖2, it suffices to bound Es(z).

Theorem 7 For a fixed z, with probability 1 − e−τ with some arbitrary τ > 0, we have

Es(z) ≤ c

(√

τ + s log(d/s)

n
‖z‖2 + ‖zs‖2

)

,

where c is some universal constant.

Proof Let Kd,s(ε) be the proper ε-net for Kd,s with the smallest cardinality (i.e., covering
number) [for definitions of ε-net and covering number, please refer to Plan and Vershynin
(2011)], and let N (Kd,s, ε) be the covering number for Kd,s . Lemma 3 in “Appendix C”
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bounds the covering number N (Kd,s, ε). By taking the union bound [aka Boole’s inequality
Galambos (1977)] of the result in Lemma 5 over all w ∈ Kd,s(ε), we have, with probability
1 − e−τ ,

max
w∈Kd,s (ε)

∣

∣

∣w
U
Uz − w
z
∣

∣

∣ ≤ c

√

τ + s log(9d/[εs])
n

|z|2,

if ε ∈ (0, 1), and therefore

Es(z, ε) ≤ c

√

τ + s log(9d/[εs])
n

‖z‖2 + ‖zs‖2.

We complete the proof by using Lemma 4 in “Appendix C” with ε = 1
2
√
2
and assuming d

is sufficiently large. ��

B.2 Bound
∥
∥((U�U − I)z)s

∥
∥
2 for any sparse z

Theorem 8 For any z with ‖z‖0 ≤ s, and any τ > 0, with probability 1 − e−τ , we have

∥

∥

∥((U
U − I )z)s
∥

∥

∥

2
≤ c

√

τ + s log[d/s]
n

‖z‖2,
where c is some universal constant.

Proof We define Σs(z) as

Σs(z) = max
w∈Kd,s

w
(U
U − I )z.

It is easy to see
∥

∥((U
U − I )z)s
∥

∥

2 = Σs(z). Following the analysis of Theorem 7, it is easy
to verify that, with probability 1 − e−τ , for a fixed z, we have

Σs(z) ≤ c

√

τ + s log[d/s]
n

‖z‖2,
for some universal constant c. To extend this result to any s-sparse z, we define

μs = max
z∈Kd,s

Σs(z).

Evidently, for any z with ‖z‖0 ≤ s, we have

Σs(z) ≤ μs‖z‖2.
Using the same idea as Theorem 7, we define a discrete version of μs as

μs(ε) = max
z∈Kd,s (ε)

Σs(z),

and following the same argument as Lemma 4, we have

μs ≤ μs(ε)

1 − √
2ε

.

Since for any fixed z ∈ Kd,s , with probability 1 − e−τ , we have

Σs(z) ≤ c

√

τ + s log[d/s]
n

.
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By taking the union bound and using the relationship betweenμs andμs(ε), with probability
1 − e−τ , we have

μs ≤ c

√

τ + s log[d/s]
n

.

We complete the proof by using Σs(z) ≤ μs‖z‖2. ��
Proof of Lemma 2 Combining the above results, we can complete the proof of Lemma 2. In
particular, we apply Theorem 7 to bound ‖ws

a‖2 = ‖(U
U (xs∗ − x∗))s‖2 in (31), and apply
Theorem 8 to bound ‖ws

b‖2 = ‖(U
U − I )(xt − xs∗)‖2 for any 2s-sparse xt − xs∗. ��

C Other Lemmas and Proofs

Lemma 3 (Lemma 3.3 from Plan and Vershynin (2011)) For ε ∈ (0, 1) and s ≤ d, we have

log N (Kd,s, ε) ≤ s log

(

9d

εs

)

.

Using the ε-net Kd,s(ε), we define a discretized version of Es(z) as

Es(z, ε) = max
w∈Kd,s (ε)

w
U
Uz.

The following lemma relates Es(z, ε) with Es(z).
Lemma 4 For ε ∈ (0, 1/

√
2), we have

Es(z) ≤ Es(z, ε)
1 − √

2ε
.

Based on the conclusion from Lemma 4, it is sufficient to bound Es(z, ε). The lemma below
is useful for bounding Es(z, ε) that follows from the JL lemma for a sub-Gaussian matrix.

Lemma 5 For fixed w and z such that ‖w‖2 ≤ 1, and any τ > 0, with probability 1 − e−τ ,
we have

w
U
Uz − w
z ≤ c

√

τ

n
‖z‖2,

where c is some universal constant.

C.1 Proof of Lemma 4

The analysis is the same as that for Lemma 9.2 of Koltchinskii (2011), we include it for
completeness. For any x, x′ ∈ Kd,s , we can always find two vectors y, y′ such that

x − x′ = y − y′, ‖y‖0 ≤ s, ‖y′‖0 ≤ s, y
y′ = 0.

Thus

〈x − x′,UU
z〉 = 〈y,UU
z〉 + 〈−y′,UU
z〉
= ‖y‖2

〈

y
‖y‖2 ,UU
z

〉

+ ‖y′‖2
〈 −y′

‖y′‖2 ,UU
z
〉

≤ (‖y‖2 + ‖y′‖2)Es(z) ≤ Es(z)
√
2
√

‖y‖22 + ‖y′‖22
= Es(z)

√
2‖y − y′‖2 = Es(z)

√
2‖x − x′‖2.
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Then, we have

Es(z) = max
w∈Kd,s

w
UU
z

≤ Es(z, ε) + sup
x∈Kd,s ,x′∈Kd,s (ε),‖x−x′‖2≤ε

〈x − x′,UU
z〉

≤ Es(z, ε) + √
2εEs(z),

which implies

Es(z) ≤ Es(z, ε)
1 − √

2ε
.

C.2 Proof of Lemma 5

Let us first assume ‖z‖2 = 1, otherwise

w
U
Uz − w
z ≤ (w
U
Uz′ − w
z′)‖z‖2,

where z′ = z/‖z‖2. Following the JL lemma for a sub-Gaussian matrix (Nelson 2013), we
know that with probability 1 − exp(−c′ε2n), where c′ is some constant (indeed, c′ < 1/8
works for a Gaussian matrix Ui j ∼ N (0, 1/

√
n)),

(1 − ε)‖z‖22 ≤ ‖Uz‖22 ≤ (1 + ε) ‖z‖22.

Therefore,

w
U
Uz − w
z = ‖U (w + z)‖22 − ‖U (w − z)‖22
4

− w
z

≤ ε

2
(‖w‖22 + ‖z‖22) ≤ ε.

Therefore, with probability 1 − e−τ , we have

w
U
Uz − w
z ≤ c

√

τ

n
‖z‖2,

where c = 1/
√
c′.

D Top-s recovery error

Proposition 5 Let y ∈ R
2s be an arbitrary s-sparse vector. Then we have

‖xs − y‖2 ≤ √
3‖x − y‖2 ∀x ∈ R

2s .

Proof Let X and Y be the support set of x and y, respectively. If |X | ≤ s, we have

‖xs − y‖2 = ‖x − y‖2.
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Thus, in the following, we only need to consider the case |X | > s. Let A be the indices of
the s largest elements in x, and B = X\A. Then, we have

‖x − y‖22 =
∑

i∈A\Y
x2i +

∑

i∈A∩Y
(xi − yi )

2 +
∑

i∈B∩Y
(xi − yi )

2 +
∑

i∈B\Y
x2i ,

‖xs − y‖22 =
∑

i∈A\Y
x2i +

∑

i∈A∩Y
(xi − yi )

2 +
∑

i∈B∩Y
y2i .

Since

|A\Y| + |A ∩ Y| = |A| = s ≥ |Y| = |A ∩ Y| + |B ∩ Y|,
we have |A\Y| ≥ |B ∩ Y|. As a result, we must have

∑

i∈B∩Y
x2i ≤

∑

i∈A\Y
x2i . (32)

Since

∑

i∈B∩Y
y2i ≤ 2

∑

i∈B∩Y
(xi − yi )

2 + 2
∑

i∈B∩Y
x2i

(32)≤ 2
∑

i∈B∩Y
(xi − yi )

2 + 2
∑

i∈A\Y
x2i ,

we have

‖xs − y‖22 ≤ 3
∑

i∈A\Y
x2i +

∑

i∈A∩Y
(xi − yi )

2 + 2
∑

i∈B∩Y
(xi − yi )

2 ≤ 3‖x − y‖22.

��

E Upper bound of ‖U�e‖∞

Proposition 6 Let U ∈ R
n×d be a random matrix with sub-Gaussian entries of mean 0 and

variance 1/n. For any τ > 0, with probability 1 − 2e−τ , we have

‖U
e‖∞ ≤ θ‖e‖2
√

τ + log d

n
, (33)

where θ > 0 is a constant.

Proof Let ui denote the i th column vector of U . Since [ui ] j , j = 1, . . . , n, are independent
(1/

√
n)- sub-Gaussian variables, uTi e is a (‖e‖2/√n)- sub-Gaussian variable. According to

the property of a sub-Gaussian vector, there exists θ > 0 such that

‖u

i e‖ψ2 ≤ θ

‖e‖2√
n

, i = 1, . . . , d,

where ‖·‖ψ2 is theOrlicz norm (Rao andRen 1991). It is known that the following property of
the Orlicz norm |u


i e| ≤ ‖u

i e‖ψ2

√
τ holds. [cf. Koltchinskii (2011)]. Then, with probability

1 − 2e−τ , we have

|u

i e| ≤ ‖u


i e‖ψ2

√
τ ≤ θ‖e‖2

√

τ

n
.

Taking the union bound, we can complete the proof. ��
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