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Abstract
In this paper, we introduce principled stochastic algorithms to efficiently optimize Normal-
ized Discounted Cumulative Gain (NDCG) and its top-K variant for deep models. To this
end,we first propose novel compositional and bilevel compositional objectives for optimizing
NDCG and top-K NDCG, respectively. We then develop two stochastic algorithms to tackle
these non-convex objectives, achieving an iteration complexity of O(ε−4) for reaching an
ε-stationary point. Our methods employ moving average estimators to track the crucial inner
functions for gradient computation, effectively reducing approximation errors. Besides, we
introduce practical strategies such as initial warm-up and stop-gradient techniques to enhance
performance in deep learning. Despite the advancements, the iteration complexity of these
two algorithms does not meet the optimal O(ε−3) for smooth non-convex optimization. To
address this issue, we incorporate variance reduction techniques in our framework to more
finely estimate the key functions, design new algorithmic mechanisms for solving multi-
ple lower-level problems with parallel speed-up, and propose two types of algorithms. The
first type directly tracks these functions with the variance reduced estimators, while the

Editor: Lam M Nguyen.

B Zi-Hao Qiu
qiuzh@lamda.nju.edu.cn

Quanqi Hu
quanqi-hu@tamu.edu

Yongjian Zhong
yongjian-zhong@uiowa.edu

Wei-Wei Tu
tuweiwei@4paradigm.com

Lijun Zhang
zhanglj@lamda.nju.edu.cn

Tianbao Yang
tianbao-yang@tamu.edu

1 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2 Department of Computer Science and Engineering, Texas A&M University, College Station, USA

3 Department of Computer Science, The University of Iowa, Iowa City, USA

4 4Paradigm Inc., Beijing, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-024-06631-x&domain=pdf
http://orcid.org/0009-0000-0966-4506


   42 Page 2 of 70 Machine Learning           (2025) 114:42 

second treats these functions as solutions to minimization problems and employs variance
reduced estimators to construct gradient estimators for solving these problems. We manage
to establish the optimal O(ε−3) complexity for both types of algorithms. It is important to
highlight that our algorithmic frameworks are versatile and can optimize a wide spectrum of
metrics, including Precision@K /Recall@K , Average Precision (AP), mean Average Preci-
sion (mAP), and their top-K variants. We further present efficient stochastic algorithms for
optimizing these metrics with convergence guarantees. We conduct comprehensive experi-
ments onmultiple ranking tasks to verify the effectiveness of our proposed algorithms, which
consistently surpass existing strong baselines.

Keywords Stochastic optimization · NDCG · Non-convex optimization · Information
retrieval

1 Introduction

NDCG is a key performance metric for learning to rank in information retrieval (Liu, 2011)
and other machine learning tasks where ranking plays a critical role (Liu & Yang, 2008;
Bhatia et al., 2015). In this paper, we utilize the terminology from information retrieval to
discuss NDCG and our methods. For a given query q with n items, the ranking model assigns
scores to each item, which are then sorted in descending order to create a ranked list. The
NDCG score for q is computed by:

NDCGq = 1

Zq

n∑

i=1

2yi − 1

log2(1 + r(i))
, (1)

where yi denotes the relevance score of the i-th item, r(i) indicates the rank of the i-th item in
the ordered list, and Zq is a normalization factor known as the Discounted Cumulative Gain
(DCG) score (Järvelin & Kekäläinen, 2002) of the optimal ranking for q . The top-K NDCG
is defined by summing over items whose ranks are in the top K positions of the ordered
list. This measure is particularly relevant in real-world applications such as recommendation
systems, where the objective typically involves selecting a small set of K items from a large
pool (Cremonesi et al., 2010), making top-K NDCG a common choice in such scenarios.

Optimizing NDCG and its top-K variant poses several challenges. Firstly, ranking all n
items is computationally intensive. Secondly, the rank operator is non-differentiable with
respect to model parameters. To address the non-differentiability, surrogate functions have
been developed to approximate NDCG (Taylor et al., 2008; Qin et al., 2010; Swezey et
al., 2021; Pobrotyn & Bialobrzeski, 2021). However, to the best of our knowledge, the
computational challenge of calculating the gradient of equation (1), which involves sorting
n items, has not yet been addressed. All existing gradient-based methods have a complexity
of O(nd) per-iteration, where d is the number of model parameters, which is prohibitive for
deep learning tasks with big n and big d . A naive approach updates the parameters by the
gradient over a mini-batch of samples, but given the complexity and non-convex nature of
the NDCG surrogate, these methods do not reliably compute an unbiased stochastic gradient,
thus lacking theoretical guarantees.

In this paper, we first propose stochastic algorithms with a per-iteration complexity of
O(Bd), where B is the mini-batch size, for optimizing NDCG and its top-K variant. For
NDCG, we formulate a novel finite-sum coupled compositional optimization (FCCO) prob-
lem. Then, inspired by a recent work on average precision maximization (Qi et al., 2021),
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we develop an efficient algorithm named SONG. This algorithm utilizes moving average
estimators to track the inner functions of the compositional objectives, enabling us to control
the optimization error effectively. Unlike the SGD-style or Adam-style updates used by Qi
et al. (2021) in their algorithm, we employ a simple yet effective momentum-style update,
conduct a more detailed analysis, and establish an iteration complexity of O(ε−4) for find-
ing an ε-level stationary solution, which is better than that proved by Qi et al. (2021), i.e.,
O(ε−5)1. To optimize top-K NDCG that involves a selection operator, we propose a novel
bilevel optimization problem, which contains a lower-level problem for top-K selection of
each query. Then we smooth the non-smooth functions in the selection operator, and pro-
pose an algorithm named K-SONG with the iteration complexity of O(ε−4). The algorithm
leverages recent advances in bilevel optimization (Guo et al., 2021a) but introduces novel
algorithm design and proof techniques to enable parallel processing of multiple lower-level
problems in top-K NDCG optimization, while establishing a convergence guarantee. To
further improve the effectiveness of optimizing the NDCG surrogates, we implement two
practical strategies: initial warm-up to find a good initial solution and stop gradient operator
to simplify the optimization of the top-K NDCG surrogate.

Although SONG/K-SONG systematically maximize NDCG and its top-K variant,
their convergence rates still exhibit a gap compared to the optimal rate for smooth
non-convex optimization, i.e., O(ε−3) (Arjevani et al., 2022). To bridge this gap, we
propose two types of improved algorithms named Faster SONGv1/K-SONGv1 and
Faster SONGv2/K-SONGv2, which are able to estimate those crucial functions for gradient
computation more accurately by using advanced variance reduction techniques in differ-
ent ways. Specifically, Faster SONGv1/K-SONGv1 employ an advanced variance reduced
estimator named MSVR (Jiang et al., 2022) to track the functions involving randomness
from compositional structures, and the STORM estimators (Cutkosky & Orabona, 2019) to
manage stochastic gradient variance. For Faster SONGv2/K-SONGv2, we further explore
the idea of converting the estimation of inner functions into solving elaborated minimiza-
tion problems, where the gradient estimators are updated using the previously mentioned
advanced variance reduced estimators. However, when optimizing the complex bilevel prob-
lem of top-K NDCG, using these variance-reduced estimators alone is insufficient to achieve
the optimal convergence rate. Therefore, we design a novel batch update mechanism for
lower-level problems that not only precisely controls the estimation error of lower-level
solutions but also achieves parallel speed-up, surpassing the similar algorithm by Guo et al.
(2021a). We also establish the optimal convergence rate using new proof techniques. More-
over, our algorithmic frameworks are versatile for optimizing a broad spectrum of metrics
such as Precision@K /Recall@K , Average Precision (AP), mean Average Precision (mAP),
and their top-K variants. To demonstrate this, we design efficient and theoretically guaranteed
stochastic algorithms for optimizing these metrics.

Experiments on recommender systems and learning to rank tasks reveal that SONG
and K-SONG significantly outperform prior baseline methods, with further in-depth anal-
yses affirming the effectiveness of our algorithmic designs. Additionally, the enhanced
algorithms Faster SONGv1/v2/K-SONGv1/v2 demonstrate improvements over their origi-
nal counterparts. We also observe that Faster SONGv2/K-SONGv2 typically outperform
Faster SONGv1/K-SONGv1. Further, our experiments on graph classification tasks demon-
strate that our algorithms effectively optimize Precision@K and top-K mAP, which

1 From Theorem 1 in Qi et al. (2021), it is evident that reaching an ε-stationary point requires O
(

n1/5+
T 1/5

)

iterations, thus the iteration complexity is O(ε−5).
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highlights the versatility and efficacy of our optimization frameworks across a variety of
deep learning tasks. The code for replicating these experiments is available at https://github.
com/zhqiu/NDCG-Optimization. Our work on SONG and K-SONG has been published at
ICML 2022 (Qiu et al., 2022), with the paper’s novel contributions summarized as follows:

• To improve the convergence rates of SONG/K-SONG, we propose two types of novel
algorithms that not only use advanced variance-reduced estimators but also incorpo-
rate innovative algorithm designs to achieve parallel speed-up in optimizing lower-level
problems.

• We prove that our algorithms enjoy the optimal convergence rate. To achieve this, we
tailor the existing variance-reduced optimization proof framework to our problem and
develop novel techniques to control the errors of solving multiple lower-level problems.

• We show that our algorithmic frameworks can optimize a wide range of metrics, such as
Precision/Recall@K , mAP, and top-K mAP. We develop provable stochastic algorithms
for these metrics and validate them through experiments.

• We employ more baseline methods and datasets from various domains, where our exper-
imental results not only confirm the effectiveness of our methods but also reveal the
algorithms’ intrinsic mechanisms.

2 Related work

2.1 Listwise LTR approaches

We mainly review the listwise learning to rank (LTR) (Liu, 2011) methods that are close to
this work. The listwise approaches fall into three categories. The first category uses ranking
metrics to re-weight instances during training. For example, LambdaRank algorithms (Burges
et al., 2005a; Burges, 2010) compute a weight �NDCG by the NDCG difference when a
pair of items in the list is swapped, and use it to re-weight the pair during training. These
approaches are then generalized by LambdaLoss (Wang et al., 2018), which achieves the
best performance in this family. Although these algorithms consider NDCG, their theoretical
relations to NDCG remain ambiguous. Methods in the second category, e.g., ListNet (Cao
et al., 2007), RankCosine (Qin et al., 2008), and ListMLE (Xia et al., 2008), define loss
functions to optimize the agreement between predictions and ground truth rankings.However,
optimizing these loss functions do not necessarily maximize NDCG. In addition, efficient
stochastic algorithms for these losses are still underdeveloped. The third category directly
optimizes ranking metrics, and mostly focuses on NDCG, as reviewed below.

2.2 NDCG optimization

Earlier works employ traditional optimization techniques, e.g., genetic algorithm (Yeh et al.,
2007), boosting (Xu&Li, 2007; Valizadegan et al., 2009), and SVM framework (Chakrabarti
et al., 2008). However, thesemethods are not scalable to big data. A popular approach approx-
imates ranks in NDCGwith smooth functions and then optimize the resulting surrogates. For
example, SoftRank (Taylor et al., 2008) uses rank distributions to smoothNDCG, but it suffers
from a high computational complexity of O(n3). ApproxNDCG (Qin et al., 2010) approxi-
mates the rank function and the top-K selector for the top-K variant by a generalized sigmoid
function. Thonet et al. (2022) introduce SmoothI, a novel differentiable approximation of
the rank indicator function that can be applied to various ranking metrics. Recent efforts like
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PiRank (Swezey et al., 2021) and NeuralNDCG (Pobrotyn & Bialobrzeski, 2021) propose
smoothing NDCG by approximating the non-continuous sorting operator based on Neural-
Sort (Grover et al., 2019). However, their per-iteration complexities remainO(nd).Moreover,
little attention has been paid to the convergence guarantees for optimizing these surrogates.
Recently, we have formulated the NDCG and top-K NDCG optimization problems as FCCO
and bilevel optimization problems, respectively, and introduced the first algorithms with an
iteration complexity of O(ε−4) (Qiu et al., 2022). In this paper, we propose novel algorithm
designs and incorporate advanced variance-reduced estimators, resulting in algorithms that
achieve state-of-the-art O(ε−3) complexity with parallel speed-up.

2.3 Stochastic compositional optimization

The optimization of two-level compositional functions in the form ofEξ [ f (Eζ [g(w; ζ )]; ξ)],
where ξ and ζ are independent random variables, or its finite-sum variant has been studied
extensively (Wang et al., 2017; Balasubramanian et al., 2022; Chen et al., 2021). In this
paper, we formulate the surrogate of NDCG into a similar but more complicated finite-sum
couples compositional optimization (FCCO) problem of the form Eξ [ f (Eζ [g(w; ζ, ξ))],
where ξ and ζ are independent and the inner function g(w; ζ, ξ) also depends on the random
variable ξ of the outer level. We borrow a technique from Qi et al. (2021) by using moving
average estimators to track the inner functions andmake the approximation error controllable,
but establish a better complexity of O(ε−4). Recently, Jiang et al. (2022) propose a novel
variance reduced estimator named MSVR for FCCO and achieve a better complexity of
O(ε−3). To improve the convergence rate, we use the MSVR estimator within a complex
bilevel optimization framework comprising numerous low-level problems to manage the
estimation error of compositional functions, significantly complicating our analysis.

2.4 Stochastic bilevel optimization

Stochastic bilevel optimization (SBO) has a long history in the literature (Colson et al., 2007;
Kunisch & Pock, 2013; Liu et al., 2020). Recent works focus on algorithms with provable
convergences (Ghadimi &Wang, 2018; Hong et al., 2023; Chen et al., 2022). However, most
of them do not explicitly consider the challenge of many lower-level problems. Guo et al.
(2021a) consider SBO with many lower-level problems and develop a stochastic algorithm
with a convergence guarantee. However, their algorithm is not applicable to our problem
with a compositional objective and does not achieve a parallel speed-up when using a mini-
batch of samples to estimate the gradients. In this study, we apply advanced variance-reduced
estimators within a complex bilevel optimization framework that includes multiple lower-
level problems.We introduce two novel types of algorithms, demonstrating that they not only
achieve the optimal convergence rate but also achieve parallel speed-up by utilizing multiple
queries and multiple items from sample queries.

2.5 Variance reducedmethods

Variance reduction has emerged as an important technique for non-convex optimization
problems, providing faster convergence upon stochastic gradient descent. Many stochastic
variance-reduced gradient algorithms have been proposed and they have improved the con-
vergence rate from O(ε−4) to O(ε−3) (Fang et al., 2018; Zhou et al., 2020). Despite the
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improvement, these methods rely heavily on giant batch size to construct checkpoint gradi-
ents, which limits the use of these algorithms. Cutkosky and Orabona (2019) address this
issue and present a new estimator called STORM, achieving the optimal convergence rate by
a variant of the momentum term. Recently, inspired by STORM, Jiang et al. (2022) propose
a variance reduced estimator called MSVR, which employs a similar update as STORM but
with a customized error correction term for FCCO. In this paper, we integrate STORM and
MSVR in a complicated bilevel optimization problem with a compositional objective and
many lower-level problems, achieving both the optimal iteration complexity of O(ε−3) and
parallel speed-up.

3 Preliminaries

Let Q represent a query set of size N , with each query denoted by q ∈ Q. For each query
q , Sq is a set of Nq items (e.g., documents, movies) to be ranked. Each item xqi ∈ Sq
has an associated relevance score yqi ∈ R

+, indicating the relevance between query q and
item xqi . Define S+

q ⊆ Sq as the subset containing N+
q items relevant to q , characterized

by non-zero relevance scores. The set of all relevant query-item (Q-I) pairs is denoted by
S = {(q, xqi ) : q ∈ Q, xqi ∈ S+

q }. Let hq(x;w) represent the predictive function for an item

x with respect to the query q , where w ∈ R
d denotes the parameters (e.g., a deep neural

network). Furthermore, let I(·) denote the indicator function, and (x)+ represent the function
max{x, 0}. Let

r(w; x,Sq) =
∑

x′∈Sq

I(hq(x′;w) − hq(x;w) ≥ 0)

denote the rank of x with respect to the set Sq , where we simply ignore the tie.
According to the definition in (1), the averaged NDCG over all queries is

NDCG = 1

N

N∑

q=1

1

Zq

∑

xqi ∈S+
q

2y
q
i − 1

log2(r(w; xqi ,Sq) + 1)
,

where Zq is the maximum DCG of the perfect ranking for the items in Sq . An important
variant of NDCG is its top-K variant, which is defined over the items xqi ∈ Sq whose
prediction scores are in the top-K positions, i.e.,

Top-KNDCG = 1

N

N∑

q=1

1

ZK
q

∑

xqi ∈S+
q

I(xqi ∈ Sq [K ]) 2y
q
i − 1

log2(r(w; xqi ,Sq) + 1)
,

where Sq [K ] represents the items within Sq whose prediction scores rank in the top-K
positions, and ZK

q denotes the top-K DCG score of the ideal ranking. It is worth mentioning
that when K is set equal to |Sq | for each q , top-K NDCG simplifies to NDCG, thereby
making NDCG a special case of top-K NDCG.

Finally, we introduce the concept of iteration complexity, a commonly used metric to
assess the efficiency of stochastic algorithms.

Definition 1 Astochastic algorithm is said to achieve an ε-stationarypoint ifE[‖∇F(xt )‖] ≤
ε, where xt is the algorithm output at the t-th iteration and the expectation is taken over the
randomness of the algorithm until the iteration t . The iteration complexity of the algorithm
is the number of iterations needed to find the ε-stationary point.
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Algorithm 1 Stochastic Optimization of NDCG: SONG

Require: η, γ0, β1, u1 = 0,m1 = 0
Ensure: wT+1
1: for t = 1, ...T do
2: Draw some relevant Q-I pairs B = {(q, xqi )} ⊂ S
3: For each sampled q draw a batch of items Bq ⊂ Sq
4: for each sampled Q-I pair (q, xqi ) ∈ B do

5: Let ĝq,i (wt ) = 1
|Bq |

∑
x′∈Bq

	(wt ; x′, xqi , q)

6: Compute ut+1
q,i = (1 − γ0)utq,i + γ0 ĝq,i (wt )

7: end for
8: Compute the stochastic gradient estimator G(wt ) according to (5)
9: Computemt+1 = β1mt + (1 − β1)G(wt )
10: update wt+1 = wt − ηmt+1
11: end for

4 Optimizing a smooth NDCG surrogate

To address the non-differentiability of the rank function r(w; x,Sq), we approximate it by a
continuous and differentiable surrogate function

ḡ(w; x,Sq) =
∑

x′∈Sq

	(hq(x′;w) − hq(x;w)),

where 	(·) is a surrogate loss of I(· ≥ 0). Here we use a convex and non-decreasing smooth
surrogate loss, e.g., squared hinge loss 	(x) = max(0, x+c)2, where c is a margin parameter.
Below, we abuse the notation 	(w; x′, x, q) = 	(hq(x′;w)−hq(x;w)). Using the surrogate
loss, we cast NDCG maximization into:

max
w∈Rd

L(w) := 1

|S|
N∑

q=1

∑

xqi ∈S+
q

2y
q
i − 1

Zq log2(ḡ(w; xqi ,Sq) + 1)
. (2)

The following lemma justifies the maximization of L(w) for NDCG maximization:

Lemma 1 If 	(w; x′, x, q)≥I(hq(x′;w)−hq(x;w)≥0), L(w) lower bounds NDCG.

The key challenge for solving the above problem lies at (i) computing ḡ(w; xqi ,Sq) and its
gradient is expensive when |Sq | = Nq is very large; and (ii) an unbiased stochastic gradient
of the objective function is not readily available. To highlight the second challenge, let us
consider the gradient of the function φ(w) = 1

log2(ḡ(w;xqi ,Sq )+1)
, which is given by

∇φ(w) = − log2(e) · ∇ ḡ(w; xqi ,Sq)
log22(ḡ(w; xqi ,Sq) + 1) · (ḡ(w; xqi ,Sq) + 1)

.

We can estimate ḡ(w; xqi ,Sq) by its unbiased estimator using a mini-batch of itemsBq ⊂ Sq ,
i.e., Nq

|Bq |
∑

x′∈Bq
l(w, x′, xqi , q). However, directly plugging this unbiased estimator into the

above expression produces a biased estimator of ∇φ(w) because ∇φ(w) is non-linear w.r.t.
ḡ. The optimization error will be large if |Bq | is small (Hu et al., 2020b).

To address this issue, we cast the problem into the following equivalent form:

min
w∈Rd

F(w) := 1

|S|
∑

(q,xqi )∈S
fq,i (g(w; xqi ,Sq)), (3)
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Fig. 1 Comparing the approximation error (AE) of themini-batch estimator g(w, xqi ,Bq ) andmoving average

estimator uq,i for the function g(w, xqi ,Sq )

where g(w; xqi ,Sq) = 1
Nq

ḡ(w; xqi ,Sq) and fq,i (g) = 1
Zq

1−2y
q
i

log2(Nqg+1) . It is a special case of a
family of finite-sum coupled compositional stochastic optimization problems, which was
first studied by Qi et al. (2021) for maximizing average precision. Inspired by their method,
we develop a stochastic algorithm for solving (3). The complete procedure is provided in
Algorithm 1, which is named as Stochastic Optimization of NDCG (SONG).

To motivate the proposed method, we first derive the gradient of F(w):

∇F(w) = 1

|S|
∑

(q,xqi )∈S
∇ fq,i (g(w; xqi ,Sq))∇g(w; xqi ,Sq). (4)

The major cost for computing∇F(w) lies at computing g(w; xqi ,Sq) and its gradient, which
involves all items in Sq . To this end, we approximate these quantities by stochastic samples.
The gradient ∇g(w; xqi ,Sq) can be approximated by the stochastic gradient ∇ ĝq,i (w) =
1

|Bq |
∑

x′∈Bq
∇	(w; x′, xqi , q), where Bq is sampled from Sq . Note that ∇ fq,i (g(w; xqi ,Sq))

is non-linear w.r.t. g(w; xqi ,Sq), thus we need a better way to estimate g(w; xqi ,Sq) to control
the approximation error.

To this end, we borrow a technique from Qi et al. (2021) by using a moving average
estimator to track g(w; xqi ,Sq) for each xqi ∈ S+

q . Specifically, we maintain a scalar uq,i

for each relevant query-item pair (q, xqi ) and update it by a linear combination of historical
one utq,i and an unbiased estimator of g(wt ; xqi ,Sq) denoted by ĝq,i (wt ) in Step 5 and 6 in
Algorithm 1, where γ0 ∈ (0, 1) is a parameter. Intuitively, when t increases, wt−1 is getting
closer to wt , hence the previous value of the estimator, i.e., utq,i is useful for estimating
gq,i (wt ).

To examine the effectiveness of the moving average estimator, we conduct an experiment
on two popular recommender system datasets: MovieLens20M (Harper & Konstan, 2015)
and Netflix Prize (Bennett et al., 2007). We employ the widely used NeuMF model (He
et al., 2017), which is trained by calculating g(w; xqi ,Sq) across Sq and minimizing the
objective in (3). Further details are provided in Sect. 9.2. During this process, we also
compute g(w; xqi ,Sq)’s mini-batch estimator g(w; xqi ,Bq) and moving average estima-
tor uq,i , comparing their estimation errors relative to g(w; xqi ,Sq), which is defined as
E(q,xqi )|ĝq,i − g(w; xqi ,Sq)|. The results, illustrated in Fig. 1, demonstrate that the mov-

ing average estimator consistently provides a more accurate estimation of g(w; xqi ,Sq).
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With these stochastic estimators, we can compute the gradient of the objective in (3) with
controllable error as

G(wt ) = 1

|B|
∑

(q,xqi )∈B
∇ fq,i (utq,i )∇ ĝq,i (wt ). (5)

We implement the momentum update for wt+1 in Step 9 and 10, where β1 ∈ (0, 1) is the
momentumparameter. Themomentumupdate canbe replacedby theAdam-style update (Guo
et al., 2021b), where the step size η is replaced by an adaptive step size. We can establish the
same convergence rate for the Adam-style update.

We have some remarks about SONG: (i) for w1, since the NDCG surrogate function is
non-convex, we use the initial warm-up strategy described in Sect. 6 to find good initialization
parameters for all NDCG optimization algorithms; (ii) the per-iteration complexity of SONG
isO(Bd+B2), whereO(Bd) andO(B2) come from the forward and backward computation
of hq(x

q
i ;w) and ĝq,i (w), xqi ∈Bq , respectively. For a large model size d 
 B, we have the

per-iteration complexity of O(Bd), which is independent of the length of Sq ; and (iii) the
additional memory cost is the size of uq,i , i.e., the number of all relevant Q-I pairs. Note that
many real-world datasets are very sparse (Yuan et al., 2014; Singh, 2020), hence the cost is
acceptable in most cases.

Here we present the convergence guarantee of SONG in the following theorem.

Theorem 1 Under appropriate conditions and settings of γ0, η = O(ε2), β1 = 1−O(ε2),
Algorithm 1 ensures that after T = O(ε−4) iterations we can find an ε-stationary solution
of F(w), i.e., E[‖∇F(wτ )‖2]≤ε2 for a random τ ∈{1,. . . ,T }.

Remark Inspired by Qi et al. (2021), we also employ the moving average estimator technique
to control the optimization error of FCCO. However, we manage to establish an iteration
complexity of O(ε−4), which is the same as the standard SGD for solving standard non-
convex losses (Ghadimi & Lan, 2013) and better than that proved by Qi et al. (2021), i.e.,
O(ε−5). We attribute this improvement to the use of a simple yet effective momentum-style
stochastic gradient estimatormt (see Algorithm 1, line 9) and amore refined proof process. A
detailed analysis is provided in the ‘Innovations in Proof Techniques’ section in Appendix E.

5 Optimizing a smooth top-K NDCG surrogate

In this section, we propose an efficient stochastic algorithm to optimize the top-K variant
of NDCG. By using the smooth surrogate loss 	(·) for approximating the rank function, we
have the following objective for top-K NDCG:

1

N

N∑

q=1

1

ZK
q

∑

xqi ∈S+
q

I(xqi ∈ Sq [K ]) 2y
q
i − 1

log2(ḡ(w; xqi ,Sq) + 1)
,

where Sq [K ] denotes the set of top-K items in Sq . Compared with optimizing the NDCG
surrogate in (3), there is another level of complexity, i.e., the selection of top-K items from
Sq , which is non-differentiable. In the literature, Qin et al. (2010) and Wu et al. (2009) use
the relationship I(xqi ∈ Sq [K ]) = I(K − r(w; xqi ,Sq) ≥ 0) and approximate it by ψ(K −
ḡ(w; xqi ,Sq)), where ψ is a continuous surrogate of the indicator function. However, there
are two levels of approximation error, one lies at approximating r(w; xqi ,Sq) by ḡ(w; xqi ,Sq)
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and the other one lies at approximating I(· ≥ 0) by ψ(·). To reduce the error for selecting
xqi ∈ Sq [K ], we propose a more effective method, which relies on the following lemma:

Lemma 2 Let λq(w) = argminλ(K +ε)λ+∑
x′∈Sq

(hq(x′;w)−λ)+, where ε ∈ (0, 1), then

λq(w) is the (K + 1)-th largest value among hq(x′,w),∀x′ ∈ Sq , and hence xqi ∈ Sq [K ] is
equivalent to hq(x

q
i ;w) > λq(w).

Remark The optimal λq(w) can be the threshold to select top-K items in Sq .

As a result, the problem can be converted into

min
w

1

|S|
N∑

q=1

∑

xqi ∈S+
q

I(hq(x
q
i ;w) − λq(w) > 0)(1 − 2y

q
i )

ZK
q log2(g(w; xqi ,Sq) + 1)

s.t ., λq(w) = argmin
λ

K + ε

Nq
λ + 1

Nq

∑

x′∈Sq

(hq(x′;w) − λ)+.

There are still some challenges that prevent us developing a provable algorithm. In particular,
the selection operator I(hq(x

q
i ;w)−λq(w)>0) is non-smooth w.r.t.w due to (i) the indicator

function I(·) is non-continuous and non-differentiable; and (ii) λq(w) is non-smooth w.r.t. w
because the lower optimization problem is non-smooth and non-strongly convex. To address
these challenges,wefirst approximate I(· > 0)by a smooth andLipschtiz continuous function
ψ(·), whose choice can be justified by the following lemma:

Lemma 3 If ψ(hq(x
q
i ;w)−λq(w)) ≤ CI(hq(x

q
i ;w)−λq(w) > 0) holds for some constant

C > 0 and 	(w; x′, x, q) ≥ I(hq(x′;w) − hq(x;w) > 0), then the function

1
N

∑N
q=1

∑
xqi ∈S+

q

ψ(hq (xqi ;w)−λq (w))(2y
q
i −1)

CZK
q log2(ḡ(w;xqi ,Sq )+1)

is a lower bound of the top-K NDCG.

Remark When hq(x;w) is bounded, it is not hard to find a smooth and Lipschitz continuous
function ψ(·) satisfying the above condition, e.g., the sigmoid function.

Next, to smooth λ(w), we aim to make the lower level problem smooth and strongly
convex, while not affecting the optimal solution λ(w) too much. To this end, we replace the
lower level problem by

λ̂q(w)=argmin
λ

Lq(λ;w) := K + ε

Nq
λ+ τ2

2
λ2+ 1

Nq

∑

xi∈Sq

τ1ln

(
1+exp

(
hq(xi ;w)−λ

τ1

))
.

The following lemma justifies the above smoothing.

Lemma 4 Assuming hq(x,w) ∈ (0, ch] , if τ1 = τ2 = ε for some ε � 1 , then we have
|λ̂q(w) − λq(w)| ≤ O(ε) for any w. In addition, Lq(λ;w) is a smooth and strongly convex
function in terms of λ for any w.

As a result, we propose the following problem for optimizing top-K NDCG:

min FK (w) := 1

|S|
∑

(q,xqi )∈S
ψ(hq(x

q
i ;w) − λ̂q(w)) fq,i (g(w; xqi ,Sq))

s.t ., λ̂q(w) = argmin
λ

Lq(λ;w),∀q ∈ Q, (6)
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where we employ fq,i (g) to denote 1
ZK
q

1−2y
q
i

log2(Nqg+1) .

Although (6) is a bilevel optimization problem, existing stochastic algorithms for bilevel
optimization are not applicable because there are several differences from the standard bilevel
optimization problem studied in the literature. First, an unbiased stochastic gradient of the
objective function is not readily computed as we explained before. Second, there are multiple
lower level problems in (6), whose solutions cannot be updated at the same time for all q ∈ Q
when N is large. To address these challenges, we develop a tailored stochastic algorithm for
solving (6).

The proposed algorithm is presented in Algorithm 2, to which we refer as K-SONG.
To motivate K-SONG, we first consider the gradient of the objective function in (6), i.e.,
∇FK (w), as follows:

1

|S|
∑

(q,xqi )∈S

(
ψ ′(hq(xqi ;w)−λ̂q(w))·(∇hq(x

q
i ;w)−∇wλ̂q(w))

)
fq,i (g(w; xqi ,Sq))

+ ψ(hq(x
q
i ;w) − λ̂q(w))∇g(w; xqi ,Sq)∇ fq,i (g(w; xqi ,Sq)). (7)

Similar to SONG, we can estimate g(wt ; xqi ,Sq) by utq,i . An inherent challenge of bilevel

optimization is to estimate the implicit gradient ∇wλ̂(w). According to the optimality con-
dition of λ̂(w) (Ghadimi & Wang, 2018), we can derive

∇wλ̂q(w) = −∇2
λ,wLq(λ̂q(w);w)(∇2

λλLq(λ̂q(w);w))−1. (8)

To estimate ∇2
λ,wLq(λ̂(w);w) at t-th iteration, we use the current estimate λtq in place of

λ̂q(wt ) and use Lq(λ̂,w;Bq) defined by a mini-batch samples Bq in place of Lq(λ̂;w), i.e.,

Lq(λ,w;Bq) = K + ε

Nq
λ + τ2

2
λ2 + 1

|Bq |
∑

xi∈Bq

τ1 ln(1 + exp((hq(xi ;w) − λ)/τ1)).

Estimating (∇2
λλLq(λ̂q(w);w))−1 is more tricky. In the literature (Ghadimi&Wang, 2018), a

commonmethod is to use vonNeuman series with stochastic samples to estimate it. However,
suchmethod requiresmultiple samples in the order ofO(1/τ2), which is a large number when
τ2 is small. To address this issue, we follow a similar strategy of Guo et al. (2021a) to estimate
∇2

λλLq(λ̂q(w);w) directly by using mini-batch samples. In the proposed algorithm, we use a
moving average estimator denoted by sq as shown in Step 10. Finally, we have the following
stochastic gradient estimator:

G(wt ) = 1

|B|
∑

(q,xqi )∈B
pq,i∇ ĝq,i (wt )

+ ψ ′(hq(xqi ;wt ) − λq,t )

[
∇whq(x

q
i ;wt ) + ∇2

λ,wLq(λ
t
q ,wt ;Bt )(stq)

−1
]
f (utq,i ), (9)

where pq,i = ψ(hq(x
q
i ;wt ) − λtq)∇ fq,i (utq,i ) and is computed in Step 7 in K-SONG. In

Appendix C, we detail the specific implementation for the two second-order derivatives with
respect to Lq in (9).

It is notable that different from Guo et al. (2021a), we update λt+1
q with a mini-batch of

queries q for parallel speed-up in Step 11, which makes the analysis more challenging. At
last, we present the convergence guarantee of K-SONG.
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Algorithm 2 Stochastic Optimization of top-K NDCG: K-SONG

Require: η0, η1, γ0, γ
′
0, β1, u

1 = 0, s1 = 0, λ1 = 0,m1 = 0
Ensure: wT+1
1: for t = 1, ...T do
2: Draw some relevant Q-I pairs B = {(q, xqi )} ⊂ S
3: For each q ∈ B draw a batch of items Bq ⊂ Sq
4: for each sampled Q-I pair (q, xqi ) ∈ B do

5: Let ĝq,i (wt ) = 1
|Bq |

∑
x′∈Bq

	(wt ; x′, xqi , q)

6: Let ut+1
q,i = (1 − γ0)utq,i + γ0 ĝq,i (wt )

7: Let pq,i = ψ(hq (xqi ;wt ) − λtq )∇ fq,i (u
t
q,i )

8: end for
9: for each sampled query q ∈ B do
10: Let st+1

q = (1 − γ ′
0)s

t
q + γ ′

0∇2
λλLq (λtq ,wt ;Bq )

11: Let λt+1
q = λtq − η0∇λLq (λtq ,wt ;Bq )

12: end for
13: Compute a stochastic gradient G(wt ) according to (9) or (10)
14: Computemt+1 = β1mt + (1 − β1)G(wt )
15: Update wt+1 = wt − η1mt+1
16: end for

Theorem 2 Under appropriate conditions and proper settings of parameters γ0, γ
′
0, η0, η1 =

O(ε2), β1 = 1−O(ε2), after T = O(ε−4) iterations K-SONG can find an ε-stationary
solution, i.e., E[‖∇FK (wτ )‖2]≤ε2 for a random τ ∈{1,. . . ,T }.

Remark The above theorem indicates that K-SONG also has the iteration complexity of
O(ε−4). To achieve this, inspired by Guo et al. (2021a), we maintain variance-reduced esti-
mators for the key functions in our algorithm. However, unlike Guo et al. (2021a), our
algorithm implements parallel speed-up in lines 9–12 of Algorithm 2 and introduces new
proof techniques to control the optimization error of the lower-level problems. InAppendix E,
we provide detailed assumptions, parameter settings, and proofs for Theorems 1 and 2. We
also provide a proof sketch to help readers better understand our algorithm. Additionally, we
highlight the differences between our proofs and those of similar algorithms in the ‘Innova-
tions in Proof Techniques’ section, emphasizing our contributions.

6 Practical strategies

In this section,wepresent twopractical strategies for improving the effectiveness ofSONG/K-
SONG in deep learning applications.

6.1 Initial warm-up

A potential problem of optimizing NDCG is that it may not lead to a good local minimum
if a bad initial solution is given. To address this issue, we use warm-up to find a good
initial solution by solving a well-behaved objective. Similar strategies have been used in the
literature (Yuan et al., 2020; Qi et al., 2021), however, their objectives are not suitable for
ranking. Here we choose the listwise cross-entropy loss (Cao et al., 2007), i.e.,
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min
w

1

N

N∑

q=1

1

Nq

∑

xqi ∈S+
q

− ln

⎛

⎝ exp(hq(x
q
i ;w)

∑
xqj ∈Sq

hq(x
q
j ;w))

⎞

⎠ ,

which is the cross-entropy between predicted and ground truth top-one probability distri-
butions. We use PyTorch’s default methods to initialize w in practice. The objective can be
formulated as a similar finite-sum coupled compositional problem as NDCG, and a similar
algorithm to SONG can be used to solve it.We present the formulation and detailed algorithm
in Appendix A.

6.2 Stop gradient for the top-

K Selector Given a good initial solution, we justify that the second term in (9) is close to 0
under a reasonable condition, and present the details in Appendix B. Thus, the gradient of the
top-K selector ψ(h(xqi ,w) − λ̂q(w)) is not essential. Hence we can apply the stop gradient
operator on the top-K selector, and compute the gradient estimator by

G(wt ) = 1

|B|
∑

(q,xqi )∈B
pq,i∇ ĝq,i (wt ), (10)

which simplifies K-SONG by avoiding maintaining and updating sq,t . We refer to the K-
SONG using the gradient in (9) as theoretical K-SONG, and the K-SONG using the gradient
in (10) as practical K-SONG.

7 Optimizing NDCG and top-K NDCGwith faster convergence

The algorithms SONG/K-SONG are effective for deep learning but do not achieve the opti-
malO(ε−3) iteration complexity for smooth non-convex optimization (Arjevani et al., 2022).
In this section, we present two types of algorithms that achieve the optimal iteration com-
plexity by utilizing advanced variance reduced estimators in different ways to further control
gradient approximation errors. We begin by describing the two key estimators employed,
STORM (Cutkosky & Orabona, 2019) and MSVR (Jiang et al., 2022). Then, we elabo-
rate two strategies for using these estimators, and conclude with the algorithms and their
theoretical guarantees.

STORM is a famous variance reduction estimator that achieves an iteration complexity
ofO(ε−3) on smooth losses. Assume that we have a target function ∇ f (wt ;S), its STORM
estimator dt is updated by

dt+1 = (1 − γt )dt + γt∇ f (wt ;B) + (1 − γt )(∇ f (wt ;B) − ∇ f (wt−1;B))︸ ︷︷ ︸
error correction

= (1 − γt )(dt − ∇ f (wt−1;B)) + ∇ f (wt ;B),

where B is sampled from S. Compared with moving average estimators, it is notable that the
STORM estimator employs an additional error correction term to alleviate the noise from
sampling B. To improve the iteration complexity, we first design a STORM-style stochastic
gradient estimator mt for updating the model parameters:

mt = (1 − γm,t )(mt−1 − G(wt−1)) + G(wt ), (11)
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where G(wt ) and G(wt−1) are computed using (5) and (9) to optimize NDCG and its top-K
variant, respectively, with γm,t serving as a tunable parameter.

However, for the moving average estimators uq,i and sq for tracking g(w; xqi ,Sq) and
∇2

λλLq(λ̂q(w);w) in SONG/K-SONG, we cannot simply replace them to the corresponding
STORM estimators. The reason is that the updates of u and s involve twofold randomness:
sampling a set of queriesB and sampling itemsBq for each query q ∈ B. The error correction
term in STORM addresses only the randomness associated with sampling queries, and does
not account for the noise introduced by sampling items.

To address this issue, Jiang et al. (2022) propose a new variance reduced estimator named
MSVR, which is inspired by STORM but introduces a customized error correction term to
alleviate the noise from both sampling B and Bq . Specifically, the MSVR estimator dtq for
tracking ∇ fq(wt ;S) is updated by

dt+1
q =

⎧
⎪⎨

⎪⎩

(1−γt )dtq+γt∇ fq(wt ;Bq)+βt (∇ fq(wt ;Bq)−∇ fq(wt−1;Bq))︸ ︷︷ ︸
error correction

if q ∈ B

dtq o.w.

,

where βt can be set to N−|B|
|B|(1−γt )

+ (1 − γt ) according to the analysis (Jiang et al., 2022), N
is the total number of queries. It is notable that if we set βt to 1 − γt , then MSVR estimator
will reduce to STORM estimator. Jiang et al. (2022) prove that with MSVR estimator, the
aforementioned FCCO problems with non-convex objectives can be solved with an improved
iteration complexity of O(ε−3).

Next, we need to determine how to employ theMSVR estimator to track g(w; xqi ,Sq) and
∇2

λλLq(λ̂q(w);w). An intuitive approach is to directly apply these estimators to track these
crucial functions. To this end, we maintain the following MSVR estimator for g(w; xqi ,Sq):

ut+1
q,i =

⎧
⎪⎨

⎪⎩

(1 − γu,t )utq,i +γu,t g(wt ; xqi ,Bq)

+βu,t (g(wt ; xqi ,Bq)−g(wt−1; xqi ,Bq)) if (q, xqi )∈B
utq,i o.w.

, (12)

where γu,t and βu,t are adjustable parameters. Similarly, The MSVR estimator for
∇2

λλLq(λ̂q(w);w) can be updated by

st+1
q =

⎧
⎪⎨

⎪⎩

(1−γs,t )stq + γs,t∇2
λλLq(λ

t
q ;wt ;Bq)

+βs,t (∇2
λλLq(λ

t
q ;wt ;Bq) − ∇2

λλLq(λ
t−1
q ;wt−1;Bq)) if q∈B

stq o.w.

. (13)

where γs,t and βs,t are tunable parameters. We define such straightforward application of
MSVR estimators for tracking the target functions in (12) and (13) as the v1 type update.

We can also view the functions g(w; xqi ,Sq) and∇2
λλLq(λ̂q(w);w) from another perspec-

tive. Inspired by recent work in bilevel optimization (Li et al., 2022; Dagréou et al., 2022), we
can consider these two functions as the solutions to specific quadratic problems. There-
fore, we can approximate these functions by iteratively solving these quadratic problems.
We employ quadratic functions due to their smoothness and strongly convexity, enabling us
to derive algorithms with fast convergence. Specifically, for the function g(w; xqi ,Sq), we
define the following minimization problem:

min
u

g̃q,i (u,w) := 1

2
‖u − g(w; xqi ,Sq)‖2. (14)
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It is not difficult to show that g(w; xqi ,Sq) is the solution for minimizing g̃q,i (u,w). Thus,
we can set uq,i as an estimator for g(w; xqi ,Sq), and update uq,i using the stochastic gradient
estimator computed for solving minu g̃q,i (u,w), which is given by

∇u g̃q,i (u,w;Bq) = uq,i − g(w; xqi ,Bq).

However, directly updating with the above stochastic gradient estimator results in poorer
iteration complexity. To avoid this, we update all sampled blocks of uq,i using its MSVR
gradient estimator vq,i as follows:

vtq,i =

⎧
⎪⎨

⎪⎩

(1 − γv,t )v
t−1
q,i + γv,t∇u g̃q,i (ut ,wt ;Bq)

+βv,t (∇u g̃q,i (ut ,wt ;Bq) − ∇u g̃q,i (ut−1,wt−1;Bq)) if q∈B
vt−1
q,i o.w.

, (15)

and then an update ut+1
q,i = utq,i − ττtvtq,i for the sampled items can be conducted. Here,

ττt represents the step size, where the parameter τt is primarily set for theoretical analysis
(as detailed in the proof of Theorem 5 in Appendix F). In practice, ττt can be treated as a
tunable learning rate parameter.

A similar approach can also be applied to estimate ∇2
λλLq(λ̂q(w);w). When designing

the quadratic problem for this function, which is a Hessian matrix, direct estimation might
lead to significant approximation errors. Thus, we consider a minimization problem through
matrix-vector products. To illustrate our method clearly, we restate the gradient for the top-K
NDCG surrogate by substituting (8) into (7):

1

|S|
∑

(q,xqi )∈S

{
ψ ′(hq(xqi ;w) − λ̂q(w))∇hq(x

q
i ;w) fq,i (g(w; xqi ,Sq))

+ ψ ′(hq(xqi ;w)−λ̂q(w))∇2
λ,wLq(λ̂q(w);w)(∇2

λλLq(λ̂q(w);w))−1 fq,i (g(w; xqi ,Sq))
+ψ(hq(x

q
i ;w) − λ̂q(w))∇g(w; xqi ,Sq)∇ fq,i (g(w; xqi ,Sq)

}
. (16)

Thus, we estimate the Hessian-vector product (∇2
λλLq(λ̂q(w);w))−1 fq,i (g(w; xqi ,Sq)). To

this end, we define the following problem for query q:

min
s

φq(s, λ̂q(w),w) := 1

2
s
∇2

λλLq(λ̂q(w);w)s − s
 fq,i (g(w; xqi ,Sq)). (17)

Note that the optimal s for (17) is equal to (∇2
λλLq(λ̂q(w);w))−1 fq,i (g(w; xqi ,Sq)). Simi-

larly,we can approximate (∇2
λλLq(λ̂q(w);w))−1 fq,i (g(w; xqi ,Sq)) by solvingmins φq(s, λ̂q

(w),w). To this end, we first define the stochastic estimator for φq(s, λ̂q(w),w) as follows:

∇sφq(s,wt ;Bq) = ∇2
λλLq(λ

t
q ;wt ;Bq)sq − fq,i (utq,i ),

where we employ utq,i as the estimate for g(w; xqi ,Sq). Then the MSVR estimator for the
gradient is given by

rtq =

⎧
⎪⎨

⎪⎩

(1−γr ,t )rt−1
q +γr ,t∇sφq(st ,wt ;Bq)

+βr ,t (∇sφq(st ,wt ;Bq) − ∇sφq(st−1,wt−1;Bq)) if q∈B
rt−1
q o.w.

. (18)

and then an update st+1
q = stq − ττtrtq for the sampled queries can be conducted. We refer

to these update rules as the v2 type update. Intuitively, the v2 type update involves solving
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Algorithm 3 Faster SONGv1/v2

Require: w0,w1,m0 = 0, v0 = 0, u0 = u1 = 0, update type: v1 or v2
Ensure: wT+1
1: for t = 1, 2, . . . , T do
2: Draw some relevant Q-I pairs B = {(q, xqi )} ⊂ S
3: For each q ∈ B draw a batch of items Bq ⊂ Sq
4: if using v1 type update then
5: Compute ut+1

q,i according to (12) � Use MSVR update
6: else // using v2 type update
7: Compute vtq,i according to (15) � Use MSVR update

8: Update ut+1
q,i = utq,i − ττtvtq,i

9: end if
10: Compute the gradient estimator G(wt−1) and G(wt ) by (5)
11: Computemt according to (11) � Use STORM update
12: wt+1 = wt − αηtmt
13: end for

lower-level problems to estimate crucial functions, essentially remaining a bilevel optimiza-
tion with multiple lower-level problems. Therefore, the complexity of the problem remains
unchanged, and both types of updates exhibit the same convergence rate, which will be
demonstrated later.

To clearly demonstrate the two estimators based on theMSVRupdate rule proposed in this
section,we follow the experimental setup fromFig. 1 in Sect. 4, and present the approximation
errors of the two new estimators in Fig. 2. It is notable that both estimators outperform the
moving average estimator. Additionally, we find that the v2 type update yields better results
than the v1 type update.

Last, notice that the stochastic gradient estimator for λ, i.e., ∇λLq(λ
t
q ;wt ;Bq), also

involves the randomness from both samplingB andBq , thus we also have to use the technique
of MSVR for it. Let zq denote the gradient estimator for ∇λLq(λ

t
q ;wt ;Bq), and it is updated

as follows:

ztq =

⎧
⎪⎨

⎪⎩

(1−γz,t )zt−1
q + γz,t∇λLq(λ

t
q ;wt ;Bq)

+βz,t (∇λLq(λ
t
q ;wt ;Bq) − ∇λLq(λ

t−1
q ;wt−1;Bq)), if q ∈ B

zt−1
q , o.w.

, (19)

where γz,t and βz,t are tunable parameters. Notably, the use of the variance-reduced gradient
estimator zq is essential for proving the algorithm’s optimal convergence rate. For more
details, please refer to the proof in Appendix F.

With these considerations in hand, we propose improved stochastic algorithms named
Faster SONG/K-SONG for optimizing NDCG and its top-K variant with the itera-
tion complexity of O(ε−3) in Algorithms 3 and 4, respectively. For each algorithm, we
provide two variants that utilize variance reduced estimators in v1 or v2 type update.
The effect of parameter ηt in the algorithms is similar to that of parameter τt , and
αηt can be viewed as one parameter in practice. We derive the following guarantee for
Faster SONGv1/v2/K-SONGv1/v2:

Theorem 3 Under appropriate conditions, with ηt = τt = �(t−1/3) and γz = γu = γs =
γm =�(η2t ), Algorithm 4 ensures that after T =O( 1

ε3
) iterations, we can find an ε-stationary

solution of F(wt ), i.e., E
[∑T

t=1
1
T ‖∇F(wt )‖2

]
≤O

(
1

T 2/3

)
.
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Fig. 2 Comparing the approximation error (AE) of the mini-batch estimator g(w, xqi ,Bq ), moving average

estimator uq,i , and two types of estimators with MSVR-style updates for the function g(w, xqi ,Sq )

Algorithm 4 Faster K-SONGv1/v2

Require: w0,w1, initialize m0, λ
0, λ1, z0, u0, s0, u1, s1, v0, r0 to 0, update type: v1 or v2

Ensure: wT+1
1: for t = 1, 2, . . . , T do
2: Draw some relevant Q-I pairs B = {(q, xqi )} ⊂ S
3: For each q ∈ B draw a batch of items Bq ⊂ Sq
4: if using v1 type update then
5: Compute ut+1

q,i according to (12) � Use MSVR update

6: Compute st+1
q according to (13) � Use MSVR update

7: else // using v2 type update
8: Compute vtq,i and r

t
q according to (15) and (18) � Use MSVR update

9: Update ut+1
q,i = utq,i − ττtvtq,i , s

t+1
q = stq − ττt rtq

10: end if
11: Compute ztq according to (19) � Use MSVR update
12: for each sampled query q ∈ B do
13: Update λt+1

q = λtq − ττt ztq
14: end for
15: Compute stochastic gradient estimator G(wt−1) and G(wt ) according to (9) or (10)
16: Compute gradient estimator mt according to (11) � Use STORM update
17: wt+1 = wt − αηtmt
18: end for

Remark 1 The achieved iteration complexity (i) matches the optimal iteration complexity
of O(ε−3) for standard smooth non-convex stochastic optimization (Arjevani et al., 2022),
and (ii) enjoys a parallel speedup by sampling multiple queries and items at each iteration.
It’s worth noting that, although v1 and v2 employ different methods to estimate functions
g(w; xqi ,Sq) and ∇2

λλLq(λ̂(w);w), both variants still have the same iteration complexity.

Remark 2 Our algorithms are related to previous work on variance reduction (Cutkosky
& Orabona, 2019; Jiang et al., 2022) and SBO (Guo et al., 2021a), but have significant
differences. Firstly, unlike Cutkosky and Orabona (2019) and Jiang et al. (2022), we study a
complex SBO problem that includes multiple lower-level problems. Additionally, in contrast
to Guo et al. (2021a), our algorithms are designed to solve multiple lower-level problems in
parallel per iteration. To this end, our algorithms use STORM and MSVR in novel ways to
better estimate key functions, while introducing new mechanisms for solving the lower-level
problems and developing proof techniques for a tighter error bound. We refer the interested
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readers to Appendix F for a proof sketch, a comprehensive comparison of our work with
similar works, and a detailed proof of Theorem 3.

8 Broadening framework applications to other metrics

In this section,we highlight the versatility of our algorithmic frameworks, which can optimize
a broad spectrum of metrics, including Precision@K /Recall@K , Average Precision (AP),
mean Average Precision (mAP), and their top-K variants. We begin by defining these met-
rics, followed by the presentation of provably efficient stochastic algorithms for optimizing
Precision@K (equivalent to Recall@K up to a constant) and top-K mAP (with AP, top-K
AP, and mAP being its special cases).

Precision@K and Recall@K are key performance metrics commonly used in binary
classification tasks. Theymeasure Precision and Recall on the top K samples with the highest
scores, with their formulas as follows:

Precision@K =
∑

xi∈S+ I(xi ∈ S[K ])
K

,

Recall@K =
∑

xi∈S+ I(xi ∈ S[K ])
|S+| ,

where S+ indicates all relevant (positive) items, and S[K ] denotes the set of top-K items of
S. It is notable that Precision@K is equivalent to Recall@K up to a constant for a given
dataset.

Leveraging Lemma 2 and 4, we can formulate the problem of maximizing Precision@K
as the following bilevel optimization problem:

min
w

FPrec@K (w) := 1

K

∑

xi∈S+
	(hw(xi ) − λ(w))

λ(w)=argmin
λ

L(λ,w) := K+ε

|S| λ+ τ2

2
λ2+ 1

|S|
∑

xi∈S
τ1ln

(
1+exp

(
h(xi ;w)−λ

τ1

))
, (20)

where 	(·) is a differentiable non-decreasing surrogate function for replacing the indicator
function, e.g., a squared hinge loss. Similar to our previous derivation for top-K NDCG, we
can derive the expression for ∇FPrec@K (w) as follows:

1

K

∑

xi∈S+
	′(hw(xi ) − λ(w))

(
∇whw(xi ) + ∇2

λ,wL(λ̂(w),w)[∇2
λλL(λ̂(w),w)]−1

)
,

where we employ the fact that∇wλ(w) = −∇2
λ,wL(λ̂(w),w)[∇2

λλL(λ̂(w),w)]−1. Assuming
that at the t-th iteration, we sample a mini-batch B with positive samples B+, the stochastic
gradient estimator can be calculated as follows:

G(wt ) = |S+|
K

Exi∈B+	′(hw(xi ) − λt )
(∇whw(xi ) + ∇2

λ,wL(λt ,wt ;B)[st ]−1) , (21)

where s is the moving average estimator for tracking ∇2
λλL(λ̂(w),w), and λt is the current

estimate for λ(wt ). In our implementation, we employ the controlled data sampler provided
by LibAUC2 (Yuan et al., 2023), which not only controls the number of positive and negative

2 https://libauc.org/
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Algorithm 5 Stochastic Optimization for Precision@K /Recall@K

Require: η0, η1, γ0, β1, s1 = 0, λ1 = 0,m1 = 0
Ensure: wT+1
1: for t = 1, ...T do
2: Draw a mini-batch B, where the positive samples are denoted by B+
3: Update st+1 = (1 − γ0)st + γ0∇2

λλL(λt ,wt ;B)

4: Update λt+1 = λt − η0∇λL(λt ,wt ;B)

5: Compute a stochastic gradient G(wt ) according to (21)
6: Computemt+1 = β1mt + (1 − β1)G(wt )
7: Update wt+1 = wt − η1mt+1
8: end for

samples but also ensures that positive samples precede negative ones in each mini-batch,
facilitating the computation of the expectation over B+.

We present the complete Precision@K optimization algorithm in Algorithm 5. Since for
the same task, Precision@K and Recall@K differ only by a constant, this algorithm can also
be used to optimize Recall@K . Note that the objective function for Precision@K in (20)
can be viewed as an extreme case of optimizing the top-K NDCG surrogate, involving only
one single lower-level problem. Therefore, we can analyze Algorithm 5 in a similar manner
and establish the same iteration complexity as K-SONG, i.e., O(ε−4).

Average Precision (AP) calculates the average precision each time a newpositive (relevant)
item is retrieved for binary classification tasks, which is computed as

AP =
∑

xi∈S+

r(w; xi ,S+)

r(w; xi ,S)
,

where r(w; x,S) denotes the rank of x w.r.t. the set S. Mean Average Precision (mAP) is
defined as the average of theAP scores calculated for all tasks (classes), with its top-K variant
calculated based on the items ranked within the top-K positions by their prediction scores.
The definitions of mAP and top-K mAP are:

mAP = 1

N

N∑

q=1

∑

xqi ∈S+
q

r(w; xqi ,S+
q )

r(w; xqi ,Sq)
,

Top-K mAP = 1

N

N∑

q=1

∑

xqi ∈S+
q

I(xqi ∈ Sq [K ])r(w; xqi ,S+
q )

r(w; xqi ,Sq)
,

where we consider N tasks, where Sq and S+
q represent the total number of samples and the

total number of positive samples in the q-th task, respectively. It is worth tomention that mAP
provides a holistic view of model performance across multiple tasks and helps in assessing
models in various deep learning applications, including object detection (Ren et al., 2015),
information retrieval (Kishida, 2005), and natural language processing (Voorhees, 1999).

Noting that AP and top-K AP can be considered special forms ofmAP and top-K mAP,we
proceed to present an optimization algorithm for mAP and top-K mAP. Similar to optimizing
the NDCG surrogate, we first replace r(w; xqi ,Sq) with a surrogate function, and introduce
the following objective for mAP:

min
w

− 1

N

N∑

q=1

∑

xqi ∈S+
q

∑
x′∈Sq

I(x′ ∈ S+
q )	(hq(x′;w) − hq(x

q
i ;w))

∑
x′∈Sq

	(hq(x′;w) − hq(x
q
i ;w))

,
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Algorithm 6 Stochastic Optimization for mAP/top-K mAP

Require: η, γ0, β1, u1 = 0,u2 = 0,m1 = 0
Ensure: wT+1
1: for t = 1, ...T do
2: Draw some positive (relevant) Q-I pairs B = {(q, xqi )} ⊂ S
3: For each sampled q draw a batch of items Bq ⊂ Sq
4: for each sampled Q-I pair (q, xqi ) ∈ B do

5: Compute g(wt ; xqi ,Bq ) according to (22)

6: Update u1q,i = (1 − γ0)u1q,i + γ0[g(wt ; xqi ,Bq )]1
7: Update u2q,i = (1 − γ0)u2q,i + γ0[g(wt ; xqi ,Bq )]2
8: end for
9: Compute the stochastic gradient estimator G(wt ) according to (23) or (24)
10: Computemt+1 = β1mt + (1 − β1)G(wt )
11: update wt+1 = wt − ηmt+1
12: end for

where 	(·) is a smooth surrogate function. We further employ

g(w; x′, xqi ) =
[
I(x′ ∈ S+

q )	(hq(x′;w) − hq(x
q
i ;w)), 	(hq(x′;w) − hq(x

q
i ;w))

]
,

g(w; xqi ;Sq) = Ex′∈Sq g(w; x′, xqi ) : Rd → R
2,

fq,i (s) = − s1
s2

: R2 → R, (22)

and the objective can be converted into

min
w∈Rd

FmAP(w) := 1

|S|
∑

(q,xqi )∈S
fq,i (g(w; xqi ,Sq)),

where S = {(q, xqi ), q ∈ [N ], xqi ∈ S+
q }. Note that the above problem is also an instance of

FCCOproblem like (3) for optimizingNDCG.Thus,we can employ the previously introduced
algorithm frameworks for the NDCG surrogate to optimize mAP. To this end, we first derive
the gradient of w w.r.t. FmAP:

∇wFmAP(w) = 1

|S|
∑

(q,xqi )∈S
∇wg(w; xqi ,Sq)∇ fq,i (g(w; xqi ,Sq))


= 1

|S|
∑

(q,xqi )∈S
∇wg(w; xqi ,Sq)

(
−1

[g(w; xqi ,Sq)]2
,

[g(w; xqi ,Sq)]1
([g(w; xqi ,Sq)]2)2

)

.

The major cost for computing ∇wFmAP(w) lies at evaluating function g and its gradient. The
stochastic estimator for ∇wg(w; xqi ,Sq) can be simply computed by:

∇wg(w; xqi ,Bq) =

⎛

⎜⎜⎜⎜⎝

1

|Bq |
∑

x ′∈Bq

I(x′ ∈ B+
q )∇	(hq(x′;w) − hq(x

q
i ;w))

1

|Bq |
∑

x ′∈Bq

∇	(hq(x′;w) − hq(x
q
i ;w))

⎞

⎟⎟⎟⎟⎠




,

where Bq denotes a mini-batch of samples from Sq . To control the approximation error from
g, we employ two moving average estimators u1q,i and u

2
q,i for tracking [g(w; xqi ,Sq)]1 and
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[g(w; xqi ,Sq)]2, respectively. Thus, the stochastic gradient estimator is:

GmAP(wt ) = 1

|B|
∑

(q,xqi )∈B
∇wg(w; xqi ,Bq)

(
−1

u2q,i

,
u1q,i

(u2q,i )
2

)

(23)

where B is a batch sampled from S. Similar to top-K NDCG, the objective of optimizing
top-K mAP is as follows:

min
w∈Rd

1

|S|
∑

(q,xqi )∈S
I(xqi ∈ Sq [K ]) fq,i (g(w; xqi ,Sq)),

whereSq [K ] denotes the set of top-K items inSq . Then, for approximating the top-K selector
I(xqi ∈ Sq [K ]), we employ the relationship I(xqi ∈ Sq [K ]) = I(K −∑

xqj ∈Sq
I(hq(x

q
j ;w) ≥

hq(x
q
i ;w))), and approximate it by σ(K −∑

xqj ∈Sq
	(hq(x

q
j ;w) − hq(x

q
i ;w))), where σ(·)

is a surrogate of the indicator function, e.g., the sigmoid function. Therefore, we have the
following smooth surrogate for top-K mAP:

FmAP@K (w) := 1

|S|
∑

(q,xqi )∈S
σ

⎛

⎜⎝K−
∑

xqj ∈Sq

	(hq(x
q
j ;w)−hq(x

q
i ;w))

⎞

⎟⎠ fq,i (g(w; xqi ,Sq)).

To derive the stochastic gradient estimator for the above objective, we still employ u1q,i

and u2q,i and use obtain:

GmAP@K (wt ) = 1

|B|
∑

(q,xqi )∈B

{
σ

⎛

⎜⎝K− |Sq |
|Bq |

∑

xqj ∈Bq

	(hq(x
q
j ;w)−hq(x

q
i ;w))

⎞

⎟⎠

· ∇wg(w; xqi ,Bq)

(
−1

u2q,i

,
u1q,i

(u2q,i )
2

)
 }
, (24)

where we employ the previously introduced stop-gradient techniques to avoid the computa-
tional overhead associatedwith calculating the gradient of the top-K selector.Wedemonstrate
the stochastic optimization algorithms for optimizing mAP and top-K mAP in Algorithm 6.
Since the objective functions for optimizing mAP and top-K mAP can be converted into
FCCO problems akin to that for the NDCG surrogate, we can similarly analyze Algorithm 6
and establish an iteration complexity identical to that of SONG, i.e., O(ε−4).

9 Experiments

In this section, we evaluate our algorithms for optimizing NDCG and its top-K variant across
two domains: learning to rank and recommender systems. Experimental results demonstrate
that our algorithms surpass existing ranking methods in terms of NDCG. We also conduct
experiments to validate our algorithmic designs, including the moving average estimator,
initial warm-up, and bilevel formulation for top-K NDCG. A hyperparameter analysis is
performed to determine the impact of various parameters within our algorithms. Additionally,
to confirm the efficacy of our proposed Faster SONG/K-SONG, we compare them with the
variants that incorporate STORMestimators directly into our frameworks. Lastly, we evaluate
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Table 1 The test NDCG on two learning to rank datasets

Method MSLR WEB30K Yahoo! LTR Dataset

NDCG@1 NDCG@5 NDCG@1 NDCG@5

RankNet 0.5138±0.0008 0.5159±0.0003 0.7066±0.0006 0.7368±0.0005

ListNet 0.5105±0.0001 0.5146±0.0002 0.7066±0.0002 0.7352±0.0004

ListMLE 0.5153±0.0012 0.5136±0.0005 0.7067±0.0008 0.7353±0.0007

LambdaRank 0.5173±0.0014 0.5187±0.0003 0.7084±0.0003 0.7352±0.0004

LambdaLoss 0.5182±0.0009 0.5183±0.0007 0.7086±0.0005 0.7354±0.0005

ApproxNDCG 0.5204±0.0007 0.5179±0.0006 0.7085±0.0009 0.7350±0.0006

NeuralNDCG 0.5160±0.0006 0.5155±0.0002 0.7076±0.0003 0.7349±0.0003

SmoothI 0.5236±0.0004 0.5193±0.0005 0.7115±0.0004 0.7364±0.0004

SONG 0.5265±0.0005 0.5206±0.0003 0.7131±0.0002 0.7390±0.0002

K-SONG 0.5271±0.0006 0.5204±0.0003 0.7128±0.0004 0.7394±0.0008

Faster SONGv1 0.5274±0.0007 0.5219±0.0007 0.7130±0.0003 0.7397±0.0005

Faster K-SONGv1 0.5273±0.0005 0.5223±0.0004 0.7134±0.0003 0.7392±0.0003

Faster SONGv2 0.5280±0.0006 0.5231±0.0003 0.7128±0.0004 0.7406±0.0004

Faster K-SONGv2 0.5282±0.0004 0.5230±0.0005 0.7131±0.0006 0.7408±0.0003

We report the average NDCG@K (K ∈ [1, 5]) and standard deviation with 3 different random seeds
Bold represent the best performance metrics

Fig. 3 Convergence of different methods in terms of validation NDCG@5 scores

our algorithms for optimizing Precision@K and top-K mAPon two graph classification tasks
to demonstrate the flexibility of our frameworks.

We compare our algorithms against the following NDCG optimization methods:
RankNet (Burges et al., 2005b), ListNet (Cao et al., 2007), ListMLE (Xia et al., 2008),
LambdaRank (Burges et al., 2005a),ApproxNDCG (Qin et al., 2010),LambdaLoss (Wang
et al., 2018), NeuralNDCG (Pobrotyn & Bialobrzeski, 2021), and SmoothI (Thonet et al.,
2022). We do not compare with SoftRank (Taylor et al., 2008), as its O(n3) complexity
is prohibitive. Similar to NeuralNDCG, PiRank (Swezey et al., 2021) also employs Neural-
Sort (Grover et al., 2019) to approximate NDCG, sowe do not compare with it. For K-SONG,
we report its theoretical version results unless specified otherwise. The hyper-parameters of
all losses are fine-tuned using grid search with training/validation splits mentioned below.
We present the detailed implementation information in Appendix D.
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9.1 Learning to rank

9.1.1 Data

Learning to rank (LTR) algorithms aim to rank a set of candidate items for a given search
query. We consider two datasets: MSLR-WEB30K (Qin & Liu, 2013) and Yahoo! LTR
dataset (Chapelle & Chang, 2011), which are the largest public LTR datasets from commer-
cial search engines. Both datasets contain query-document pairs represented by real-valued
feature vectors, and have associated relevance scores on the scale from 0 to 4. Following Ai
et al. (2019), we use the training/validation/test sets in the Fold1 of MSLR-WEB30K dataset
for evaluation. The Yahoo! LTR dataset splits the queries arbitrarily and uses 19,944 for
training, 2,994 for validation and 6,983 for testing. We present the detailed information of
these two datasets in Appendix D.

9.1.2 Setup

We adopt the Context-Aware Ranker (Pobrotyn et al., 2020) as the backbone network, which
takes raw features of items in a list as input and outputs a real-valued score for each item.
We first pre-train models by initial warm-up, and then re-initialize the last layer and train the
model by different methods as mentioned before. In both stages, we set the initial learning
rate and batch size to 0.001 and 64, respectively. We train the networks for 100 epochs,
decaying the learning rate by 0.1 after 50 epochs. Our algorithms employ multiple estimators
involving several hyperparameters. For the moving average parameters γ in the moving
average estimators, we adjust them within the range {0.1, 0.3, 0.5, 0.7}. For the additional
error correction parameters β in the MSVR estimators, their tuning range is {0.001, 0.005,
0.01}. Additionally, when optimizing top-K NDCG, we adjust K within the range of {50,
100, 300}.

9.1.3 Results

The results presented in Table 1 indicate that methods directly optimizing NDCG surro-
gates exhibit superior performance, aligning with findings from other studies (Qin et al.,
2010; Pobrotyn & Bialobrzeski, 2021). Our SONG and K-SONG consistently outperform
all prior baseline methods across both datasets, demonstrating their efficacy for LTR tasks.
Notably, Faster SONG/K-SONG shows better performance than SONG/K-SONG, suggest-
ing an improved iteration complexity. Moreover, the v2 type update is found to be more
effective than the v1 type update. We also present the training curves of our algorithms
alongside those of other baseline methods in Fig. 3, highlighting the faster convergence of
our algorithms.

9.2 Recommender systems

9.2.1 Data

We use twomovie recommendation datasets: MovieLens20M (Harper &Konstan, 2015) and
Netflix Prize dataset (Bennett et al., 2007). Both datasets contain large numbers of users and
movies represented by integer IDs. All users have rated several movies, with ratings range
from 1 to 5. We use the most recent rated item of each user for testing, the second recent item
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Table 2 The test NDCG on movie recommendation data

Method MovieLens20M Netflix Prize Dataset

NDCG@10 NDCG@20 NDCG@10 NDCG@20

RankNet 0.0538±0.0011 0.0744±0.0013 0.0362±0.0002 0.0489±0.0003

ListNet 0.0660±0.0003 0.0875±0.0004 0.0532±0.0002 0.0700±0.0002

ListMLE 0.0588±0.0001 0.0799±0.0001 0.0376±0.0003 0.0508±0.0004

LambdaRank 0.0697±0.0001 0.0913±0.0002 0.0531±0.0002 0.0693±0.0002

LambdaLoss 0.0712±0.0004 0.0929±0.0004 0.0557±0.0004 0.0703±0.0006

ApproxNDCG 0.0735±0.0005 0.0938±0.0003 0.0434±0.0005 0.0592±0.0009

NeuralNDCG 0.0692±0.0003 0.0901±0.0003 0.0554±0.0002 0.0718±0.0003

SmoothI 0.0739±0.0006 0.0952±0.0004 0.0566±0.0003 0.0725±0.0004

SONG 0.0748±0.0002 0.0969±0.0002 0.0571±0.0002 0.0749±0.0002

K-SONG 0.0747±0.0002 0.0973±0.0003 0.0573±0.0003 0.0743±0.0003

Faster SONGv1 0.0761±0.0003 0.0974±0.0004 0.0583±0.0003 0.0762±0.0003

Faster K-SONGv1 0.0760±0.0004 0.0986±0.0003 0.0579±0.0003 0.0759±0.0004

Faster SONGv2 0.0765±0.0005 0.0989±0.0005 0.0588±0.0004 0.0776±0.0005

Faster K-SONGv2 0.0757±0.0007 0.0995±0.0003 0.0597±0.0002 0.0765±0.0003

We report the average NDCG@K (K ∈ [10, 20]) and standard deviation with 3 different random seeds
Bold represent the best performance metrics

Fig. 4 Convergence of different methods in terms of validation NDCG@5 scores

for validation, and the remaining items for training, which is widely-used in the literature (He
et al., 2018; Wang et al., 2020). During training, we rank the relevant (rated) items with 1000
unrated items to compute validation NDCG scores. When testing, however, we adopt the
all ranking protocol Wang et al. (2019); He et al. (2020) — all unrated items are used for
evaluation.

9.2.2 Setup

We choose NeuMF (He et al., 2017) as the backbone network. All models are first pre-trained
by our initial warm-up method for 20 epochs with the learning rate 0.001 and a batch size of
256. Then the last layer is randomly re-initialized and the network is fine-tuned by different
methods. At the fine-tuning stage, the initial learning rate and weight decay are set to 0.0004
and 1e-7, respectively. We train the models for 120 epochs with the learning rate multiplied
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Table 3 We present the mean values and standard deviations of Precision@K and Top-K mAP, where K is
set to 50, 100, and 300, across three different random seeds for the HIV and PCBA datasets

HIV Precision@50 Precision@100 Precision@300

Cross-entropy Loss 0.43±0.05 0.28±0.03 0.16±0.03

SmoothI P@k Loss 0.46±0.03 0.31±0.07 0.18±0.04

Precision@k Loss (ours) 0.47±0.05 0.33±0.06 0.22±0.02

PCBA Top-50 mAP Top-100 mAP Top-300 mAP

Cross-entropy Loss 0.4331±0.0009 0.3649±0.0011 0.3577±0.0014

Focal Loss 0.4782±0.0015 0.3957±0.0010 0.3814±0.0018

Top-k mAP Loss (ours) 0.5139±0.0017 0.4207±0.0013 0.4022±0.0019

Bold represent the best performance metrics

Fig. 5 Training curves on two graph classification tasks

by 0.25 at 60 epochs. The tuning ranges for the hyperparameters γ , β, and K in our algorithm
are consistent with those used in previous learning to rank experiments.

9.2.3 Results

We evaluate all methods by calculating NDCG@K (K ∈ [10, 20]) on the test data, with
results reported in Table 2. SONG consistently outperformed all previous baselines across
both datasets, achieving improvements of 3.30% and 4.32% in NDCG@20 over the best
baselines on theMovieLens20MandNetflix Prize datasets, respectively.Moreover, K-SONG
generally performs better than SONG. These results clearly demonstrate the effectiveness of
our algorithms in optimizing NDCG and its top-K variant. Additionally, Faster SONG/K-
SONG show faster convergence rates than SONG/K-SONG, as illustrated in Fig. 4. It is
worth to mention that the improvements from our methods on RS datasets are higher than
that on LTR datasets. The reason is that RS datasets have about 20,000 items per query, while
most queries in LTR datasets have less than 1,000 items (detailed statistics in Appendix D).
These results validate that our methods are more advantageous for large-scale data.
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Fig. 6 Ablation study on two variants of SONG on learning to rank data MSLR Web30K and movie recom-
mendation data MovieLens20M

9.3 Graph classification for molecular property prediction

9.3.1 Data

To further demonstrate the advantages of our algorithmic frameworks, we conduct experi-
ments for optimizing Precision@K and top-K mAP on graph classification tasks.We employ
the datasets HIV and PCBA from the MoleculeNet (Wu et al., 2018), which is a bench-
mark for molecular property prediction. The HIV dataset has 41,913 molecules with binary
labels, and the positive samples are molecules tested to have inhibition ability to HIV. We
employ this dataset to evaluate our Precision@K algorithm. The PCBA dataset contains
437,929 molecules and the task on this dataset is to predict 128 different biological activ-
ities. Therefore we use PCBA to evaluate our top-K mAP algorithms. We use the split of
training/validation/test sets and node features of graphs provided by OGB (Hu et al., 2020a).

9.3.2 Setup

Many recent studies have shown that graph neural networks (GNNs) are powerful for graph
data analysis (Gao et al., 2018; Rong et al., 2020). Hence, we employ the widely used
graph isomorphism network (GIN) (Xu et al., 2018) as the backbone network for graph
classification. For both tasks, We set the number of layers and hidden state dimensionality
to 5 and 300, respectively. We train the models using different methods by Adam with 100
epochs and a learning rate of 0.001. For our algorithms for optimizing Precision@K and
top-K mAP, we tune hyper-parameters γ and K in the ranges of {0.1, 0.2, 0.3, 0.4, 0.5} and
{50, 100, 300, 500}, respectively.

9.3.3 Results

We compare our method with several baseline methods in Table 3 and present the training
curves for these methods in Fig. 5. One can be observe that our algorithms perform well
on both tasks. Given the smaller scale of the graph classification task on the HIV dataset,
which features binary labels, we find that even simple cross-entropy loss yields satisfactory
results. The SmoothImethod also demonstrates good performance. On the larger-scale PCBA
dataset, which encompassesmore tasks, ourmethod demonstrates significant advantages over
traditional cross-entropy loss and focal loss (Lin et al., 2017).
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Fig. 7 Comparison of full-items and mini-batch training

Fig. 8 Comparison of theoretical and practical K-SONG

Fig. 9 Comparison of our bilevel NDCG@K formulation and previous NDCG@K formulation

9.4 In-depth analyses

9.4.1 Ablation studies

We now study the effects of the moving average estimators in our methods and initial warm-
up. We present partial experimental results on MSLR Web30K and MovieLens20M data in
Fig. 6 and full results in Fig. 14 in Appendix D. First, we can observe that maintaining the
moving average estimators enables our algorithm perform better. Second, we consistently
observe that initial warm-up can bring the model to a good initialization state and improve
the final performance of the model.
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Table 4 Hyperparameter analyses for γ , β, and K . We report NDCG@5 and NDCG@10 for the results on
LTR and recommendation dataset, respectively

γ 0.1 0.3 0.5 0.7

MSLR Web30K 0.5201±0.0007 0.5214±0.0004 0.5230±0.0005 0.5222±0.0006

Yahoo! LTR 0.7395±0.0005 0.7404±0.0007 0.7408±0.0003 0.7391±0.0004

MovieLens20M 0.0757±0.0007 0.0747±0.0004 0.0735±0.0006 0.0721±0.0009

Netflix Prize 0.0592±0.0004 0.0597±0.0002 0.0594±0.0003 0.0583±0.0005

β 0 0.001 0.005 0.01

MSLR Web30K 0.5204±0.0003 0.5230±0.0005 0.5193±0.0006 0.5177±0.0002

Yahoo! LTR 0.7394±0.0008 0.7402±0.0006 0.7408±0.0003 0.7380±0.0003

MovieLens20M 0.0747±0.0002 0.0757±0.0007 0.0742±0.0004 0.0731±0.0007

Netflix Prize 0.0573±0.0003 0.0597±0.0002 0.0582±0.0008 0.0571±0.0009

K 50 100 300

MSLR Web30K 0.5230±0.0005 0.5226±0.0004 0.5221±0.0007

Yahoo! LTR 0.7392±0.0003 0.7408±0.0003 0.7406±0.0004

MovieLens20M 0.0741±0.0008 0.0752±0.0006 0.0757±0.0007

Netflix Prize 0.0588±0.0009 0.0597±0.0002 0.0593±0.0004

Bold represent the best performance metrics

Fig. 10 Comparison with STORM-style Variants

Fig. 11 Comparison of convergence (left) and training time (right) between LibAUC (ours) and TensorFlow
Ranking library
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9.4.2 Comparison with full-items training

We compare three different training methods: full-items gradient descent that uses all items
in Sq to computing g(w; xqi ,Sq) and its gradient, biased mini-batch gradient descent (i.e.,
set γ0 = 1.0 in our algorithms), and our algorithms (i.e., with γ0 tuned). We employ these
methods for NDCGmaximization on movie recommendation data, where the |Sq | values are
much greater than that of LTR data, and present the results in Fig. 7. We can see that our
methods converge to that of full-items gradient descent, which proves the effectiveness of our
algorithms. We also provide the negative loglikelihood loss curves of three different training
methods for warm-up in Fig. 15 in Appendix D, and similar conclusions can be reached.

9.4.3 Theoretical and practical K-SONG

To verify the effectiveness of stop gradient operator, we present the comparison of theoretical
K-SONG and practical K-SONG on the left of Fig. 8. We observe that practical K-SONG
and theoretical K-SONG achieve similar performance on both datasets, which indicates that
the proposed stop gradient operator is effective in simplifying theoretical K-SONG.

9.4.4 The advantage of the bilevel formulation

To demonstrate the advantage of our bilevel formulation for optimizing the top-K NDCG
surrogate, we implement previous NDCG@K formulation by modifying our Algorithm 1
for optimizing the NDCG@K objective with ψ(K − ḡ(w, x)) in place of I(K ≥ r(w; x)).
We compare these two formulations and present the results on the middle of Fig. 9, and we
can see that our bilevel formulation is more advantageous.

9.4.5 Comparison with STORM-style variants

To further demonstrate the effectiveness of our methods, we replace the MSVR estimators in
our Faster SONGv1/K-SONGv1 algorithmswith the STORMestimators, renaming themodi-
fied algorithms SONG/K-SONG+STORM.We compare the performance of these algorithms
across four datasets, with the results shown in Fig. 10. The figure reveals that simply using
the STORM estimator leads to poorer performance. This is due to the reasons explained in
Sect. 7: the STORM estimator cannot simultaneously control the twofold errors introduced
by sampling queries and the items for sampled queries when optimizing NDCG and top-K
NDCG.

9.4.6 The effect of hyperparameters

We study the impact of the following hyperparameters in our algorithms: γ in the moving
average estimator,β in theMSVRestimator, and the value of K in top-KNDCGoptimization.
We choose Faster K-SONGv2 algorithm and present the effects of these hyperparameters
across four datasets in Table 4. We observe that γ in the moving average estimator is quite
important and greatly affects final performance. Additionally, a smaller value of β in MSVR
tends to yield better results. Lastly, our algorithm is not sensitive to the choice of K . In Fig. 16
in Appendix D, we further demonstrate the impact of the parameter γ on the convergence
rate during training.
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9.4.7 Comparison with tensorflow ranking

We implement our SONG and K-SONG in the LibAUC3 library, and compare them with
four rankingmethods, i.e., ListNet, ListMLE,ApproxNDCG, andGumbel-ApproxNDCG, in
TensorFlow Ranking library4 (Pasumarthi et al., 2019) (TFR). All models are trained for 120
epochs on MovieLens20M with the learning rate 0.001 and a batch size of 256. For SONG
and K-SONG, we first train the models by initial warm-up for the first 20 epochs, and then
keep training the models by SONG or K-SONG for 100 epochs. We present the comparison
of convergence and training time per epoch in Fig. 11. We notice that our implementations of
SONG and K-SONG in the LibAUC library converge faster than the algorithms in the TFR
library, which indicates the advantages of our implementations in LibAUC.

10 Conclusion

In this work, we first introduce a novel compositional optimization problem to opti-
mize NDCG, and a novel bilevel compositional optimization problem for top-K NDCG.
Then, we develop innovative algorithms named SONG/K-SONG for these problems
with provable convergence. To overcome SONG/K-SONG’s suboptimal convergence rate,
we integrate advanced variance reduced estimators into our frameworks and introduce
two types of algorithms that utilize these estimators in different ways, referred to as
Faster SONGv1/v2/K-SONGv1/v2. We demonstrate these algorithms achieves both the opti-
mal iteration complexity for smooth non-convex optimization and parallel speed-up. To
demonstrate the flexibility of our frameworks, we further design efficient and provable algo-
rithms for other widely-used metrics including Precision/Recall@K , mAP, and top-K mAP.
Comprehensive experiments on learning to rank, recommender systems, and graph classifi-
cation tasks demonstrate the effectiveness of our algorithms.

Appendix A Initial warm-up

The listwise cross-entropy loss can be reformulated as follows:

min
w

1

N

N∑

q=1

1

Nq

∑

xqi ∈S+
q

−ln
exp(hq(x

q
i ;w)

∑
xqj ∈Sq

hq(x
q
j ;w)

= 1

N

N∑

q=1

1

Nq

∑

xqi ∈S+
q

ln

⎛

⎜⎝
∑

xqj ∈Sq

exp(hq(x
q
j )−hq(x

q
i ))

⎞

⎟⎠ .

The above objective has the same structure of the NDCG surrogate, i.e., it is an instance
of finite-sum coupled compositional stochastic optimization problem. Hence, we can use a
similar algorithm to SONG to solve the above problem.We present the details in Algorithm 7.

3 https://www.libauc.org
4 https://www.tensorflow.org/ranking
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Algorithm 7 Stochastic Optimization of Listwise CE loss: SOLC

Require: η, β0, β1, u1 = 0,m1 = 0
Ensure: wT
for t = 1, ..., T do

Draw a set of queries denoted byQt
For each query draw a batches of examples {B+

q ,Bq }, where B+
q denote a set of sampled relevant

documents for q and Bq denote a set of sampled documents from Sq
for xqi ∈ B+

q for each q ∈ Qt do

ut+1
q,i = (1 − γ0)utq,i + γ0

1
|Bq |

∑
x′∈Bq

exp(hq (x′;w) − hq (x;w))

Compute pq,i = 1/ut+1
q,i

end for
Compute gradient

G(wt ) = 1

|Qt |
1

|B+
q |

1

|Bq |
∑

q∈Qt

∑

xqi ∈B+
q

∑

xqj ∈Bq

pq,i∇w(hq (xqj ;wt ) − hq (xqi ;wt ))

Computemt+1 = β1mt + (1 − β1)G(wt )
Update wt+1 = wt − ηmt+1

end for

Appendix B Justification of stop gradient operator

Below, we provide a justification by showing that the second term in (9) is close to 0 under
a reasonable condition. For simplicity of notation, we let ψi (w, λ̂q(w)) = ψ(h(xqi ,w) −
λ̂q(w)). Its gradient is given by

∇wψi = ψ ′
i (w, λ̂q(w))

(
∇wh(xqi ,w) − ∇2

wλLq(w, λ̂q(w))[∇2
λLq(w, λ̂q(w))]−1

)
.

For the purpose of justification, we can approximate φ(hq(xi ;w) − λ) = τ1 log(1 +
exp((hq(xi ;w) − λ)/τ1)) by a smoothed hinge loss function, κ(hq(xi ;w) − λ) =
maxα α(hq(xi ;w) − λ) − τ1α

2/2, which is equivalent to

κ(hq(xi ;w) − λ) =

⎧
⎪⎨

⎪⎩

0, hq(xi ;w) − λ ≤ 0
(hq (xi ;w)−λ)2

2τ1
, 0 < hq(xi ;w) − λ ≤ τ1

hq(xi ;w) − λ − τ1
2 , hq(xi ;w) − λ > τ1

Please refer to Fig. 12 for the curves of [·]+ and φ(·) and κ(·). Below, we assume Lq(w, λ)

is defined by using κ(hq(xi ;w) − λ) in place of φ(hq(xi ;w) − λ).
For any w, let us consider a subset Cq = {xqi ∈ S+

q : hw(xqi ) − λ̂q(w) ∈ (0, τ1)}. It is not
difficult to show that

∇2
wλLq(w,λ̂q(w)) = 1

Nq

∑

xqi ∈Cq

−∂wh(xqi ;w)

τ1
,∇2

λLq(w, λ̂q(w))

= 1

Nq

∑

xqi ∈Cq

1

τ1
+τ2≈ 1

Nq

∑

xqi ∈Cq

1

τ1
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Fig. 12 Curves of [·]+, φ(·), and κ(·)

for sufficiently small τ1, τ2. Then we have

∇2
wλLq(w, λ(w))

∇2
λLq(w, λq(w))

= 1

|Cq |
∑

xqi ∈Cq
−∂hw(xqi ).

Assume that ψ is chosen such that ψ ′
i (w, λq(w)) ≈ 0 if hw(xqj ) − λq(w) /∈ [0, τ1], and

ψ ′
i (w, λq(w)) ≈ c1 and fq,i (g(w; xqi ,Sq)) ≈ c2 if hw(xqj ) − λq(w) ∈ [0, τ1], then we have

∑

xqi ∈Sq

∇wψi fq,i (g(w; xqi ,Sq )) ≈ c1c2
∑

xqi ∈Cq

⎛

⎜⎜⎝∇whw(xqi ;w) + 1

|Cq |
∑

xqj ∈Cq
−∇wh(xqj ;w)

⎞

⎟⎟⎠ = 0

As a result, when τ1 is small enough the condition ψ ′
i (w, λq(w)) ≈ 0 if hw(xqj ) − λq(w) /∈

[0, τ1], and ψ ′
i (w, λq(w)) ≈ c if hw(xqj ) − λq(w) ∈ [0, τ1] is well justified. An example of

such ψ(·) is provided in the Fig. 13. As a result, with initial warm-up, we can compute the
gradient estimator by

G(wt ) = 1

|B|
∑

(q,xqi )∈B
pq,i∇ ĝq,i (wt ),

which simplifies K-SONG by avoiding maintaining and updating sq,t .

Appendix C Algorithm implementation details

Our algorithms for optimizing top-K NDCG involve two second-order derivatives of the
function Lq when computing the stochastic gradient estimators. In this section, we will
describe how these quantities are calculated in our implementation.

Recall the formulation of Lq

Lq(λ
t
q(w),wt ;Bt ) = K + ε

Nq
λ + τ2

2
λ2 + 1

|Bt |
∑

xi∈Bt

τ1 ln

(
1 + exp

(
hq(xi ;w) − λ

τ1

))
.
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We first compute the first-order derivative of function Lq w.r.t. λ as follows

∇λLq(λ
t
q(w),wt ;Bt ) = K + ε

Nq
+ τ2λ + 1

|Bt |
∑

xi∈Bt

⎛

⎝−
exp

(
hq (xi ;w)−λ

τ1

)

1 + exp
(
hq (xi ;w)−λ

τ1

)

⎞

⎠ .

Let σ(x) = 1
1+e−x = ex

ex+1 denote the sigmoid function, then the above equation can be
simplified to

∇λLq(λ
t
q(w),wt ;Bt ) = K + ε

Nq
+ τ2λ − 1

|Bt |
∑

xi∈Bt

σ

(
hq(xi ;w) − λ

τ1

)
.

Further differentiating w.r.t. w, we obtain

∇2
λ,wLq(λ

t
q(w),wt ;Bt ) = 1

|Bt |
∑

xi∈Bt

−σ

(
hq(xi ;w) − λ

τ1

)(
1−σ

(
hq(xi ;w) − λ

τ1

))

∇whq(xi ;w)

τ1
,

where we employ the fact that σ ′(x) = σ(x)(1 − σ(x)).
From the above equation, it can be seen that the original second order derivative

∇2
λ,wLq(λ

t
q(w),wt ;Bt ) equals to the first-order derivative ∇whq(xi ;w) multiplied by a

weight −σ
(
hq (xi ;w)−λ

τ1

)(
1−σ

(
hq (xi ;w)−λ

τ1

))
. Therefore, in our implementation, we design

the following loss function for calculating ∇2
λ,wLq(λ

t
q(w),wt ;Bt )

L∇2
λ,wLq

= 1

|Bt |
∑

xi∈Bt

sg
(

− σ

(
hq(xi ;w) − λ

τ1

)(
1−σ

(
hq(xi ;w) − λ

τ1

)))∇whq(xi ;w)

τ1
,

where sg(·) denotes the stop gradient operator. In this loss function, the weight component
can be directly calculated, and the stop gradient operation is used to prevent gradient back-
propagation. For ∇whq(xi ;w), we set hq(xi ;w) as the the differentiable part, allowing the
automatic differentiation framework to compute∇whq(xi ;w). Thus, differentiating such loss
function ultimately yields the desired second-order derivative.

The computation for the function ∇2
λλLq(λ

t
q(w),wt ;Bt ) is straightforward. We can

directly derive its specific form:

∇2
λλLq(λ

t
q(w),wt ;Bt )=τ2 + 1

|Bt |
∑

xi∈Bt

σ

(
hq(xi ;w) − λ

τ1

)(
1−σ

(
hq(xi ;w) − λ

τ1

))
1

τ1
.

Appendix D Experiments

MSLR-WEB30K5 and Yahoo! LTR dataset6 are the largest public LTR datasets from com-
mercial English search engines. We provide the statistics of these two datasets in Table 5.
In MSLR-WEB30K dataset, there are 5 folds containing the same data, and each fold ran-
domly splits to training, validation, and test sets. Due to privacy concerns, these datasets do
not disclose any text information and only provide feature vectors for each query-document

5 https://www.microsoft.com/en-us/research/project/mslr/
6 https://webscope.sandbox.yahoo.com
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Table 5 Statistics of learning to rank datasets

Dataset MSLR-WEB30K Yahoo! LTR dataset

Query 30,000 29,921

Q-D pair 3,771,125 709,877

max Q-D pair per query 1,245 135

min Q-D pair per query 1 1

Table 6 Statistics of recommender systems datasets

Dataset # users # items # interactions sparsity

MovieLens20M 138,493 26,744 20,000,263 99.46%

Netflix Prize dataset 236,117 17,770 89,973,534 97.86%

pair. For these two LTR datasets, we standarize the features, log-transforming selected ones,
before feeding them to the learning algorithms. Since the lengths of search results lists in the
datasets are unequal, we truncate or pad samples to the length of 40 and 100 for Yahoo! LTR
dataset and MSLR-WEB30K when training, respectively, but use the full list for evaluation.

MovieLens20M7 contains 20 million ratings applied to 27,000 movies by 138,000 users,
and all users have rated at least 20movies.Netflix Prize dataset8 consists of about 100,000,000
ratings for 17,770 movies given by 480,189 users. We filter the Netflix Prize dataset by
retaining users with at least 100 interactions to cater sufficient information for modeling. In
both datasets, users and movies are represented with integer IDs, while ratings range from 1
to 5. The statistics of these two datasets are shown in Table 6.

For the experiments on two LTR datasets, we adopt allRank framework Pobrotyn et al.
(2020). We implement some baseline methods based on their code. For the recommender
systems experiments, we use ReChorus frameworkWang et al. (2020), and follow the scripts
in ReChorus to preprocess the datasets. We train our models on one Tesla V100 GPU with
32GB memory. The training on the Context-Aware Ranker model takes about 2~3 hours for
convergence, while the training of theNeuMFmodel takes about 8~12 hours for convergence.
For the experiments on two molecular datasets, we adopt the code base from OGB9.

More experimental results are provided in this section. The full ablation studies on four
datasets are presented in Fig. 14. We provide the negative log-likelihood loss curves of three
different training methods for warm-up in Fig. 15. We also study the effect of varying γ0
and report the training curves of warm-up and SONG in Fig. 16. We observe that γ0 = 0.1
achieves the best performance in most cases. Setting γ0 = 1.0 is equivalent to update the
model with a biased stochastic gradient, which leads to the worst performance. These results
signify the importance of moving average estimators in our methods.

7 https://grouplens.org/datasets/movielens/20m/
8 https://www.kaggle.com/netflix-inc/netflix-prize-data
9 https://github.com/snap-stanford/ogb/tree/master/examples/graphproppred/mol
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Fig. 13 An example of ψ(·)

Fig. 14 Ablation study on two variants of SONG on four different datasets

Fig. 15 Comparison of full-items and mini-batch training
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Fig. 16 The effect of varying γ0 for warm-up (top two) and SONG (bottom two)

Appendix E Convergence analysis for SONG and K-SONG

As we point out in Sect. 3, NDCG can be seen as a special case of top-K NDCG. From the
perspective of optimization problem, if we set theψ(·) function in problem (6) for optimizing
top-K NDCG as a constant function, the problem will reduce to problem (3) for optimizing
NDCG. Hence, Theorem 1 naturally follows from Theorem 2, of which the proof will be
presented in the this section.

Before analyzing the convergence for K-SONG, to simplify the notations, we first reorder
the set of S so that each pair (q, xqi ) has a new single index i , and we abuse the notation
S denoting the set of the new indexing . Then we employ ψi (w, λq(w)) and fi (gi (w)) to
representψ(hq(x

q
i ;w)−λ̂q(w)) and fq,i (g(w; xqi ,Sq)), respectively.Now the compositional

bilevel optimization problem becomes:

min
w

F(w) := 1

|S|
∑

i∈S
ψi (w, λq(w)) fi (gi (w))

s.t . λq(w) = argmin
λ

Lq(w, λ),∀q ∈ Q, (25)

which allows us to restateK-SONGasAlgorithm8 accordingly. Throughout this convergence
analysis section, all subscript q represents the variable or function corresponding to query q .
The following auxiliary notations will be used:

δλ,t := ‖λ(wt ) − λt‖2, δg,t := ‖g(wt ) − ut‖2, δLλλ,t := ‖∇2
λλL(λ(wt );wt ) − st‖2.

Besides, we employ E[·] to represent the expectation over the randomness of the algorithm
until the current iteration, andEt [·] to denote the expectation over the randomness at iteration
t . We make the following assumptions regarding problem (25).

Assumption 1 (i) Functionsψi , fi , gi are Lψ, L f , Lg-smooth andCψ,C f ,Cg-Lipschitz
continuous respectively for all i .
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Algorithm 8 Restate K-SONG with new indexing

Require: w0,m0 = λ0 = u0 = s0 = 0, γ0, γ
′
0, β1, η0, η1

Ensure: wT
1: for t = 0, 1, . . . , T − 1 do
2: Draw some relevant Q-I pairs Bt = {(q, xqi )} ⊂ S
3: For each q ∈ Bt draw a batch of items Bt

q ⊂ Sq
4: Compute ut+1

i =
{

(1 − γ0)uti + γ0gi (wt ;Bt
q ) if i ∈ Bt

uti o.w.

5: Compute λt+1
q =

{
λtq − η0∇λLq (wt , λ

t
q ;Bt

q ) if q ∈ Bt

λtq o.w.

6: Compute st+1
q =

{
(1 − γ ′

0)s
t
q + γ ′

0∇2
λλLq (wt , λ

t
q ;Bt

q ) if q ∈ Bt

stq o.w.
7: Compute stochastic gradient estimator G(wt ) according to (26)
8: mt+1 = β1mt + (1 − β1)G(wt )
9: wt+1 = wt − η1mt+1
10: end for

(ii) Functions ψi and fi are bounded by Bψ and B f respectively, i.e., ||ψi (w, λ)|| ≤ Bψ

and || fi (g)|| ≤ B f for all w, λ, i, g.
(iii) Functions Lq are LL -smooth and μL -strongly convex, i.e., LL I �∇2

λλLq(w, λ;B) �
μL I , for all q .

(iv) Unbiased stochastic oracles gi ,∇gi ,∇λLq ,∇2
λλLq ,∇2

wλLq have bounded variance σ 2.
(v) ||∇2

wλLq(w, λ)||2 ≤ C2
Lwλ, ∇λLq(w, λ),∇2

wλLq(w, λ),∇2
λλLq(w, λ) are LLλ, LLwλ,

LLλλ-Lipschitz continuous respectively with respect to (w, λ) for all q .

Remark 1 For (i) and (ii), we consider the squared hinge loss 	(hq(x′;w), hq(x;w)) =
max{0, hq(x′;w) − hq(x;w) + c}2 where c is a margin parameter. Suppose the score func-
tion and its gradients hq(x;w),∇whq(x;w),∇2

whq(x;w) are bounded by finite constants
ch, ch′ , ch′′ respectively. As an average of squared hinge loss, function gi (w) in (25) has
bounded gradients ∇gi (w) ≤ 8chch′ and ∇2gi (w) ≤ 8c2h′ + 8chch′′ for each i ∈ S. Hence
gi is Lipschitz continuous and smooth. Moreover, with m > 2ch , there exists c	 > 0 such

that 	(hq(x1;w) − hq(x2;w)) ≥ c	 for all x1, x2. Function fi (g)= fq,i (g)= 1
Zq

1−2y
q
i

log2(Nqg+1)

is thus bounded, Lipschitz continuous and smooth for each i = (q, xqi ) ∈ S. For func-
tion ψi = ψ(hq(x

q
i ;w) − λq(w)), we consider the logistic loss, then ψi is naturally

bounded. Next, we consider the Lipschitz continuity and smoothness of ψi . Since the
lower-level problem Lq in (25) is smooth and strongly convex, according to Lemma 4.3
proved by Lin et al. (2019), λq(w) is Lipschitz continuous. Additionally, by leveraging
the assumption that hq(x;w),∇whq(x;w),∇2

whq(x;w) are bounded, we can verify the
smoothness of λq(w) by calculating the bound of its second-order derivative. Finally, using
the above properties, we can compute the bounds for ‖∇ψ(hq(x

q
i ;w) − λq(w))‖ and

‖∇ψ(hq(x
q
i ;w1) − λq(w1)) − ∇ψ(hq(x

q
i ;w2) − λq(w2))‖ to verify that ψi is Lipschitz

continuous and smooth.

Remark 2 Assumption (iii) ismade inmany existingworks for SBO (Ghadimi&Wang, 2018;
Hong et al., 2023; Chen et al., 2022). We prove the smoothness and strong convexity of Lq in
Lemma 4. The strong convexity of Lq implies the lower bound γ = τ2 of ∇λλLq(w, λ;B).
Assumption (iv) is also standard in the literature (Chen et al., 2022; Guo et al., 2021a).
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Remark 3 For assumption (v), one can verify the Lipschitz continuity of ∇2
wλLq(λ;w) and

∇2
λλLq(λ;w)by taking the third-order gradientsw.r.t. Lq (λ;w) andusing exp

(
λ−hq (xi ;w)

τ1

)
>

0 and the assumption of the boundedness of hq(x;w) and its gradients.

By using the implicit function theorem, the stochastic gradient estimator of ∇F(wt ) in
Algorithm 8, i.e., G(wt ), is given by:

1

|Bt |
∑

i∈Bt

Gi (wt )= 1

|Bt |
∑

i∈Bt

{[
∇wψi (wt , λ

t
q )−∇2

wλLq (wt , λ
t
q ;Bt

q )[stq ]−1∇λψi (wt , λ
t
q )
]
fi (u

t
i )

+ ψi (wt , λ
t
q )∇gi (wt ;Bt

q )∇ fi (u
t
i )

}
. (26)

Now we restate Theorem 2 as follows to include the specifics of the parameters.

Theorem 4 (Restate Theorem 2 with parameter specifics). Let F(w0) − F(w∗) ≤ �F and
Assumption 1 hold. ApplyK-SONG inAlgorithm8 to solve the problem (25)with the following
parameters:

η0≤min

{
μL

L2L
,

2N

|B|μL
,

μLε2

48C10σ
2

}
,γ0≤

{
1

2
,

ε2

96C6σ
2

}
,β1≥1 − ε2

12
(
C8|B| + C9σ

2
) ,

γ ′
0≤

{
1,

ε2

96C7σ
2

}
, η21 ≤ min

{
γ 2
1

32L2F
,

|B|2η20μ2
L

64N2C10C
2
λ

,
|B|2γ 2

0

64|S|2C6C
2
g

,
|B|2γ ′2

0

256N2C7L
2
Lλλ

(1 + C2
λ)

}
,

T ≥
{
30�F

η1ε
2 ,

15E[‖∇F(w0) − m1‖2]
γ1ε

2 ,
30C10δλ,0

|B|η0μLε2
,
30C6δg,0

|B|γ0ε2
,
60C7δLλλ,0

|B|γ ′
0ε

2

}

We have
E[‖∇F(wτ )‖2] ≤ ε2

where τ is randomly sampled from {0, . . . , T }, C6,C7,C8,C9,C10 are constants defined in
the proof, and LF is the Lipschitz continuity constant of ∇F(w).

To prove Theorem 4, we first present some required Lemmas.

Lemma 5 Under assumption 1, F(w) is LF -smooth for some constant LF ∈ R.

Lemma 6 Consider the updatewt+1 = wt−η1mt+1. Then under assumption 1, with η1LF ≤
1
2 , we have

F(wt+1) ≤ F(wt ) + η1

2
‖∇F(wt ) − mt+1‖2 − η1

2
‖∇F(wt )‖2 − η1

4
‖mt+1‖2.

Lemma 7 (Lemma 4.3 Lin et al. (2019)). Under assumption 1, λq(w) is Cλ-Lipschitz con-
tinuous with Cλ = LL/μL for all q = 1, . . . , N.

Lemma 8 Consider the updates in algorithm 8, under assumption 1, with η0 ≤
min{μL/L2

L , 2N
|B|μL

} we have
T∑

t=0

E[δλ,t ] ≤ 2N

|B|η0μL
δλ,0 + 4Nη0Tσ 2

μL
+ 8N 3C2

λη21

|B|2η20μ2
L

T−1∑

t=0

E[‖mt+1‖2] (27)
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Lemma 9 Consider algorithm 8, under assumption 1, with γ0 < 1/2 we have

T∑

t=0

E[δg,t ] ≤ 2|S|
|B|γ0 δg,0 + 8|S|γ0σ 2T + 8|S|3C2

gη
2
1

|B|2γ 2
0

T−1∑

t=0

E[‖mt+1‖2] (28)

Lemma 10 Consider algorithm 8, under assumption 1, with γ ′
0 ≤ 1 we have

T∑

t=0

E[δLλλ,t ]≤ 4N

|B|γ ′
0
δLλλ,0+32L2Lλλ

T−1∑

t=0

E[δλ,t ]+8Nγ ′
0Tσ 2+ 32N3L2Lλλ

(1+C2
λ)η21

|B|2γ ′2
0

T−1∑

t=0

E[‖mt+1‖2]

Appendix E.1.1 Proof sketch

Before presenting the formal proof, we first outline the intuition behind it. Here are several
key points of the proof:

1. Starting with Lemma 6, it is evident that the quality of the final solution (denoted as
‖∇F(wt )‖) is related to the approximation error of the stochastic gradient estimator mt

during the optimization (denoted as ‖∇F(wt ) − mt+1‖).
2. In the proof, we begin by decomposing ‖∇F(wt ) −mt+1‖ and demonstrating that it can

be bounded by the approximation errors of several crucial inner functions (refer to (31)).
3. Subsequently, by incorporating the approximation errors of these inner functions (as stated

in Lemma 8, 9, and 10), we can derive the detailed bound for ‖∇F(wt )‖ (refer to (36)).
4. Finally, by setting appropriate parameters, we obtain the expression for the number of

iterations required to achieve an ε-stationary point (see the end of the following proof).
This completes our proof.

Appendix E.2.2 Innovations in proof techniques

First, we analyze the SONG algorithm. Inspired by the average precision maximization algo-
rithm SOAP proposed by Qi et al. (2021), SONG uses a moving average estimator and
establishes a convergence rate of O(ε−4), which is better than the O(ε−5) convergence rate
established by SOAP. We attribute this improvement to the use of a simple yet effective
momentum-style stochastic gradient estimator mt and a more refined analysis. Specifically,
we can focus on the term ‖wt+1 − wt‖2 in the proofs of both SOAP and SONG. In Lemma
2 of SOAP, ‖wt+1 − wt‖2 is simply bounded by a gradient norm constant. However, in
Lemma 6 of our SONG, however, we first use the definition of mt and perform an equiv-
alent transformation on the cross term ∇F(wt )

T (wt+1 − wt ). This allows us to transform
∇F(wt )

T (wt+1 −wt ) and ‖wt+1 −wt‖2 into ‖∇F(wt ) −mt+1‖2 and a negative ‖mt+1‖2
term. This negative term then can cancel out the positive ‖mt+1‖2 term that appears in the
bound of ‖∇F(wt ) − mt+1‖2 (refer to (36)), thereby tightening the bound and ultimately
improving the convergence rate.

For K-SONG, the key difference fromGuo et al. (2021a) is our implementation of parallel
speed-up in lines 9–12 of Algorithm 2 and the introduction of new proof techniques to control
the estimation error of lower-level solutions. The core steps of our proof are as follows. First,
we denote λ̃tq as the lower-level solutions updated in the t-th iteration, and use its update rule

to derive the estimation error bound ‖λ̃tq − λq(wt )‖2

Et [‖λ̃tq − λq(wt )‖2] ≤ (1 − �(η0))‖λtq − λq(wt )‖2 + �(η20σ
2),
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where we employ �(·) to omit some constants. Then, using the property of conditional
expectation, we can establish the estimation error for all lower-level solutions in the t-th
iteration

Et [‖λt+1
q − λq(wt )‖2] = |B|

N
Et [‖λ̃tq − λq(wt )‖2] + N − |B|

N
‖λtq − λq(wt )‖2.

At last, using Young’s inequality and the above bounds, we can derive the final recursive
error bound for all lower-level solutions:

Et [‖λt+1
q −λq (wt+1)‖2]≤(1+�(η0))Et [‖λt+1

q −λq (wt )‖2]+
(
1+ 1

�(η0)

)
Et [‖λq (wt+1)−λq (wt )‖2]

(∗)≤ (1−�(η0))‖λtq−λq (wt )‖2+�(η20σ
2)+ 1

�(η0)
Et [‖wt+1−wt‖2],

where (∗) holds under certain parameter settings. Details can be found in the proof of
Lemma 8.

Proof of Theorem 4 In proving algorithm convergence, the most critical aspect is establishing
the error bound between the stochastic gradient estimator mt+1 = (1 − γ1)mt + γ1G(wt )

and the ground truth gradient ∇F(wt ) in the algorithm. We begin the proof by analyzing the
error bound for ‖∇F(wt ) − mt+1‖2. Recall that

∇F(wt ) = 1

|S|
∑

i∈S

[
∇wψi (wt , λq(wt ))

− ∇2
wλLq(wt , λq(wt ))[∇2

λλLq(wt , λq(wt ))]−1∇λψi (wt , λq(wt ))

]
fi (gi (wt ))

+ ψi (wt , λq(wt ))∇gi (wt )∇ fi (gi (wt )),

G(wt ) = 1

|Bt |
∑

i∈Bt

[
∇wψi (wt , λ

t
q)−∇2

wλLq(wt , λ
t
q ;Bt

q)[stq ]−1∇λψi (wt , λ
t
q)

]
fi (uti )

+ ψi (wt , λ
t
q)∇gi (wt ;Bt

q)∇ fi (uti ).

One can observe that ∇F(wt ) and G(wt ) differ significantly in form. To assist in our
proof, we define the following auxiliary function ∇F(wt , λ

t ):

∇F(wt , λ
t ) = 1

|S|
∑

i∈S
∇Fi (wt , λ

t )

:= 1

|S|
∑

i∈S

[
∇wψi (wt , λ

t
q)−∇2

wλLq(wt , λ
t
q)[stq ]−1∇λψi (wt , λ

t
q)

]
fi (uti )

+ ψi (wt , λ
t
q)∇gi (wt )∇ fi (uti ).

Note that the difference between ∇F(wt , λ
t ) and G(wt ) lies in that ∇F(wt , λ

t ) is com-
puted over all samples |S|, while G(wt ) is computed on a mini-batch Bt . The distinction
between ∇F(wt ) and ∇F(wt , λ

t ) is that ∇F(wt , λ
t ) substitutes the estimators stq , u

t
i , and

λtq for ∇2
λλLq(wt , λq(wt )), gi (wt ), and λq(wt ) used in ∇F(wt ), respectively.

We can now employ the update rulemt+1=(1− γ1)mt+γ1G(wt ) in Algorithm 8, where
γ1=1−β1, and establish the following error bound:

Et [‖∇F(wt ) − mt+1‖2] = Et [‖∇F(wt ) − (1 − γ1)mt − γ1G(wt )‖2]
= Et [‖(1−γ1)(∇F(wt−1)−mt )+(1−γ1)(∇F(wt )−∇F(wt−1))+γ1(∇F(wt )−∇F(wt , λ

t ))
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+ γ1(∇F(wt , λ
t ) − G(wt ))‖2]

(a)= Et [‖(1−γ1)(∇F(wt−1)−mt )+(1−γ1)(∇F(wt )−∇F(wt−1))+γ1(∇F(wt )−∇F(wt , λ
t ))‖2

+ ‖γ1(∇F(wt , λ
t ) − G(wt ))‖2]

(b)≤ (1+γ1)(1−γ1)
2‖∇F(wt−1)−mt‖2+γ 2

1 Et [‖∇F(wt , λ
t )−G(wt )‖2]

+2

(
1+ 1

γ1

)[
‖∇F(wt )−∇F(wt−1)‖2+γ 2

1 ‖∇F(wt )−∇F(wt , λ
t )‖2

]

≤ (1−γ1)‖∇F(wt−1)−mt‖2 + 2

(
1 + 1

γ1

)[
L2F‖wt − wt−1‖2+γ 2

1 ‖∇F(wt )−∇F(wt , λ
t )‖2︸ ︷︷ ︸

a©

]

+ γ 2
1 Et [‖∇F(wt , λ

t ) − G(wt )‖2]︸ ︷︷ ︸
b©

, (29)

where Et [·] takes expectation over the randomness at iteration t , auxiliary function
∇F(wt , λ

t ) is introduced in the second equality, inequality (a) follows from Et [G(wt )] =
∇F(wt , λ

t ), (b) is due to ‖a + b‖2 ≤ (1 + β)‖a‖2 + (1 + 1
β
)‖b‖2, and the last inequality

is due to (1 + γ1)(1 − γ1) < 1.
Next, we establish the error bounds for a© and b© in (29). The core idea is to first expand

the functions according to their definitions, then decompose the resulting expressions using
the inequality ||x1 + · · · + xn ||2 ≤ n||x1||2 + · · · + n||xn ||2. For a©, we achieve

a© = Et [‖∇F(wt ) − ∇F(wt , λ
t )‖2]

≤ 1

|S|
∑

i∈S
6‖∇wψi (wt , λq (wt ))[ fi (gi (wt ))− fi (u

t
i )]‖2

+6‖[∇wψi (wt , λq (wt ))−∇wψi (wt , λ
t
q )]fi (uti )‖2

+ 12‖[∇2
wλLq (wt , λq (wt ))−∇2

wλLq (wt , λ
t
q )][∇2

λλLq (wt , λq (wt ))]−1

∇λψi (wt , λq (wt )) fi (gi (wt ))‖2
+ 12‖∇2

wλLq (wt , λ
t
q )[∇2

λλLq (wt , λq (wt ))]−1[∇λψi (wt , λq (wt )) − ∇λψi (wt , λ
t
q )] fi (gi (wt ))‖2

+ 12‖∇2
wλLq (wt , λ

t
q )[∇2

λλLq (wt , λq (wt ))]−1∇λψi (wt , λ
t
q )[ fi (gi (wt )) − fi (u

t
i )]‖2

+ 12‖∇2
wλLq (wt , λ

t
q )
[[∇2

λλLq (wt , λq (wt ))]−1 − [stq ]−1]∇λψi (wt , λ
t
q ) fi (u

t
i )‖2

+ 6‖[ψi (wt , λq (wt )) − ψi (wt , λ
t
q )]∇gi (wt )∇ fi (gi (wi ))‖2

+ 6‖ψi (wt , λ
t
q )∇gi (wt )[∇ fi (gi (wi )) − ∇ fi (u

t
i )]‖2.

To further bound the RHS of the above inequality, we leverage the Lipschitz continuity
and smoothness properties of the relevant functions assumed in Assumption 1, yielding the
following bound:

a© ≤
(
6C2

ψC
2
f

|S| + 12C2
LwλC

2
ψC

2
f

μ2
L |S| + 6B2

ψC
2
g L

2
f

|S|

)
‖g(wt )−ut‖2

+ 12C2
LwλC

2
ψ B2

f

μ2
Lγ 2N

‖∇2
λλL(wt , λ(wt ))−st‖2

+
(
6L2

ψ B2
f

N
+ 12L2

LwλC
2
ψ B2

f

μ2
L N

+ 12C2
LwλL

2
ψ B2

f

μ2
L N

+ 6C2
gC

2
f

N

)
‖λ(wt ) − λt‖2

=: C6

4|S|δg,t + C7

4N
δLλλ,t + C5

4N
δλ,t ,
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where C5,C6,C7 are properly chosen constants. Given the previously mentioned difference
between ∇F(wt ) and ∇F(wt , λ

t ) regarding the use of estimators, it is reasonable that the
bound here is related to the error bounds of these estimators.

Similarly, we can establish the following error bound for part b©:

b© = Et [‖∇F(wt , λ
t ) − G(wt )‖2]

≤Et

⎡

⎢⎣2

∥∥∥∥∥∥
1

|S|
∑

i∈S
∇Fi (wt , λ

t )− 1

|B|
∑

i∈B
∇Fi (wt ,λ

t )

∥∥∥∥∥∥

2

+2
∥∥∥∥∥∥

1

|B|
∑

i∈B
∇Fi (wt , λ

t )− 1

|B|
∑

i∈B
Gi (wt )

∥∥∥∥∥∥

2
⎤

⎥⎦

≤
12C2

ψ B2
f + 12C2

Lwλ
C2

ψ
B2f

γ 2 + 12B2
ψC2

gC
2
f

|B| +
∥∥∥ψi (wt , λ

t
q )[∇gi (wt ) − ∇gi (wt ;Bq )]∇ fi (u

t
i )
∥∥∥
2
]

+ 2Et

[
1

|B|
∑

i∈B

∥∥∥[∇2
wλLq (wt , λ

t
q ) − ∇2

wλLq (wt , λ
t
q ;Bq )][stq ]−1∇λψi (wt , λ

t
q ) fi (u

t
i )
∥∥∥
2

≤
12C2

ψ B2
f + 12C2

Lwλ
C2

ψ
B2f

γ 2 + 12B2
ψC2

gC
2
f

|B| +
C2

ψ B2
f σ

2

γ 2 + B2
ψC2

f σ
2 =: C8

|B| + C9σ
2.

Intuitively, the difference between ∇F(wt , λ
t ) and G(wt ) lies in the fact that the former

uses full data for computationwhile the latter usesmini-batch data. Therefore, the final bound
is actually related to the batch size |B| and the variance σ .

By substituting the bounds for a© and b© into (29), with the natural assumption γ1 ≤ 1,
we can derive the following bound:

Et [‖∇F(wt ) − mt+1‖2] ≤ (1−γ1)‖∇F(wt−1)−mt‖2

+ 4

γ1

[
L2
Fη21‖mt−1‖2+γ 2

1
C5

4N
δλ,t+γ 2

1
C6

4|S|δg,t+γ 2
1
C7

4N
δLλλ,t

]
+γ 2

1

(
C8

|B| +C9σ
2
)

.

(30)

Take expectation over all randomness and summation over t = 1, . . . , T , we obtain:

T∑

t=0

E[‖∇F(wt ) − mt+1‖2] ≤ 1

γ1
E[‖∇F(w0) − m1‖2] + 4L2Fη21

γ 2
1

T∑

t=1

E[‖mt‖2] + C5

N

T∑

t=1

E[δλ,t ]

+ C6

|S|
T∑

t=1

E[δg,t ] + C7

N

T∑

t=1

E[δLλλ,t ] + γ1

(
C8

|B| + C9σ
2
)
T . (31)

In Lemma 8, Lemma 9, and Lemma 10, we have proven the bounds for
∑T

t=0 E[δλ,t ],∑T
t=0 E[δg,t ] and∑T

t=0 E[δLλλ,t ], respectively. For the convenience of the reader, we provide
the specific inequalities here.

T∑

t=0

E[δλ,t ] ≤ 2N

|B|η0μL
δλ,0 + 4Nη0Tσ 2

μL
+ 8N 3C2

λη21

|B|2η20μ2
L

T−1∑

t=0

E[‖mt+1‖2], (32)

T∑

t=0

E[δg,t ] ≤ 2|S|
|B|γ0 δg,0 + 8|S|γ0σ 2T + 8|S|3C2

gη
2
1

|B|2γ 2
0

T−1∑

t=0

E[‖mt+1‖2], (33)
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T∑

t=0

E[δLλλ,t ] ≤ 4N

|B|γ ′
0
δLλλ,0+32L2

Lλλ

T−1∑

t=0

E[δλ,t ]+8Nγ ′
0Tσ 2

+ 32N 3L2
Lλλ(1 + C2

λ)η21

|B|2γ ′2
0

T−1∑

t=0

E[‖mt+1‖2]. (34)

By plugging the above three inequalities into (31), we obtain

T∑

t=0

E[‖∇F(wt ) − mt+1‖2]

≤ 1

γ1
E[‖∇F(w0) − m1‖2] + 2C10

|B|η0μL
δλ,0 + 4C10η0Tσ 2

μL
+ 2C6

|B|γ0 δg,0 + 8C6γ0σ
2T

+ 4C7

|B|γ ′
0
δLλλ,0 + 8C7γ

′
0Tσ 2 + γ1(

C8

|B| + C9σ
2)T

+
[
4L2Fη21

γ 2
1

+ 8N2C10C
2
λη21

|B|2η20μ2
L

+ 8|S|2C6C
2
gη21

|B|2γ 2
0

+ 32N2C7L
2
Lλλ

(1 + C2
λ)η21

|B|2γ ′2
0

] T∑

t=1

E[‖mt‖2], (35)

whereC10 = C5+32C7L2
Lλλ. Recalling Lemma 6, which primarily relies on the smoothness

of function F , we have

F(wt+1) ≤ F(wt ) + η1

2
‖∇F(wt ) − mt+1‖2 − η1

2
‖∇F(wt )‖2 − η1

4
‖mt+1‖2.

To ultimately prove the conclusion regarding the stationary point, we move the term
||∇F(wt )||2 to the left side and the remaining terms to the right side, then sum both sides over
t . Notably, the F(wt )−F(wt+1) terms can cancel out each other. Finally, by substituting (35),
we can establish the following bound:

1

T + 1

T∑

t=0

E[‖∇F(wt )‖2]

≤ 1

T

[
E[‖∇F(w0) − m1‖2]

γ1
+ 2C10δλ,0

|B|η0μL
+ 2C6δg,0

|B|γ0 + 4C7δLλλ,0

|B|γ ′
0

]

+ 2[F(w0) − F(w∗)]
η1T

+ 4C10η0σ
2

μL
+ 8C6γ0σ

2 + 8C7γ
′
0σ

2 + γ1

(
C8

|B| + C9σ
2
)

+ 1

T

[
4L2Fη21

γ 2
1

+ 8N2C10C
2
λη21

|B|2η20μ2
L

+ 8|S|2C6C
2
gη21

|B|2γ 2
0

+ 32N2C7L
2
Lλλ

(1 + C2
λ)η21

|B|2γ ′2
0

− 1

2

] T∑

t=1

E[‖mt‖2].

(36)

Next, we can eliminate the
∑T

t=1 E[||mt ||2] term by appropriately setting η1 by

η21 ≤ min

{
γ 2
1

32L2
F

,
|B|2η20μ2

L

64N 2C10C2
λ

,
|B|2γ 2

0

64|S|2C6C2
g
,

|B|2γ ′2
0

256N 2C7L2
Lλλ(1 + C2

λ)

}
,

thus we obtain

4L2
Fη21

γ 2
1

+ 8N 2C10C2
λη21

|B|2η20μ2
L

+ 8|S|2C6C2
gη

2
1

|B|2γ 2
0

+ 32N 2C7L2
Lλλ(1 + C2

λ)η21

|B|2γ ′2
0

− 1

2
≤ 0,
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which implies that the last term of the RHS of inequality (36) are less or equal to zero. Hence

1

T + 1

T∑

t=0

E[‖∇F(wt )‖2]≤ 4C10η0σ
2

μL
+ 8C6γ0σ

2 + 8C7γ
′
0σ

2 + γ1

(
C8

|B| + C9σ
2
)

+ 2[F(w0)−F(w∗)]
η1T

+ 1

T

[
E[‖∇F(w0)−m1‖2]

γ1
+ 2C10δλ,0

|B|η0μL
+ 2C6δg,0

|B|γ0 + 4C7δLλλ,0

|B|γ ′
0

]
.

(37)

To satisfy the criterion for a stationary point in the definition of algorithm convergence,
we need to ensure that the right-hand side of the above equation is less than ε2. To achieve
this, we can set the values of η0, γ0, γ

′
0, γ1 and T as follows

η0 ≤ μLε2

48C10σ
2 , γ0 ≤ ε2

96C6σ
2 , γ ′

0 ≤ ε2

96C7σ
2 , γ1 ≤ ε2

12( C8|B| + C9σ
2)

,

T ≥
{
30[F(w0) − F(w∗)]

η1ε
2 ,

15E[‖∇F(w0) − m1‖2]
γ1ε

2 ,
30C10δλ,0

|B|η0μLε2
,
30C6δg,0

|B|γ0ε2
,
60C7δLλλ,0

|B|γ ′
0ε

2

}
,

and finally we have

1

T + 1

T∑

t=0

E[‖∇F(wt )‖2] ≤ 1

3
ε2 + 1

3
ε2 < ε2.

From the values of η0, γ0, γ
′
0, γ1 and T , we can conclude that when T = O(1/ε4), the

algorithm can find the stationary point. This completes the proof. ��
Proof of Lemma 1 Given 	(w; x′, x, q) ≥ I(hq(x′;w)−hq(x;w) ≥ 0), we have ḡ(w; xqi ,Sq)≥ r(w; xqi ,Sq) for each (q, xqi ), which immediately follows the desired conclusion. ��
Proof of Lemma 2 To show the equivalence in the Lemma, it suffices to show that λq(w) is
the (K + 1)-th largest value in the set {hq(x′;w)|x′ ∈ Sq}. Let {θ1, θ2, · · · , θNq } denote a
sequence of values defined by sorting {hq(x′;w)|x′ ∈ Sq} in descending order, i.e., θ1 ≥
θ2 ≥ · · · ≥ θNq . θk denote the k-th largest value.

Recall the definition of λq(w)

λq(w) = argmin
λ

(K + ε)λ +
∑

x′∈Sq

(hq(x′;w) − λ)+,

where ε ∈ (0, 1). Define function �q(λ) := (K + ε)λ+∑Nq
i=1(θi −λ)+, then it follows that

λq(w) = argminλ �q(λ). Take the derivative of �q(λ), we have

∇λ�q(λ) = K + ε −
Nq∑

i=1

d(θi − λ), where d(θi − λ) =

⎧
⎪⎨

⎪⎩

1, θi > λ

ε′ ∈ [0, 1], θi = λ

0, θi < λ

.

First, we assume θK > θK+1. One may consider this problem in three cases.

– If λ > θK+1, then
∑Nq

i=1 d(θi − λ) ≤ K , so we have ∇λ�q(λ) ≥ K + ε − K = ε > 0.

– If λ < θK+1, then
∑Nq

i=1 d(θi − λ) ≥ K + 1, so we have ∇λ�q(λ) ≤ K + ε − K − 1 =
ε − 1 < 0.
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– If λ = θK+1, then
∑Nq

i=1 d(θi −λ) = K + ε′, so we have ∇λ�q(λ) = K + ε − K − ε′ =
ε − ε′. Thus we will have ∇λ�q(λ) = 0 by setting ε′ = ε. Hence λq(w) = θK+1.

Second, if θK = θK+1. One may consider this problem in three cases.

– If λ > θK+1, then
∑Nq

i=1 d(θi − λ) ≤ K − 1, so we have ∇λ�q(λ) ≥ K + ε − K + 1 =
1 + ε > 0.

– If λ < θK+1, then
∑Nq

i=1 d(θi −λ) ≥ K +1, so we have∇λ�q(λ) ≤ K +ε−K −1 < 0.

– If λ = θK = θK+1, then
∑Nq

i=1 d(θi − λ) = K − 1 + 2ε′, so we have ∇λ�q(λ) =
K + ε − K + 1 − 2ε′ = 1 + ε − 2ε′. Thus we will have ∇λ�q(λ) = 0 by setting
ε′ = (1 + ε)/2. Hence λq(w) = θK+1.

In summary, θK+1 = λq(w) = argminλ �q(λ). The proof is finished. ��
Proof of Lemma 3 Given the conditionψ(hq(x

q
i ;w)−λq(w)) ≤ CI(hq(x

q
i ;w)−λq(w) > 0)

and 	(w; x′, x, q) ≥ I(hq(x′;w) − hq(x;w) > 0), we have

ψ(hq(x
q
i ;w) − λq(w))(2y

q
i − 1)

CZK
q log2(ḡ(w; xqi ,Sq) + 1)

≤ I(xqi ∈ Sq [K ])(2yqi − 1)

ZK
q log2(r(w; xqi ,Sq) + 1)

for each (q, xqi ). The desired result follows. ��
Proof of Lemma 4 Recall

Lq(λ;w) = K

Nq
λ + τ2

2
λ2 + 1

Nq

∑

xi∈Sq

τ1 ln(1 + exp((hq(xi ;w) − λ)/τ1)).

We first define the following two auxiliary functions:

L̃q(λ;w) = K

Nq
λ + 1

Nq

∑

xi∈Sq

(hq(xi ;w) − λ)+, L̂q(λ;w) = L̃q(λ;w) + τ2

2
λ2.

For simplicity, denote λ∗ = argminλ Lq(λ;w), λ̃∗ = argminλ L̃q(λ;w), λ̂∗ =
argminλ L̂q(λ;w). Note that it is obvious to see that when λ ≥ 2ch , function L̃q(λ;w)

is monotonically increasing, and monotonically decreasing when λ ≤ 0. Thus the optimal
point is bounded, i.e. λ̃∗ ∈ [0, 2ch]. Similarly, we have ∇λLq(λ;w) < 0 when λ ≤ 0 and
∇λLq(λ;w) ≥ 0 when λ ≥ ch + τ1 ln Nmax where Nmax = maxq Nq . This allows us to
show that the optimal point λ∗ is also bounded, i.e. λ∗ ∈ [0, ch + τ1 ln Nmax ]. By applying
Lemma 8 in (Yang & Lin, 2018) to L̃q(λ;w), we know that there exists a constant c1 > 0
such that for all λ we have

|λ − λq(w)| ≤ c1(L̃q(λ;w) − L̃q(λq(w);w)). (38)

It is trivial to show τ1 ln(1+ exp(x/τ1)) ≥ x+ ∀x ∈ R and τ1 ln(1 + exp(x/τ1)) − x+ ≤
(ln 2)τ1. Then it follows easily that

L̂q(λ;w) ≤ Lq(λ;w) ≤ L̂q(λ;w) + c2τ1, (39)

where c2 = ln 2. Then with inequality (39) and the optimality of λ∗, we have

L̃q(λ∗;w) = L̂q(λ∗;w) − τ2

2
λ2∗ ≤ Lq(λ∗;w) − τ2

2
λ2∗ ≤ Lq(λ̃∗;w) − τ2

2
λ2∗

≤ L̂q(λ̃∗;w) + c2τ1 − τ2

2
λ2∗ = L̃q(λ̃∗;w) + τ2

2
λ̃2∗ + c2τ1 − τ2

2
λ2∗,
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which follows that

|L̃q(λ∗;w) − L̃q(λ̃∗;w)| ≤ τ2

2
λ̃2∗ + c2τ1 − τ2

2
λ2∗. (40)

Combining inequalities (38), (40) and the boundedness of λ∗, λ̃∗, and setting τ1 = τ2 = ε,
we obtain

|λq(w) − λ̂q(w)| ≤ c1
(τ2

2
λ̃2∗ + c2τ1 − τ2

2
λ2∗
)

= O(ε).

To demonstrate the smoothness of Lq(λ;w), we first show that

τ1 ln(1 + exp(x/τ1)) = max
α∈[0,1] xα − τ1[α ln(α) + (1 − α) ln(1 − α)] =: A(α). (41)

Note that the solution to A′(α)= x−τ1[ln(α)−ln(1−α)] = 0 is α∗ =1−(1+exp(x/τ1))−1.
Then A(α∗) = τ1ln(1+exp(x/τ1)), which implies (41). Besides, A(α) is strong concave
because

(A(α) + τ1α
2)′′ = −τ1

(
1

α
+ 1

1 − α

)
+ 2τ1 < 0.

It follows that

Lq(λ;w) = K

Nq
λ+ τ2

2
λ2+ 1

Nq

∑

xi∈Sq

max
α∈(0,1)

(hq(xi ;w)−λ)α−τ1[α ln(α)+(1−α) ln(1−α)].

Then by Theorem 1 in Nesterov (2005), Lq(λ;w) is smooth. The strong convexity of
Lq(λ;w) follows from the convexity of Lq(λ;w) − τ2

2 λ2, which can be proved by checking
the non-negativity of its second derivative

∇2
(
Lq(λ;w) − τ2

2
λ2
)

= 1

Nq

∑

xi∈Sq

1
τ1
exp((λ − hq(xi ;w))/τ1)

[1 + exp((λ − hq(xi ;w))/τ1)]2 ≥ 0.

��

Proof of Lemma 5 Here, we aim to prove that the function F(w) is smooth, which essentially
means showing that‖∇F(w1)−∇F(w2)‖ can be bounded by c‖w1−w2‖, wherew1,w2 ∈ R

d

and c is some constant. Thus, we start with ‖∇F(w1)−∇F(w2)‖ and first expand it according
to the definition of F(w) and triangle inequality ‖x1 + · · · + xn‖ ≤ ‖x1‖ + · · · + ‖xn‖:

‖∇F(w1)−∇F(w2)‖≤ 1

|S|
∑

i∈S
‖∇wψi (w1, λq (w1)) fi (gi (w1))−∇wψi (w2, λq (w2)) fi (gi (w2))‖

+ 1

|S|
∑

i∈S
‖∇2

wλLq (w2, λq (w2))[∇2
λλLq (w2, λq (w2))]−1∇λψi (w2, λq (w2)) fi (gi (w2))

− ∇2
wλLq (w1, λq (w1))[∇2

λλLq (w1, λq (w1))]−1∇λψi (w1, λq (w1)) fi (gi (w1))‖
+ 1

|S|
∑

i∈S
‖ψi (w1, λq (w1))∇gi (w1)∇ fi (gi (w1)) − ψi (w2, λq (w2))∇gi (w2)∇ fi (gi (w2))‖.

Next, we establish the corresponding bounds for the three terms on the RHS of the above
equation. The idea is to continuously use inequality ‖x1 + · · · + xn‖2 ≤ n‖x1‖2 + · · · +
n‖xn‖2 and the Lipschitz continuity or smoothness properties of the functions assumed in
Assumption 1 to decompose and bound each term. Specifically, for the first term, we have
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‖∇wψi (w1, λq(w1)) fi (gi (w1)) − ∇wψi (w2, λq(w2)) fi (gi (w2))‖2
≤ 2‖∇wψi (w1, λq(w1))[ fi (gi (w1)− fi (gi (w2))]‖2

+ 2‖[∇wψi (w1, λq(w1))−∇wψi (w2, λq(w2))] fi (gi (w2))‖2
≤ 2C2

ψC
2
f ‖gi (w1) − gi (w2)‖2 + 2L2

ψ [‖w1 − w2‖2 + 2‖λq(w1) − λq(w2)‖2]B2
f

≤ (2C2
ψC

2
f C

2
g + 2B2

f L
2
ψ(1 + Cλ))‖w1 − w2‖2 =: C2

1‖w1 − w2‖2.
We can analyze the second term using a similar approach and obtain the following result:

‖∇2
wλLq (w2, λq (w2))[∇2

λλLq (w2, λq (w2))]−1∇λψi (w2, λq (w2)) fi (gi (w2))

− ∇2
wλLq (w1, λq (w1))[∇2

λλLq (w1, λq (w1))]−1∇λψi (w1, λq (w1)) fi (gi (w1))‖2
≤ 4‖[∇2

wλLq (w2, λq (w2))−∇2
wλLq (w1, λq (w1))]

[∇2
λλLq (w2, λq (w2))]−1∇λψi (w2, λq (w2)) fi (gi (w2))‖2

+ 4‖∇2
wλLq (w1, λq (w1))

[
[∇2

λλLq (w2, λq (w2))]−1

−[∇2
λλLq (w1, λq (w1))]−1

]
∇λψi (w2, λq (w2)) fi (gi (w2))‖2

+ 4‖∇2
wλLq (w1, λq (w1))[∇2

λλLq (w1, λq (w1))]−1[∇λψi (w2, λq (w2))

− ∇λψi (w1, λq (w1))] fi (gi (w2))‖2
+ 4‖∇2

wλLq (w1, λq (w1))[∇2
λλLq (w1, λq (w1))]−1∇λψi (w1, λq (w1))[ fi (gi (w2)) − fi (gi (w1))]‖2

≤
[(

4L2Lwλ
C2

ψ B2
f

μ2
L

+
4C2

Lwλ
L2LλλC

2
ψ B2

f

μ4
L

+
4C2

Lwλ
L2ψ B2

f

μ2
L

)
(1+C2

λ)+
4C2

Lwλ
C2

ψC2
f C

2
g

μ2
L

]
‖w1−w2‖2

=: C2
2‖w1 − w2‖2,

Similarly, for the third term, we can derive the following bound:

‖ψi (w1, λq(w1))∇gi (w1)∇ fi (gi (w1)) − ψi (w2, λq(w2))∇gi (w2)∇ fi (gi (w2))‖2
≤ 3‖[ψi (w1, λq(w1)) − ψi (w2, λq(w2))]∇gi (w1)∇ fi (gi (w1))‖2

+ 3‖ψi (w2, λq(w2))[∇gi (w1) − ∇gi (w2)]∇ fi (gi (w1))‖2
+ 3‖ψi (w2, λq(w2))∇gi (w2)[∇ fi (gi (w1)) − ∇ fi (gi (w2))]‖2

≤
[
3C2

ψC
2
gC

2
f (1 + C2

λ) + 3B2
ψ L2

gC
2
f + 3B2

	C
2
g L

2
f C

2
g

]
‖w1 − w2‖2 =: C2

3‖w1 − w2‖2.
By collecting the results obtained above, we can finally derive the following desired result

‖∇F(w1) − ∇F(w2)‖ ≤ 1

|S|
∑

i∈S
(C1 + C2 + C3)‖w1 − w2‖ = LF‖w1 − w2‖,

where LF := C1 +C2 +C3. In this way, we prove the smoothness property of the objective
function F(w). ��
Proof of Lemma 6 We employ the fact that the function F(w) is LF -smooth to establish the
relationship between the stochastic gradient estimation error ‖∇F(wt ) − mt+1‖2 and other
terms:

F(wt+1) ≤ F(wt ) + ∇F(wt )
T (wt+1 − wt ) + LF

2
‖wt+1 − wt‖2

= F(wt ) − η1∇F(wt )
Tmt+1 + LF

2
η21‖mt+1‖2
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= F(wt ) + η1

2
‖∇F(wt ) − mt+1‖2 − η1

2
‖∇F(wt )‖2 +

(
LF

2
η21 − η1

2

)
‖mt+1‖2

≤ F(wt ) + η1

2
‖∇F(wt ) − mt+1‖2 − η1

2
‖∇F(wt )‖2 − η1

4
‖mt+1‖2,

��
where thefirst inequality directly uses the smoothness property of F(w), the second inequality
utilizes η1 ≤ 1

2LF
, the first equation employs the update rule ofmt+1, and the second equation

uses the fact that −2a
b = ‖a − b‖2 − ‖a‖2 − ‖b‖2.
Proof of Lemma 8 Here, we establish the error bound for the solutions to the lower-level
problems. First, recall and define the following notations

λt+1
q =

{
λtq − η0∇λLq(wt , λ

t
q ;Bq) if q ∈ B

λtq o.w.
, λ̃tq := λtq − η0∇λLq(wt , λ

t
q ;Bq).

In this lemma, our strategy is to first obtain the estimation error bound for the solutions
updated in the t-th iteration, followed by establishing the estimation error bound for all
solutions. The error bound between λ̃tq (the portion updated by the current mini-batch) and
λq(wt ) can be derived as follows:

Et [‖̃λtq − λq (wt )‖2] = Et [‖λtq − η0∇λLq (wt , λ
t
q ;Bq ) − λq (wt )‖2]

=Et [‖λtq−η0∇λLq (wt ,λ
t
q;Bq )−λq (wt )+η0∇λLq (wt,λq (wt ))+η0∇λLq (wt,λ

t
q )−η0∇λLq (wt,λ

t
q )‖2]

= ‖λtq−λq (wt )+η0∇λLq (wt , λq (wt ))−η0∇λLq (wt , λ
t
q )‖2

+Et [‖η0∇λLq (wt , λ
t
q )−η0∇λLq (wt , λ

t
q ;Bq )‖2]

≤ ‖λtq − λq (wt )‖2 + η20‖∇λLq (wt , λq (wt )) − ∇λLq (wt , λ
t
q )‖2

+ 2η0〈λtq − λq (wt ), ∇λLq (wt , λq (wt )) − ∇λLq (wt , λ
t
q )〉 + η20σ

2

(a)≤ ‖λtq − λq (wt )‖2 + η20L
2
L‖λtq − λq (wt )‖2 − 2η0μL‖λtq − λq (wt )‖2 + η20σ

2

(b)≤ (1 − η0μL )‖λtq − λq (wt )‖2 + η20σ
2, (42)

where Et [·] takes expectation over the randomness at iteration t , the first equality holds
because ∇λLq(wt , λq(wt )) = 0, (a) uses the strong monotonicity of Lq(wt , ·) as it is
assumed to be μL -strongly convex, and (b) uses the assumption η0 ≤ μL/L2

L .
Moreover, consider the randomness on the query sampling B, we have

Et [‖λt+1
q − λq(wt )‖2] = |B|

N
Et [‖̃λtq − λq(wt )‖2] + N − |B|

N
‖λtq − λq(wt )‖2,

which follows

Et [‖̃λtq − λq(wt )‖2] = N

|B|Et [‖λt+1
q − λq(wt )‖2] − N − |B|

|B| ‖λtq − λq(wt )‖2. (43)

Combining inequalities (42) and (43), we obtain

Et [‖λt+1
q −λq(wt )‖2] ≤ N−|B|

N
‖λtq−λq(wt )‖2+ |B|

N
(1−η0μL)‖λtq−λq(wt )‖2+ |B|

N
η20σ

2

≤
(
1 − |B|η0μL

N

)
‖λtq − λq(wt )‖2 + |B|η20σ 2

N
. (44)
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To further derive the recursive relationship for the error bound concerning ‖λtq−λq(wt )‖2,
we proceed as follows

Et [‖λt+1
q − λq (wt+1)‖2]

≤
(
1 + |B|η0μL

2N

)
Et [‖λt+1

q − λq (wt )‖2] +
(
1 + 2N

|B|η0μL

)
Et [‖λq (wt+1) − λq (wt )‖2]

≤
(
1 − |B|η0μL

2N

)
‖λtq − λq (wt )‖2 + 2|B|η20σ 2

N
+ 4NC2

λ

|B|η0μL
Et [‖wt+1 − wt‖2], (45)

where we employ ‖a + b‖2 ≤ (1 + 1
γ
)‖a‖2 + (1 + γ )‖b‖2, γ > 0 in the first inequality,

and use (44) and the assumption η0 ≤ 2N
|B|μL

, i.e., |B|η0μL
2N ≤ 1 in the second inequality.

Taking summation over all queries and expectation over all randomness, we have

E[‖λt+1−λ(wt+1)‖2] ≤ (1−|B|η0μL

2N
)E[‖λt−λ(wt )‖2]+2|B|η20σ 2+ 4N 2C2

λ

|B|η0μL
E[‖wt+1−wt‖2].

(46)
Finally, we take summation over t = 0, . . . , T − 1, and derive the following error bound

T∑

t=0
E[‖λt−λ(wt )‖2]≤ 2N

|B|η0μL
‖λ0−λ(w0)‖2+4Nη0Tσ 2

μL
+ 8N 3C2

λ

|B|2η20μ2
L

T−1∑

t=0
E[‖wt+1−wt‖2].

(47)
��

Proof of Lemma 9 We aim to establish the tracking error bound for the moving average esti-
mator ut of the function g(wt ). To achieve this, we first establish the recursive relationship
for this tracking error, starting with the analysis of ‖ut+1−g(wt )‖2:

‖ut+1−g(wt )‖2
= ‖ut+1−ut+ut−g(wt )‖2=‖ut+1−ut‖2+‖ut−g(wt )‖2+2〈ut+1−ut ,ut−g(wt )〉
= ‖ut+1 − ut‖2 + ‖ut − g(wt )‖2 + 2

∑

i∈B
〈ut+1

i − uti ,u
t
i − gi (wt )〉

= ‖ut+1−ut‖2+‖ut−g(wt )‖2
+ 2

∑

i∈B
〈ut+1i −uti,u

t
i −gi (wt;Bq)〉

︸ ︷︷ ︸
♣

+2
∑

i∈B
〈ut+1i −uti ,gi (wt;Bq)−gi (wt )〉

︸ ︷︷ ︸
♠

. (48)

In the above derivation, we perform a fine-grained decomposition of the original terms
to facilitate establishing bounds for each of them individually. Next, we analyze ♣ and ♠
separately. For ♣, based on the update rule uti −ut+1

i = γ0(uti −gi (wt ; Bq))∀i ∈ B and the
inequality 2〈b−a,a−c〉 = ‖b−c‖2−‖a−b‖2−‖a−c‖2, we have

♣ = 2
∑

i∈B
〈ut+1

i − gi (wt ), uti − gi (wt ,Bq )〉 + 2
∑

i∈B
〈gi (wt ) − uti , u

t
i − gi (wt ,Bq )〉

= 2

γ0

∑

i∈B
〈ut+1

i − gi (wt ), uti − ut+1
i 〉 + 2

∑

i∈B
〈gi (wt ) − uti , u

t
i − gi (wt ,Bq )〉

= 1

γ0

∑

i∈B
[‖uti − gi (wt )‖2 − ‖ut+1

i − gi (wt )‖2 − ‖ut+1
i − uti ‖2]
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+ 2
∑

i∈B
〈gi (wt ) − uti , u

t
i − gi (wt ,Bq )〉

= 1

γ0
‖ut −g(wt )‖2− 1

γ0
‖ut+1−g(wt )‖2− 1

γ0
‖ut+1−ut‖2 + 2

∑

i∈B
〈gi (wt )−uti , u

t
i −gi (wt ,Bq )〉,

(49)

where the last equality is due to the fact ‖uti − gi (wt )‖2 = ‖ut+1
i − gi (wt )‖2 and ‖ut+1

i −
uti‖2 = 0 for all i /∈ B. Taking expectation over the randomness at iteration t , we have

Et [♣] ≤ 1

γ0
‖ut−g(wt )‖2− 1

γ0
Et [‖ut+1−g(wt )‖2]− 1

γ0
Et [‖ut+1−ut‖2]

− 2Et

[
∑

i∈B
‖uti −gi (wt )‖2

]

= 1

γ0
‖ut − g(wt )‖2 − 1

γ0
Et [‖ut+1 − g(wt )‖2] − 1

γ0
Et [‖ut+1 − ut‖2]

ss − 2
|B|
|S| ‖u

t − g(wt )‖2. (50)

On the other hand, for ♠, we can establish the following bound

♠ ≤
(

1

γ0
− 1

)∑

i∈B
‖ut+1

i − uti‖2 + 1
1
γ0

− 1

∑

i∈B
‖gi (wt ;Bq) − gi (wt )‖2

≤
(

1

γ0
− 1

)∑

i∈B
‖ut+1

i − uti‖2 + 2γ0
∑

i∈B
‖gi (wt ;Bq) − gi (wt )‖2

≤
(

1

γ0
− 1

)
‖ut+1 − ut‖2 + 2γ0|B|σ 2, (51)

where we employ the inequality 2a
b ≤ γ ‖a‖2 + 1
γ
‖b‖2, the assumption γ0 < 1/2, and the

variance for gi (wt ; Bq) in our derivation. Then by plugging (49), (50), (51) back into (48),
we achieve the following relationship:

E[‖ut+1−g(wt )‖2]
≤ E[‖ut+1−ut‖2]+E[‖ut −g(wt )‖2]+ 1

γ0
E[‖ut −g(wt )‖2]− 1

γ0
E[‖ut+1−g(wt )‖2]

− 1

γ0
E[‖ut+1 − ut‖2] − 2

|B|
|S|E[‖ut − g(wt )‖2] +

(
1

γ0
− 1

)
E[‖ut+1 − ut‖2] + 2γ0|B|σ 2

=
(
1 + 1

γ0
− 2

|B|
|S|

)
E[‖ut − g(wt )‖2] − 1

γ0
E[‖ut+1 − g(wt )‖2] + 2γ0|B|σ 2.

Note that

(
1+ 1

γ0
−2 |B|

|S|
)

1+ 1
γ0

= 1− 2|B|γ0
(1+γ0)|S| ≤ 1− |B|γ0

|S| and (1 + a
2 )(1 − a) ≤ 1− a

2 , thus we

obtain

E[‖ut+1 − g(wt )‖2] ≤
(
1 − |B|γ0

|S|
)
E[‖ut − g(wt )‖2] + 2γ 2

0 |B|σ 2.

Now, we can employ the above relationship and inequality ‖a+b‖2 ≤ (1+γ )‖a‖2+(1+
1
γ
)‖b‖2, γ > 0, and establish the recursive relationship for the tracking error ‖ut − g(wt )‖2:

E[‖ut+1−g(wt+1)‖2] ≤
(
1 + |B|γ0

2|S|
)
E[‖ut+1−g(wt )‖2]+

(
1 + 2|S|

|B|γ0
)
E[∥∥g(wt )−g(wt+1)

∥∥2]
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≤
(
1+ |B|γ0

2|S|
)[

(1− |B|γ0
|S| )E[‖ut −g(wt )‖2]+2γ 2

0 |B|σ 2
]
+
(
1+ 2|S|

|B|γ0
)
C2
g |S|E[∥∥wt −wt+1

∥∥2]

≤
(
1 − |B|γ0

2|S|
)
E[‖ut − g(wt )‖2] + 4γ 2

0 |B|σ 2 + 4|S|2C2
gη21

|B|γ0 E[∥∥mt+1
∥∥2].

Finally, based on the above recursive relationship, summing over t = 0, . . . , T − 1 and
using the offset cancellation of tracking errors at different times, we can derive the desired
bound:
T∑

t=0

E[‖ut−g(wt )‖2] ≤ 2|S|
|B|γ0E[‖u0−g(w0)‖2]+8|S|γ0σ 2T+8|S|3C2

gη
2
1

|B|2γ 2
0

T−1∑

t=0

E[‖mt+1‖2].

��
Proof of Lemma 10 We try to derive the tracking error bound for themoving average estimator
stq of the function ∇2

λλLq(wt , λ(wt )). Recall and define the following notations

st+1
q =

{
(1 − γ ′

0)s
t
q + γ ′

0∇2
λλLq (wt , λ

t
q ;Bq ) if q ∈ B

stq o.w.
, s̃tq = (1 − γ ′

0)s
t
q + γ ′

0∇2
λλLq (wt , λ

t
q ;Bq ),

where s̃tq represents the components of s updates in the t-th iteration. Our strategy here
remains the same: first, we achieve the estimation error bound for the components updated
in the t-th iteration, and then we establish the estimation error bound for all components. We
first analyze the tracking error for s̃tq :

Et [‖̃stq−∇2
λλLq (wt , λq (wt ))‖2]

︸ ︷︷ ︸
(∗)

=Et [‖(1−γ ′
0)s

t
q+γ ′

0∇2
λλLq (wt,λ

t
q ;Bq )−∇2

λλLq (wt,λq (wt ))‖2]

= Et [‖(1 − γ ′
0)[stq − ∇2

λλLq (wt , λq (wt ))] + γ ′
0[∇2

λλLq (wt , λ
t
q ;Bq ) − ∇2

λλLq (wt , λ
t
q )]

+ γ ′
0[∇2

λλLq (wt , λ
t
q ) − ∇2

λλLq (wt , λq (wt ))]‖2]
= ‖(1 − γ ′

0)[stq − ∇2
λλLq (wt , λq (wt ))] + γ ′

0[∇2
λλLq (wt , λ

t
q ) − ∇2

λλLq (wt , λq (wt ))]‖2
+ Et [‖γ ′

0[∇2
λλLq (wt , λ

t
q ;Bq ) − ∇2

λλLq (wt , λ
t
q )]‖2]

≤
(
1+ γ ′

0
2

)
(1−γ ′

0)
2‖stq−∇2

λλLq (wt , λq (wt ))‖2

+
(
1 + 2

γ ′
0

)
γ ′2
0 ‖∇2

λλLq (wt , λ
t
q )−∇2

λλLq (wt , λq (wt ))‖2+γ ′2
0 σ 2

≤
(
1 − γ ′

0
2

)
‖stq − ∇2

λλLq (wt , λq (wt ))‖2 + 4γ ′
0L

2
Lλλ‖λtq − λq (wt )‖2 + γ ′2

0 σ 2, (52)

where we use the fact that Et [∇2
λλLq(wt , λ

t
q ;Bq)] = ∇2

λλLq(wt , λ
t
q) in the third equality,

andYoung’s inequality in the first inequality. Note that for the randomness of query sampling,
we further have

Et [‖st+1
q −∇2

λλLq(wt , λq(wt ))‖2]
= |B|

N
Et[‖̃stq−∇2

λλLq(wt , λq(wt ))‖2]+ N − |B|
N

‖stq−∇2
λλLq(wt , λq(wt ))‖2,

which follows that

(∗)= N

|B|Et[‖st+1
q −∇2

λλLq(wt , λq(wt ))‖2] − N − |B|
|B| ‖stq−∇2

λλLq(wt , λq(wt ))‖2.
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Then by plugging the above equality into inequality (52), we obtain

N

|B|Et [‖st+1
q − ∇2

λλLq(wt , λq(wt ))‖2] − N − |B|
|B| ‖stq − ∇2

λλLq(wt , λq(wt ))‖2

≤
(
1 − γ ′

0

2

)
‖stq − ∇2

λλLq(wt , λq(wt ))‖2 + 4γ ′
0L

2
Lλλ‖λtq − λq(wt )‖2 + γ ′2

0 σ 2.

It follows

Et [‖st+1
q −∇2

λλLq(wt , λq(wt ))‖2]≤
(
1− |B|γ ′

0

2N

)
‖stq−∇2

λλLq(wt , λq(wt ))‖2

+ 4|B|γ ′
0L

2
Lλλ

N
‖λtq−λq(wt )‖2+ |B|γ ′2

0 σ 2

N
.

Now, we can establish the recursive relationship for the tracking error ‖stq −∇2
λλLq(wt , λq

(wt ))‖2:

Et [‖st+1
q − ∇2

λλLq(wt+1, λq(wt+1))‖2] ≤
(
1 − |B|γ ′

0

4N

)
‖stq − ∇2

λλLq(wt , λq(wt ))‖2

+ 8|B|γ ′
0L

2
Lλλ

N
‖λtq − λq(wt )‖2 + 2|B|γ ′2

0 σ 2

N
+ 8NL2

Lλλ(1 + C2
λ)

|B|γ ′
0

Et [‖wt − wt+1‖2],

where we use the assumption γ ′
0 ≤ 1 ≤ 4N

|B| i.e. 4N
|B|γ ′

0
≥ 1. Taking expectation over all

randomness and taking summation over all queries and t = 0, . . . , T − 1, we have

E[‖st+1 − ∇2
λλL(wt+1, λ(wt+1))‖2] ≤

(
1 − |B|γ ′

0

4N

)
E[‖st − ∇2

λλL(wt , λq(wt ))‖2]

+ 8|B|γ ′
0L

2
Lλλ

N
E[‖λt − λ(wt )‖2] + 2|B|γ ′2

0 σ 2 + 8N 2L2
Lλλ(1 + C2

λ)

|B|γ ′
0

E[‖wt − wt+1‖2].

At last, basedon the above recursive relationship,we take summationover t = 0, . . . , T−1
and obtain the following desired bound

T∑

t=0

E[‖st − ∇2
λλL(wt , λ(wt ))‖2] ≤ 4N

|B|γ ′
0
‖s0 − ∇2

λλL(w0, λq (w0))‖2

+ 32L2Lλλ

T−1∑

t=0

E[‖λt − λ(wt )‖2] + 8Nγ ′
0Tσ 2 + 32N3L2Lλλ

(1 + C2
λ)

|B|2γ ′2
0

T−1∑

t=0

E[‖wt − wt+1‖2].

��

Appendix F SONG and K-SONGwith faster convergence

Similar to our analysis of SONGandK-SONG,we address the compositional bilevel problem
described in (25) under the same assumptions as in Assumption 1. We reorganize the set S
so each pair (q, xqi ) is indexed by a new, singular index i , with S now denoting this updated
indexing set. Subscript q indicates the variable or function block corresponding to query q .

We outline Faster K-SONGv1/v2 again in Algorithm 9. Note that the terms τt and ηt in the
updates for λt+1 andwt+1 are primarily for theoretical discourse. Practically, ττt and αηt are
considered as two distinct learning rate parameters. Let E[·] denote the expectation over the
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Algorithm 9 Restate Faster K-SONGv1/v2 with new indexing

Require: w0,w1, initialize m0, λ
0, λ1, z0, u0, s0, u1, s1, v0, r0 to 0, update type: v1 or v2

Ensure: wT+1
1: for t = 1, 2, . . . , T do
2: Draw some relevant Q-I pairs B = {(q, xqi )} ⊂ S
3: For each q ∈ B draw a batch of items Bq ⊂ Sq
4: if using v1 type update then

5: ut+1
i =

{
(1 − γu,t )uti + γu,t gi (wt ;Bq ) + βu,t (gi (wt ;Bq ) − gi (wt−1;Bq )) if i ∈ B
uti o.w.

6: st+1
q =

⎧
⎪⎨

⎪⎩

(1 − γs,t )stq + γs,t∇2
λλLq (wt , λ

t
q ;Bq )

+βs,t (∇2
λλLq (wt , λ

t
q ;Bq ) − ∇2

λλLq (wt−1, λ
t−1
q ;Bq )) if q ∈ B

stq o.w.
7: else // using v2 type update
8: Compute ∇u g̃i (u,w;Bq ) = ui − g(w; xqi ,Bq )

9: vti =

⎧
⎪⎨

⎪⎩

(1 − γv,t )v
t−1
i + γv,t∇u g̃i (ut ,wt ;Bq )

+βv,t (∇u g̃i (ut ,wt ;Bq ) − ∇u g̃i (ut−1,wt−1;Bq )) if q∈B
vt−1
i o.w.

10: Compute rtq according to (18)

11: Update ut+1
i = uti − ττtvti , s

t+1
q = stq − ττt rtq

12: end if

13: ztq =

⎧
⎪⎨

⎪⎩

(1 − γz,t )z
t−1
q + γz,t∇Lq (wt , λ

t
q ;Bq ))

+βz,t (∇λLq (wt , λ
t
q ;Bq ) − ∇λLq (wt−1, λ

t−1
q ;Bq ))) if q ∈ B

zt−1
q o.w.

14: λt+1
q =

{
λtq − ττt ztq if q ∈ B
λtq o.w.

15: Compute stochastic gradient estimator G(wt−1) and G(wt ) according to (26)
16: mt = (1 − γm,t )(mt−1 − G(wt−1)) + G(wt )
17: wt+1 = wt − αηtmt
18: end for

randomness of the algorithm until the current iteration, and Et [·] represent the expectation
over the randomness at iteration t .

For the two new quadratic functions introduced in the v2 type update rules, which are
both smooth and strongly convex, thus we make the following assumptions:

Assumption 2 (i) Functions g̃q,i (u,w) defined in (14) are Lg̃-smooth and μg̃-strongly
convex for all (q, i).

(ii) Functions φq(s, λ̂q(w),w) in (17) are Lφ-smooth and μφ-strongly convex for all q .

Theorem 5 (Restate of Theorem 3 with parameter specifics). Let Assumption 1 and 2 hold
and apply Faster K-SONG in Algorithm 9 to solve the problem in (25) with the following
parameters:

τ ≤ min

{
1

2LL
,

8N

μL |B|
}

, α ≤ min

{
|B|

12C7N
,

|B|
12C8|S| ,

1

Cλ

√
τμL |B|
96CN

}
, ηt = τt = c

(c0 + t)1/3
,

γz,t+1 = Nη2t
|B|

(
1

7LFc3
+ 8Cατt τ |B|

μL Nηt

)
, γu,t+1 =

(
2|S|

7|B|LFc3
+ 4C1α|S|

|B|
)

η2t ,

γs,t+1 =
(

2N

7|B|LFc3
+ 4C2αN

|B|
)

η2t , γm,t+1 =
(

1

7LFc3
+ α

)
η2t ,

βu,t = 1 − γu,t + |S| − |B|
|B|(1 − γu,t )

, βz,t = 1 − γz,t + N − |B|
|B|(1 − γz,t )

, βs,t = 1 − γs,t + N − |B|
|B|(1 − γs,t )

,
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C ≥ max

{
8C0N

τμL |B| ,
2(C9 + 2C5)N

2

3α|B|2
}

,c0 ≥ max

{
2, (4LFc)

3,

(
8N

7|B|LFc

)3/2
,

(
8|S|

7|B|LFc

)3/2
,

(
32Cατc2

μL

)3/2

,

(
16C1α|S|c2

|B|

)3/2

,

(
64|S|C3

7LF |B|c
)3/2

,

(
128C1|S|C3αc

2

|B|

)3/2

,

(
16C2αNc2

|B|

)3/2

,

(
64NC6

7LF |B|c
)3/2

,

(
128C2NC6αc

2

|B|

)3/2

,

(
4

7LFc

)3/2
,
(
4αc2

)3/2 }
,

where C0,C1,C2,C3,C4,C5,C6,C7,C8,C9 are constants specified in the proof. Algo-
rithm 9 ensures that after T = O( 1

ε3
) iterations, we can find an ε-stationary solution of

F(wt ), i.e., E
[∑T

t=1
1
T ‖∇F(wt )‖2

]
≤ O

(
1

T 2/3

)
.

Now we present the convergence analysis of Theorem 5. First of all, by using the smooth-
ness of F(w) (proved in Lemma 5), we have the following lemma, which is similar to
lemma 6.

Lemma 11 Consider the update wt+1 = wt − αηtmt . Then under Assumption 1, with
αηt L F ≤ 1

2 , we have

F(wt+1) ≤ F(wt ) + αηt

2
||∇F(wt ) − mt ||2 − αηt

2
||∇F(wt )||2 − αηt

4
||mt ||2.

Then, we aim to derive an upper bound of ||∇F(wt ) − mt ||2 in lemma 11. Note the
update rule of mt in Algorithm 9 is more complicated than that of SONG/K-SONG, and
we introduce the following lemma to decompose this error into several terms that can be
bounded separately:

Lemma 12 Let
∑

q∈Q
∥∥∥λq(wt )−λtq

∥∥∥
2 = ∥∥λ(wt )−λt

∥∥2,
∑

i∈S
∥∥uti −gi (wt )

∥∥2 =
∥∥ut − g(wt )

∥∥2 and
∑

q∈Q
∥∥∥stq − ∇2

λλLq(wt , λ
t
q)

∥∥∥
2 = ∥∥st − ∇2

λλL(wt , λ
t )
∥∥2. Consider the

updates in Algorithm 9, under Assumption 1, for all t > 0, we have

‖∇F (wt ) − mt‖2 ≤2

∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥

2

+ 4C0

N

∥∥λ(wt ) − λt
∥∥2

+ 4C1

|S|
∥∥ut − g(wt )

∥∥2 + 4C2

N

∥∥st − ∇2
λλL(wt , λ

t )
∥∥2 ,

where C0,C1,C2 are constants given in the proof.

Next, we will bound each term on the RHS of the above lemma separately. We first bound

the first term
∥∥∥ 1

|S|
∑

i∈S Gi (wt ) − mt

∥∥∥
2
according to the following lemma

Lemma 13 Let
∑

i∈S
∥∥∥uti −ut−1

i

∥∥∥
2 =∥∥ut−ut−1

∥∥2,
∑

q∈Q
∥∥∥λtq−λt−1

q

∥∥∥
2 =∥∥λt−λt−1

∥∥2 and
∑

q∈Q
∥∥∥stq−st−1

q

∥∥∥
2 = ∥∥st−st−1

∥∥2. Assume E

[
1

|B|
∑

i∈BGi (wt )− 1
|S|

∑
i∈SGi (wt )

]
≤ σ 2,

then

E

⎡

⎣
∥∥∥∥∥mt − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥

2
⎤

⎦ ≤ (1 − γm,t )E

⎡

⎣
∥∥∥∥∥mt−1 − 1

|S|
∑

i∈S
Gi (wt−1)

∥∥∥∥∥

2
⎤

⎦+ 2γ 2
m,tσ

2

123



Machine Learning           (2025) 114:42 Page 55 of 70    42 

+ 2C3

|S|
∥∥ut − ut−1

∥∥2 + 2C4 ‖wt − wt−1‖2 + 2C5

N

∥∥λt − λt−1
∥∥2 + 2C6

N

∥∥st − st−1
∥∥2 ,

where C3,C4,C5,C6 are constants given in the proof.

To bound the
∥∥∥λq(wt ) − λtq

∥∥∥
2
term in Lemma 12, we can use the following lemma.

Lemma 14 Consider the update in Algorithm 9. Then under Assumption 1, with τt ≤ 1
2 and

τtτ ≤ 4N
μL |B| , we have

E

[∥∥∥λt+1−λ(wt+1)
∥∥∥
2
]
≤
(
1− ττtμL |B|

4N

)
E

[∥∥λ(wt )−λt
∥∥2
]
+ 8τt τ |B|

μL N

∥∥∇λL(wt , λ
t )−zt

∥∥2

− 3τ |B|
τt N

(
1

τ
− LL

)∥∥∥λt+1 − λt
∥∥∥
2 + 8N2C2

λ

ττtμL |B|E
[∥∥wt+1 − wt

∥∥2
]
.

When we adopt v2 type update rules to estimate g(w; xqi ,Sq) and ∇2
λλLq(λ̂(w);w), it

is notable that their corresponding quadratic problems are smooth and strongly convex, and
their update rules are fully consistent with that for λ. Therefore, we can follow the derivation
process of the above lemma to establish the approximation error bounds for these functions,
as demonstrated below.

Lemma 15 (The error bound for g(w; xqi ,Sq) when using v2 type update). Consider the

update in Algorithm 9. Then under Assumption 1 and 2, with τt ≤ 1
2 and τtτ ≤ 4|S|

μg̃ |B| , we
have

E

[∥∥ut+1 − g(wt+1)
∥∥2
]
≤
(
1− ττtμg̃|B|

4|S|
)
E

[∥∥g(wt )−ut
∥∥2
]
+ 8τtτ |B|

μg̃|S|
∥∥∇u g̃(wt ) − vt

∥∥2

− 3τ |B|
τt |S|

(
1

τ
− Lg̃

)∥∥ut+1 − ut
∥∥2 + 8|S|2C2

g

ττtμg̃|B|E
[‖wt+1 − wt‖2

]
.

Lemma 16 (The error bound for ∇2
λλLq(λ̂(w);w) when using v2 type update). Consider the

update in Algorithm 9. Then under Assumption 1 and 2, with τt ≤ 1
2 and τtτ ≤ 4N

μφ |B| , we
have

E

[∥∥∥st+1− ∇2
λλLq (λ̂(wt+1);wt+1)

∥∥∥
2
]
≤
(
1− ττtμφ |B|

4N

)
E

[∥∥∥st − ∇2
λλLq (λ̂(wt );wt )

∥∥∥
2
]

+ 8τt τ |B|
μφN

∥∥∇sφ(wt )−rt
∥∥2 − 3τ |B|

τt N

(
1

τ
− Lφ

)∥∥∥st+1 − st
∥∥∥
2 + 8N2L2Lλλ

ττtμL |B| E
[∥∥wt+1 − wt

∥∥2
]
.

The following lemma bound the terms involvingut , zt and st on theRHS in the inequalities
of the above two lemmas.

Lemma 17 (Lemma 1 Jiang et al. (2022)). Suppose fi , i = 1, 2, · · · , n is a mapping,
E[ fi (x; ξ)] = fi (x) andE[ fi (x; ξ)− fi (x)] ≤ σ 2. In each iteration, we sample a mini-batch
M with the size of m. let

dti =
{

(1 − γt )d
t−1
i + γt fi (xt ; ξt ) + βt ( fi (xt ; ξt ) − fi (xt−1; ξt )) if i ∈ M

dt−1
i o.w.

.

By setting γt ≤ 1
2 and βt = 1 − γt + n−m

m(1−γt )
, for t ≥ 1, we have
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E

[∥∥dt − f (xt )
∥∥2
]

=
n∑

i=1

E

[∥∥dti − fi (xt )
∥∥2
]

≤
(
1 − γtm

n

)
E

[∥∥∥dt−1 − f (xt−1)
∥∥∥
2
]

+ 8n

m

n∑

i=1

E

[∥∥ fi (xt ; ξt ) − fi (xt−1; ξt )
∥∥2
]

+ 2mγ 2
t σ 2,

E

[∥∥∥dt − dt−1
∥∥∥
2
]

=
n∑

i=1

E

[∥∥∥dti − dt−1
i

∥∥∥
2
]

≤ 2mγ 2
t σ 2 + 4mγ 2

t
n

E

[∥∥∥ f (xt−1) − dt−1
∥∥∥
2
]

+ 9n

m

n∑

i=1

E

[∥∥ fi (xt ; ξt ) − fi (xt−1; ξt )
∥∥2
]
.

Appendix F.1.1 Proof sketch

In terms of the overall approach for proving Theorem 5, we integrate some proof techniques
of STORM and K-SONG. Here, we provide several key points to help the readers better
understand the formal proof that follows.

1. First, similar to our previous analysis of SONG/K-SONG, Lemma 11 establishes the
connection between the quality of the solution (denoted as ‖∇F(wt )‖) and the gradient
approximation error (denoted as ‖∇F(wt ) − mt‖).

2. Then, through Lemmas 12 and 13, one can observe that ‖∇F(wt ) − mt‖ can be further
bounded by the approximation errors of several crucial inner functions (such as ‖λ(wt )−
λt‖, ‖ut − g(wt )‖, ‖st − ∇2

λλL(wt , λ
t )‖) and by the differences of these functions at wt

and wt−1 (such as ‖ut − ut−1‖, ‖λt − λt−1‖, ‖st − st−1‖).
3. Subsequently, we can establish the recursions for the above error terms. For the variables

using the v1 type update, we can directly apply the results from MSVR, specifically
Lemma 17. For the solutions of the lower-level problems λ and the variables using the v2
type update, we provide their recursions in Lemma 14, 15, and 16, respectively.

4. We employ the technique used in STORM to perform staggered summation on the
above recursions. Specifically, for the terms ‖zt − ∇λL(wt , λ

t )‖, ‖ut − g(wt )‖, and
‖st −∇2

λλL(wt , λ
t )‖, we show their staggered subtraction results in (53), (57), and (58),

respectively. Utilizing the techniques introduced in STORM, we set ηt and τt according
to (55), which then allows us to simplify the RHS of (53), (57), and (58).

5. Finally, by summing Lemmas 11, 12, 13, and all the recursions obtained above, we
derive (60). Through careful parameter settings, we can eliminate most of the irrelevant
terms, ultimately establishing the desired bound.

Appendix F.2.2 Innovations in proof techniques

The problem we address involves SBO with multiple lower-level problems. Cutkosky and
Orabona (2019) and Jiang et al. (2022) introduce variance-reduced estimators that effectively
control function estimation errors, but theirmethods are not applicable to SBOproblems.Guo
et al. (2021a) consider a problem similar to ours, but do not implement parallel solving of
lower-level problems. Our algorithms are the first to achieve both optimal convergence rate
and parallel speed-up.

To achieve this, we not only employ advanced variance-reduced estimators but also pro-
pose new algorithm designs and proof techniques. From an algorithmic perspective, to better
control the estimation error of lower-level solutions, we design a new variance-reduced
stochastic gradient estimator zq for updates, as opposed to directly use stochastic gradients
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as in K-SONG. In proving the estimation error bound in Lemma 14, we fully utilized the
definition of zq along with the smoothness and strong convexity properties of lower-level
functions Lq . Here, we present the key steps and results, omitting some intermediate details.
The full details are provided in the proof of Lemma 14.

First, in the t-th iteration, the update rule for the sampled components isλt+1
q = λtq−ττtztq .

We introduce an intermediate variable λ̃tq = λtq −τztq and set λ
t+1
q = λ̄tq = λtq +τt (λ̃

t
q −λtq).

Based on these definitions,wehave the following estimation error relationship for the sampled
components:

‖λ̄tq − λq(wt )‖2 = ‖λtq − λq(wt )‖2 + τ 2t ‖λ̃tq − λtq‖2 + 2τt (λ
t
q − λq(wt ))(λ̃

t
q − λtq).

Next, by leveraging the strongly convexity of Lq and performing a fine-grained decom-
position, we obtain

Lq(wt , λ) ≥ Lq(wt , λ
t
q) + ztq(λ − λ̃tq)

+ (∇λLq(wt , λ
t
q) − ztq)(λ − λ̃tq) + ∇λLq(wt , λ

t
q)(λ̃

t
q − λtq) + μL

2
‖λ − λtq‖2.

Note thatweonly present the final boundhere, omitting the detailed decomposition process
from the proof. The (∇λLq(wt , λ

t
q) − ztq)(λ − λ̃tq) term on the RHS is actually related to

the estimation error of zq , whose bound can be established by Lemma 17. For the other two
terms on the RHS, ∇λLq(wt , λ

t
q)(λ̃

t
q − λtq) and ztq(λ − λ̃tq), we can obtain the following

relationships using the smoothness of Lq and the update rule of zq , respectively,

Lq(wt , λ̃
t
q) − ∇λLq(wt , λ

t
q)(λ̃

t
q − λtq) − LL

2

∥∥∥λ̃tq − λtq

∥∥∥
2 ≤ Lq(wt , λ

t
q),

ztq(λ − λ̃tq) = 1

τ
(λtq − λ̃tq)(λ − λtq) + 1

τ

∥∥∥λtq − λ̃tq

∥∥∥
2
.

Finally, by combining these relationships, we have

‖λ̄tq − λq (wt )‖2

≤
(
1− ττtμL

2

) ∥∥∥λq (wt )−λtq

∥∥∥
2+ 4τt τ

μL

∥∥∥∇λLq (wt , λ
t
q )−ztq

∥∥∥
2−2ττt

(
3

4τ
− 3

4
LL

)∥∥∥λ̃tq−λtq

∥∥∥
2
,

which establishes the estimation error bound for the component updated in the t-th iteration.
The subsequent proof follows a similar approach to K-SONG, using properties of con-

ditional expectation and inequality scaling to derive the final recursion. Note that the∥∥∥λ̃tq − λtq

∥∥∥
2
term on the RHS is defined to be equal to 1

τt
(λ̄tq − λtq) = 1

τt
(λt+1

q − λtq).

This negative ‖λt+1
q − λtq‖2 is crucial for canceling out the positive ‖λt+1

q − λtq‖2 terms
appearing elsewhere in the proof, thereby ensuring the convergence guarantee.

Proof of Theorem 5 Now, we can combine all lemmas presented above and prove the theo-
retical guarantee. First, we apply Lemma 17 to δLλ,t = ∥∥zt − ∇λL(wt , λ

t )
∥∥2 and establish

the following recursion for the tracking error of zt

E
[
δLλ,t+1

]≤
(
1− γz,t+1|B|

N

)
E
[
δLλ,t

]+ 16N2L2L
|B|

(∥∥wt+1−wt
∥∥2+ 1

N

∥∥∥λt+1−λt
∥∥∥
2
)

+2|B|γ 2
z,t+1σ 2.

In the proof of this theorem, we will reorganize the obtained tracking error recursions into
the following form

E

[
δLλ,t+1

Nηt
− δLλ,t

Nηt−1

]
≤ 2|B|γ 2

z,t+1σ
2

Nηt
+ 1

N

(
1

ηt
− 1

ηt−1
− γz,t+1|B|

Nηt

)
E
[
δLλ,t

]
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+ 16NL2
L

|B|ηt
(

‖wt+1 − wt‖2 + 1

N

∥∥λt+1 − λt
∥∥2
)

. (53)

The advantage of this form is that the left side of the equation can be simplified through
misalignment cancellation, while the right side can be simplified by carefully setting ηt , as
we will demonstrate below.

As for the estimation error regarding λ(wt ), i.e., ‖λt − λ(wt )‖2, Lemma 14 provides its
specific form. We reorganize it into the following form

E

[
Cα

N
(δλ,t+1−δλ,t )

]
≤ −CαττtμL |B|

4N2 E
[
δλ,t

]+ 8Cατt τ |B|
μL N2 E

[
δLλ,t

]

− 3Cατ |B|
τt N2

(
1

τ
− LL

)
E

[∥∥∥λt+1 − λt
∥∥∥
2
]

+ 8CαNC2
λ

ττtμL |B|E
[∥∥wt+1 − wt

∥∥2
]
,

(54)

where C will be given below.
We follow the STORM approach (Cutkosky & Orabona, 2019) to set ηt and τt in the

algorithm, as this allows us to further simplify 1
ηt

− 1
ηt−1

. Specifically, we set ηt = τt =
c

(c0+t)1/3
, and make c0 ≥ (4LFc)3 to ensure ηt ≤ 1

4LF
. Thus, we have

1

ηt
− 1

ηt−1
= (c0+t)1/3

c
− (c0+t−1)1/3

c
≤ 1

3c(c0+t−1)2/3
≤ 22/3

3c(c0+t)2/3
≤ 22/3

3c3
η2t ≤ 1

7LFc3
ηt ,

(55)

where the first inequality holds by the concavity of the function f (x) = x1/3, i.e.,
(x + y)1/3 ≤ x1/3 + y

3x2/3
, the second inequality is because c0 ≥ 2. Then with γz,t+1 =

Nη2t|B|
(

1
7LFc3

+ 8Cατt τ |B|
μL Nηt

)
, where γz,t+1 < 1

2 for c0 ≥ max
{
( 4N
7|B|LFc

)3/2, ( 32Cατc2
μL

)3/2
}
, we

can establish the following inequality by combining (53) and (54):

E

[
δLλ,t+1

Nηt
− δLλ,t

Nηt−1

]
+E

[
Cα

N
(δλ,t+1−δλ,t )

]

≤ 2|B|γ 2
z,t+1σ

2

Nηt
+ 16NL2L

|B|ηt
(∥∥wt+1−wt

∥∥2+ 1

N

∥∥∥λt+1−λt
∥∥∥
2
)

− CαττtμL |B|
4N2 E

[
δλ,t

]− 3Cατ |B|
τt N2

(
1

τ
−LL

)
E

[∥∥∥λt+1−λt
∥∥∥
2
]
+ 8CαNC2

λ

ττtμL |B|E
[∥∥wt+1−wt

∥∥2
]
.

(56)

In Lemma 13 and Lemma 17, we also established the tracking error recusions for δg,t =
∥∥ut−g(wt )

∥∥2, δLλλ,t = ∥∥st−∇2
λλL(wt , λ

t )
∥∥2, and δm,t =

∥∥∥mt− 1
|S|

∑
i∈SGi (wt )

∥∥∥
2
. Next,

we perform transformations on these recursions similar to the ones above, and obtain

E

[
δg,t+1
|S|ηt − δg,t

|S|ηt−1
]
≤ 1

|S|
(
1

ηt
− 1

ηt−1
− γu,t+1|B|

|S|ηt
)
E
[
δg,t

]+ 8|S|C2
g

|B|ηt E

[∥∥wt+1−wt
∥∥2
]

+ 2|B|γ 2
u,t+1σ

2

|S|ηt (57)

E

[
δLλλ,t+1

Nηt
− δLλλ,t

Nηt−1

]
≤ 1

N

(
1

ηt
− 1

ηt−1
− γs,t+1|B|

Nηt

)
E
[
δLλλ,t

]

+ 16NL2Lλλ

|B|ηt E

[∥∥wt+1 − wt
∥∥2 + 1

N

∥∥∥λt+1 − λt
∥∥∥
2
]

+ 2|B|γ 2
s,t+1σ

2

Nηt
(58)
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E

[
δm,t+1

ηt
− δm,t

ηt−1

]
≤
(

1

ηt
− 1

ηt−1
− γm,t+1

ηt

)
E
[
δm,t

]+ 2γ 2
m,t+1σ

2

ηt
+ 2C3

|S|ηt E
[∥∥∥ut+1−ut

∥∥∥
2
]

+ 2C4

ηt
E

[∥∥wt+1 − wt
∥∥2
]

+ 2C5

Nηt
E

[∥∥∥λt+1 − λt
∥∥∥
2
]

+ 2C6

Nηt
E

[∥∥∥st+1 − st
∥∥∥
2
]

. (59)

To control the
∥∥ut+1 − ut

∥∥2 and
∥∥st+1 − st

∥∥2 terms in (59), i.e., the differences in the
MSVR estimators u and s across iterations, we apply Lemma 17 and obtain the following

2C3

|S|ηt E
[∥∥ut+1 − ut

∥∥2
]

+ 2C6

Nηt
E

[∥∥st+1 − st
∥∥2
]

≤ 8|B|C3γ
2
u,t+1

|S|2ηt E
[
δg,t

]+ 8|B|C6γ
2
s,t+1

N 2ηt
E
[
δLλλ,t

]+ +2(2γ 2
u,t+1C3+2γ 2

s,t+1C6)|B|
Nηt

σ 2

+
(
18C3|S|C2

g

ηt |B| + 36C6NL2
Lλλ

ηt |B|

)
E
[‖wt+1−wt‖2

]+ 36C6L2
Lλλ

ηt |B| E

[∥∥λt+1−λt
∥∥2
]
.

Now, by summing all the recursions obtained above with (56), we can derive the following
result. Note that the left sides of these recursions can be canceled after summing over t , while
we combine like terms on the right side for convenience in subsequent proofs.

E

[
δLλ,t+1

Nηt
− δLλ,t

Nηt−1

]
+E

[
Cα

N
(δλ,t+1−δλ,t )

]
+E

[
δg,t+1

|S|ηt − δg,t

|S|ηt−1

]
+E

[
δLλλ,t+1

Nηt
− δLλλ,t

Nηt−1

]

+E

[
δm,t+1

ηt
− δm,t

ηt−1

]
≤ 2(γ 2

z,t+1 + γ 2
u,t+1 + γ 2

s,t+1 + 2γ 2
u,t+1C3 + 2γ 2

s,t+1C6)|B| + 2Nγ 2
m,t+1

Nηt
σ 2

+ 1

|S|

(
1

ηt
− 1

ηt−1
− γu,t+1|B|

|S|ηt + 8|B|C3γ
2
u,t+1

|S|ηt

)
E
[
δg,t

]+
(

1

ηt
− 1

ηt−1
− γm,t+1

ηt

)
E
[
δm,t

]

+ 1

N

(
1

ηt
− 1

ηt−1
− γs,t+1|B|

Nηt
+ 8|B|C6γ

2
s,t+1

Nηt

)
E
[
δLλλ,t

]− CαττtμL |B|
4N2 E

[
δλ,t

]

+
(
16L2L + 16L2Lλλ

+ 36C6L
2
Lλλ

|B|ηt + 2C5

Nηt
− − 3Cατ |B|

τt N2

(
1

τ
− LL

))
E

[∥∥∥λt+1 − λt
∥∥∥
2
]

+
(
8CαNC2

λ

ττtμL |B| + (16L2L + 16L2Lλλ
+ 2C4 + 36C6L

2
Lλλ

)N

|B|ηt + (8C2
g + 18C3C

2
g)|S|

|B|ηt

)

× α2η2t E
[
‖mt‖2

]
,

where we use wt+1 = wt − αηtmt . To simplify the inequality above, we denote C7 =
16L2

L+16L2
Lλλ+2C4+36C6L2

Lλλ,C8 = 8C2
g+18C3C2

g ,C9 = 16L2
L+16L2

Lλλ+36C6L2
Lλλ.

We then incorporate the results from Lemma 11 and 12 into the above inequality. Since
our final goal is to prove the conclusion regarding the stationary point (which involves the
∇F(wt ) term), Lemma11 is needed.Additionally, Lemma12provides the stochastic gradient
estimation error bound ‖∇F(wt ) − mt‖2, so it also needs to be included. The final result is
as follows:

E

[
δLλ,t+1

Nηt
− δLλ,t

Nηt−1

]
+E

[
Cα

N
(δλ,t+1−δλ,t )

]
+E

[
δg,t+1

|S|ηt − δg,t

|S|ηt−1

]
+E

[
δLλλ,t+1

Nηt
− δLλλ,t

Nηt−1

]

+ E

[
δm,t+1

ηt
− δm,t

ηt−1

]
+ αηt

2
‖∇F(wt )‖2 ≤ F(wt )−F(wt+1) +

(
1

ηt
− 1

ηt−1
− γm,t+1

ηt

)
E
[
δm,t

]

+ 2(γ 2
z,t+1 + γ 2

u,t+1 + γ 2
s,t+1 + 2γ 2

u,t+1C3 + 2γ 2
s,t+1C6)|B| + 2Nγ 2

m,t+1

Nηt
σ 2 + 2C0αηt

N
E
[
δλ,t

]
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+ 1

|S|

(
1

ηt
− 1

ηt−1
− γu,t+1|B|

|S|ηt + 8|B|C3γ
2
u,t+1

|S|ηt

)
E
[
δg,t

]+ 2C1αηt

|S| E
[
δg,t

]+ αηtE
[
δm,t

]

+ 1

N

(
1

ηt
− 1

ηt−1
− γs,t+1|B|

Nηt
+ 8|B|C6γ

2
s,t+1

Nηt

)
E
[
δLλλ,t

]+ 2C2αηt

N
E
[
δLλλ,t

]

+
(

C9

|B|ηt + 2C5

Nηt
− 3Cατ |B|

τt N2

(
1

τ
− LL

))
E

[∥∥∥λt+1 − λt
∥∥∥
2
]

− CαττtμL |B|
4N2 E

[
δλ,t

]

+
(
8CαNC2

λ

ττtμL |B| + C7N

|B|ηt + C8|S|
|B|ηt

)
α2η2t E

[
‖mt‖2

]
− αηt

4
E

[
‖mt‖2

]
. (60)

Although the RHS of (60) contains many tracking error terms, we can actually elimi-
nate these terms by appropriately setting the parameters to make their coefficients negative.
Specifically,

– For E[δλ,t ], we can set C ≥ 8C0N
τμL |B| to make 2C0αηt

N − CαττtμL |B|
4N2 ≤ 0.

– For E[δg,t ], with γu,t+1 ≤ 1
16C3

, we have
8|B|C3γ

2
u,t+1

|S|ηt ≤ γu,t+1|B|
2|S|ηt . Thus, we can set

γu,t+1 =
(

2|S|
7|B|LFc3

+ 4C1α|S|
|B|

)
η2t , andγu,t+1 ≤ min{ 12 , 1

16C3
} canbe achievedby setting

c0≥max

{(
8|S|

7LF |B|c
)3/2

,
(
16C1α|S|c2

|B|
)3/2

,
(
64|S|C3
7LF |B|c

)3/2
,
(
128C1|S|C3αc2|B|

)3/2 }
.

– For E[δLλλ,t ], with γs,t+1 ≤ 1
16C6

, we have
8|B|C6γ

2
s,t+1

Nηt
≤ γs,t+1|B|

2Nηt
. Thus, we can set

γs,t+1 =
(

2N
7|B|LFc3

+ 4C2αN|B|
)

η2t , and γs,t+1 ≤ min{ 12 , 1
16C6

} can be achieved by setting
c0≥max

{(
8N

7LF |B|c
)3/2

,
(
16C2αNc2

|B|
)3/2

,
(
64NC6
7LF |B|c

)3/2
,
(
128C2NC6αc2|B|

)3/2}
.

– For E[δm,t ], we can set γm,t+1 =
(

1
7LFc3

+ α
)

η2t and γm,t+1 ≤ 1
2 can be achieved by

setting c0 ≥ max

{(
4

7LFc

)3/2
,
(
4αc2

)3/2
}
.

– For E[‖λt+1 − λt‖2], with LL ≤ 1
2τ , we have C9|B|ηt + 2C5

Nηt
− 3Cατ |B|

τt N2

( 1
τ

− LL
) ≤

C9|B|ηt + 2C5
Nηt

− 3Cατ |B|
2τt N2 . By setting C ≥ 2(C9+2C5)N2

3α|B|2 , we have C9|B|ηt + 2C5
Nηt

− 3Cατ |B|
2τt N2 ≤ 0.

– For E[‖mt‖2], with α ≤ min

{
|B|

12C7N
,

|B|
12C8|S| ,

1
Cλ

√
τμL |B|
96CN

}
, we further have

(
8CαNC2

λ

ττtμL |B| + C7N|B|ηt + C8|S|
|B|ηt

)
α2η2t − αηt

4 ≤ 0.

With all these considerations in hand, we obtain

E

[
δLλ,t+1

nηt
− δLλ,t

nηt−1

]
+ E

[
Cα

n
(δλ,t+1 − δλ,t )

]
+ E

[
δg,t+1

nηt
− δg,t

nηt−1

]

+ E

[
δLλλ,t+1

nηt
− δLλλ,t

nηt−1

]

+ E

[
δm,t+1

ηt
− δm,t

ηt−1

]
+ αηt

2
‖∇F(wt )‖2 ≤ F(wt ) − F(wt+1) + O(1)η3t .

As we discussed earlier, by summing the above equation over t = 1, 2, · · · , T , the left-
hand side terms can be offset and canceled. Thus, we obtain:

E

[
T∑

t=1

αηt

2
‖∇F(wt )‖2

]
≤ F(w1)−F(wT+1)+ E

[
δLλ,1+δg,1+δLλλ,1+nδm,1

]

nη1
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+Cα

n
E
[
δλ,1

]+O(log(T+1)).

Denote M = F(w1) − F(wT+1) + 1
nη1

E
[
δLλ,1+δg,1+δLλλ,1+nδm,1

]+ Cα
n E

[
δλ,1

]+
O(log(T + 1)), then we have

E

[
T∑

t=1

α

2T
‖∇F(wt )‖2

]
≤ M

ηT T
.

Note that ηT = c
(c0+T )1/3

, so M
ηT T

= M
T

(c0+T )1/3

c ≤ Mc1/30
T c + MT 1/3

T c ∼ O
(

1
T 2/3

)
, where

the inequality is due to (a + b)1/3 ≤ a1/3 + b1/3, thus we have

E

[
T∑

t=1

1

T
‖∇F(wt )‖2

]
≤ O

(
1

T 2/3

)
.

��
Proof of Lemma 12 In this lemma, we will derive the gradient estimation error bound
‖∇F (wt ) −mt‖2 for the objective function F(w). First, we introduce an intermediate term
1

|S|
∑

i∈S Gi (wt ) to facilitate the analysis

‖∇F (wt ) − mt‖2 =
∥∥∥∥∥∇F (wt ) − 1

|S|
∑

i∈S
Gi (wt ) + 1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥

2

≤ 2

∥∥∥∥∥∇F (wt ) − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥

2

+ 2

∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥

2

= 2

∥∥∥∥∥
1

|S|
∑

i∈S
∇Fi (wt ) − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥

2

+ 2

∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥

2

≤ 2
1

|S|
∑

i∈S
‖∇Fi (wt ) − Gi (wt )‖2 + 2

∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥

2

. (61)

In order to bound ‖∇Fi (wt ) − Gi (wt )‖2, we introduce ∇Fi (wt , λ
t
q), which uses the

estimated lower-level solution λtq instead of λq(wt ) in ∇Fi (wt ). We can first establish the

bound for
∥∥∥∇Fi (wt ) − ∇Fi

(
wt , λ

t
q

)∥∥∥
2
as follows

∥∥∥∇Fi (wt ) − ∇Fi
(
wt , λ

t
q

)∥∥∥
2

≤
∥∥∥
[
∇wψi (wt , λq (wt )) − ∇2

wλLq (w, λq (wt ))[∇2
λλLq (wt , λq (wt ))]−1∇λψi (w, λq (wt ))

]
fi (gi (wt ))

+ψi (wt , λq (wt ))∇gi (wt )∇ fi (gi (wt )) − ψi (wt , λ
t
q )∇gi (wt )∇ fi (gi (wt ))

−
[
∇wψi (wt , λ

t
q ) − ∇2

wλLq (w, λtq )[∇2
λλLq (wt , λ

t
q )]−1∇λψi (w, λtq )

]
fi (gi (wt ))

∥∥∥
2

≤ 3
∥∥∥∇wψi (wt , λq (wt )) fi (gi (wt )) − ∇wψi (wt , λ

t
q ) fi (gi (wt ))

∥∥∥
2

+ 3
∥∥∥∇2

wλLq (w, λq (wt ))[∇2
λλLq (wt , λq (wt ))]−1∇λψi (w, λq (wt )) fi (gi (wt ))

−∇2
wλLq (w, λtq )[∇2

λλLq (wt , λ
t
q )]−1∇λψi (w, λtq ) fi (gi (wt ))

∥∥∥
2
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+ 3
∥∥∥ψi (wt , λq (wt ))∇gi (wt )∇ fi (gi (wt )) − ψi (wt , λ

t
q )∇gi (wt )∇ fi (gi (wt ))

∥∥∥
2

≤ 3L2ψ B2
f

∥∥∥λq (wt ) − λtq

∥∥∥
2+9

L2Lwλ
C2

ψ B2
f

γ 2

∥∥∥λq (wt )−λtq

∥∥∥
2+9

C2
Lwλ

L2Lλλ
C2

ψ B2
f

γ 4

∥∥∥λq (wt ) − λtq

∥∥∥
2

+ 9
C2
Lwλ

L2ψ B2
f

γ 2

∥∥∥λq (wt ) − λtq

∥∥∥
2 + 3C2

gC
2
f C

2
ψ

∥∥∥λq (wt ) − λtq

∥∥∥
2

=
(
3L2ψ B2

f +9
L2Lwλ

C2
ψ B2

f

γ 2 +9
C2
Lwλ

L2Lλλ
C2

ψ B2
f

γ 4 +9
C2
Lwλ

L2ψ B2
f

γ 2 +3C2
gC

2
f C

2
ψ

)

︸ ︷︷ ︸
C0

∥∥∥λq (wt ) − λtq

∥∥∥
2
,

(62)

where we first expand
∥∥∥∇Fi (wt ) − ∇Fi

(
wt , λ

t
q

)∥∥∥
2
by the definitions, then decompose it

into several terms according to inequality ‖x1 + · · · + xn‖2 ≤ n‖x1‖2 + · · · + n‖xn‖2, and
finally use the Lipschitz continuity or smoothness properties of these functions assumed in
Assumption 1 to derive their bounds.

Similarly, we can establish the bound for
∥∥∥∇Fi

(
wt , λ

t
q

)
− Gi (wt )

∥∥∥
2

∥∥∥∇Fi
(
wt , λ

t
q

)
− Gi (wt )

∥∥∥
2

=
∥∥∥
[
∇wψi (wt , λ

t
q )−∇2

wλLq (w, λtq )[∇2
λλLq (wt , λ

t
q )]−1∇λψi (w, λtq )

]
fi (gi (wt ))

+ ψi (wt , λ
t
q )∇gi (wt )∇ fi (gi (wt )) − ψi (wt , λ

t
q )∇gi (wt )∇ fi (u

t
i ))

−
[
∇wψi (wt , λ

t
q ) − ∇2

wλLq (w, λtq )[stq ]−1∇λψi (w, λtq )
]
fi (u

t
i )
∥∥∥
2

≤ 3
∥∥∥∇wψi (wt , λ

t
q ) fi (gi (wt )) − ∇wψi (wt , λ

t
q ) fi (u

t
i ))
∥∥∥
2

+ 3
∥∥∥ψi (wt , λ

t
q )∇gi (wt )∇ fi (gi (wt )) − ψi (wt , λ

t
q )∇gi (wt )∇ fi (u

t
i ))
∥∥∥
2

+ 3
∥∥∥∇2

wλLq (w, λtq )[∇2
λλLq (wt , λ

t
q )]−1∇λψi (w, λtq ) fi (gi (wt ))

−∇2
wλLq (w, λtq )[stq ]−1∇λψi (w, λtq ) fi (u

t
i )
∥∥∥
2

≤
(
3C2

ψC2
f +3B2

ψC2
g L

2
f +6

C2
Lwλ

C2
ψC2

f

γ 2

)

︸ ︷︷ ︸
C1

∥∥uti −gi (wt )
∥∥2+6

C2
Lwλ

C2
ψ B2

f

γ 4
︸ ︷︷ ︸

C2

∥∥∥stq−∇2
λλLq (wt , λ

t
q )

∥∥∥
2
.

(63)

Thus, by combining (62) and (63), we have the bound for ‖∇Fi (wt ) − Gi (wt )‖2

‖∇Fi (wt ) − Gi (wt )‖2 ≤ 2
∥∥∥∇Fi (wt ) − ∇Fi

(
wt , λ

t
q

)∥∥∥
2 + 2

∥∥∥∇Fi
(
wt , λ

t
q

)
− Gi (wt )

∥∥∥
2

≤ 2C0

∥∥∥λq (wt ) − λtq

∥∥∥
2 + 2C1

∥∥uti − gi (wt )
∥∥2 + 2C2

∥∥∥stq − ∇2
λλLq (wt , λ

t
q )

∥∥∥
2
. (64)

As a result, combining (61) and (64), we derive the following inequality.

‖∇F (wt )−mt‖2

≤2

∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt )−mt

∥∥∥∥∥

2

+ 4C0

N

∥∥λ(wt )−λt
∥∥2+ 4C1

|S|
∥∥ut−g(wt )

∥∥2
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+ 4C2

N

∥∥st−∇2
λλL(wt , λ

t )
∥∥2 .

One can observe that the stochastic gradient estimation error ‖∇F (wt )−mt‖2 is

actually composed of the STORM estimation error
∥∥∥ 1

|S|
∑

i∈SGi (wt )

∥∥∥
2
, the lower-level

solutions estimation error
∥∥λ(wt )−λt

∥∥2, and two tracking errors (
∥∥ut−g(wt )

∥∥2 and∥∥st−∇2
λλL(wt , λ

t )
∥∥2). ��

Proof of Lemma 13 We now begin to analyze the error bound between the stochastic gradient
estimator 1

|S|
∑

i∈S Gi (wt ) and its STORM estimator mt . According to the update rule of

mt = (1 − γm,t )
(
mt−1 − 1

|B|
∑

i∈B Gi (wt−1)
)

+ 1
|B|

∑
i∈B Gi (wt ), we have

E

⎡

⎢⎣

∥∥∥∥∥∥
1

|S|
∑

i∈S
Gi (wt ) − mt

∥∥∥∥∥∥

2
⎤

⎥⎦ = E

⎡

⎢⎣

∥∥∥∥∥∥
mt − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥∥

2
⎤

⎥⎦

= E

⎡

⎢⎣

∥∥∥∥∥∥
(1 − γm,t )

⎛

⎝mt−1 − 1

|B|
∑

i∈B
Gi (wt−1)

⎞

⎠+ 1

|B|
∑

i∈B
Gi (wt ) − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥∥

2
⎤

⎥⎦

= E

⎡

⎣

∥∥∥∥∥∥
(1 − γm,t )

⎛

⎝mt−1 − 1

|S|
∑

i∈S
Gi (wt−1)

⎞

⎠+ γm,t

⎛

⎝ 1

|B|
∑

i∈B
Gi (wt ) − 1

|S|
∑

i∈S
Gi (wt )

⎞

⎠

+(1 − γm,t )

⎛

⎝ 1

|B|
∑

i∈B
Gi (wt ) − 1

|B|
∑

i∈B
Gi (wt−1) − 1

|S|
∑

i∈S
Gi (wt ) + 1

|S|
∑

i∈S
Gi (wt−1)

⎞

⎠

∥∥∥∥∥∥

2
⎤

⎥⎦ .

(65)

Due to the fact that E
[

1
|B|

∑
i∈B Gi (wt ) − 1

|S|
∑

i∈S Gi (wt )
]

≤ σ 2 and the expectation

over the last two terms equals to zero, we obtain

(65)≤E

⎡

⎢⎣(1−γm,t )
2

∥∥∥∥∥∥
mt−1− 1

|S|
∑

i∈S
Gi (wt−1)

∥∥∥∥∥∥

2

+2γ 2
m,tσ

2+2(1−γm,t )
2 1

|B|
∑

i∈B

∥∥Gi (wt )−Gi (wt−1)
∥∥2

⎤

⎥⎦ .

(66)

Next, we aim to bound ‖Gi (wt ) − Gi (wt−1)‖2. We first expand the error term according
to the definition ofGi (wt ), then proceedwith decomposition by inequality ‖x1+· · ·+xn‖2 ≤
n‖x1‖2 + · · · + n‖xn‖2:

∥∥Gi (wt ) − Gi (wt−1)
∥∥2 =

∥∥∥
[
∇wψi (wt , λ

t
q ) − ∇2

wλLq (wt , λ
t
q ;Bq )[stq ]−1∇λψi (wt , λ

t
q )
]
fi (u

t
i )

−
[
∇wψi (wt−1, λ

t−1
q ) − ∇2

wλLq (wt−1, λ
t−1
q ;Bq )[st−1

q ]−1∇λψi (wt−1, λ
t−1
q )

]
fi (u

t−1
i )

+ψi (wt , λ
t
q )∇gi (wt ;Bq )∇ fi (u

t
i ) − ψi (wt−1, λ

t−1
q )∇gi (wt−1;Bq )∇ fi (u

t−1
i )

∥∥∥
2

≤ 3
∥∥∥∇wψi (wt , λ

t
q ) fi (u

t
i ) − ∇wψi (wt−1, λ

t−1
q ) fi (u

t−1
i )

∥∥∥
2

+ 3
∥∥∥∇2

wλLq (wt , λ
t
q ;Bq )[stq ]−1∇λψi (wt , λ

t
q ) fi (u

t
i )

−∇2
wλLq (wt−1, λ

t−1
q ;Bq )[st−1

q ]−1∇λψi (wt−1, λ
t−1
q ) fi (u

t−1
i )

∥∥∥
2

+ 3
∥∥∥ψi (wt , λ

t
q )∇gi (wt ;Bq )∇ fi (u

t
i ) − ψi (wt−1, λ

t−1
q )∇gi (wt−1;Bq )∇ fi (u

t−1
i )

∥∥∥
2

(67)
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Afterwards, we continue to use a similar method for decomposition. For the resulting
terms, we use the Lipschitz continuity or smoothness properties of the relevant functions
assumed in Assumption 1 to establish bounds. Finally, we combine like terms and achieve

∥∥Gi (wt ) − Gi (wt−1)
∥∥2 ≤ 6C2

ψC2
f

∥∥∥uti − ut−1
i

∥∥∥
2 + 12B2

f L
2
ψ

∥∥wt − wt−1
∥∥2

+ 12B2
f L

2
ψ

∥∥∥λtq − λt−1
q

∥∥∥
2

+ 12
C2

ψ B2
f

γ 2 L2Lwλ(2
∥∥wt − wt−1

∥∥2 + 2
∥∥∥λtq − λt−1

q

∥∥∥
2
) + 12

C2
Lwλ

C2
ψ B2

f

γ 4

∥∥∥stq − st−1
q

∥∥∥
2

+ 12
L2ψ B2

f

γ 2 C2
Lwλ(2

∥∥wt − wt−1
∥∥2 + 2

∥∥∥λtq − λt−1
q

∥∥∥
2
) + 12

C2
Lwλ

C2
ψC2

f

γ 2

∥∥∥uti − ut−1
i

∥∥∥
2

+ 9C2
gC

2
f C

2
ψ(2

∥∥wt − wt−1
∥∥2 + 2

∥∥∥λtq − λt−1
q

∥∥∥
2
)

+ 9B2
ψC2

f L
2
g
∥∥wt − wt−1

∥∥2 + 9B2
ψC2

g L
2
f

∥∥∥uti − ut−1
i

∥∥∥
2

≤
(
6C2

ψC2
f + 12

C2
Lwλ

C2
ψC2

f

γ 2 + 9B2
ψC2

g L
2
f

)

︸ ︷︷ ︸
C3

∥∥∥uti − ut−1
i

∥∥∥
2

+
(
12B2

f L
2
ψ + 24

C2
ψ B2

f

γ 2 L2Lwλ + 24
L2ψ B2

f

γ 2 C2
Lwλ + 18C2

gC
2
f C

2
ψ + 9B2

ψC2
f L

2
g

)

︸ ︷︷ ︸
C4

∥∥wt − wt−1
∥∥2

+
(
12B2

f L
2
ψ +24

C2
ψ B2

f

γ 2 L2Lwλ+24
L2ψ B2

f

γ 2 C2
Lwλ+18C2

gC
2
f C

2
ψ

)

︸ ︷︷ ︸
C5

∥∥∥λtq−λt−1q

∥∥∥
2

+ 12
C2
Lwλ

C2
ψ B2

f

γ 4
︸ ︷︷ ︸

C6

∥∥∥stq−st−1q

∥∥∥
2
. (68)

By combining (66) and (68), we obtain the error bound for the STORM estimator mt ,
which has the following recursive form:

E

⎡

⎢⎣

∥∥∥∥∥∥
mt − 1

|S|
∑

i∈S
Gi (wt )

∥∥∥∥∥∥

2
⎤

⎥⎦

≤ E

⎡

⎢⎣(1 − γm,t )
2

∥∥∥∥∥∥
mt−1 − 1

|S|
∑

i∈S
Gi (wt−1)

∥∥∥∥∥∥

2

+ 2γ 2
m,tσ

2

+2(1 − γm,t )
2 1

|B|
∑

i∈B

∥∥Gi (wt ) − Gi (wt−1)
∥∥2
⎤

⎦

≤ (1 − γm,t )E

⎡

⎢⎣

∥∥∥∥∥∥
mt−1 − 1

|S|
∑

i∈S
Gi (wt−1)

∥∥∥∥∥∥

2
⎤

⎥⎦+ 2γ 2
m,tσ

2 + 2(1 − γm,t )
2C3

|S|
∥∥∥ut − ut−1

∥∥∥
2

+ 2(1 − γm,t )
2C4

∥∥wt − wt−1
∥∥2 + 2(1 − γm,t )

2C5

N

∥∥∥λt − λt−1
∥∥∥
2 + 2(1 − γm,t )

2C6

N

∥∥∥st − st−1
∥∥∥
2
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≤ (1 − γm,t )E

⎡

⎢⎣

∥∥∥∥∥∥
mt−1 − 1

|S|
∑

i∈S
Gi (wt−1)

∥∥∥∥∥∥

2
⎤

⎥⎦+ 2γ 2
m,tσ

2

+ 2C3

|S|
∥∥∥ut − ut−1

∥∥∥
2 + 2C4

∥∥wt − wt−1
∥∥2 + 2C5

N

∥∥∥λt − λt−1
∥∥∥
2 + 2C6

N

∥∥∥st − st−1
∥∥∥
2
.

It can be observed that theRHSof this error boundmainly involves the differences between
other estimators (including u, w, λ, and s) at different iterations. ��

Proof of Lemma 14 This lemma will establish the estimation error bound for the solutions λ

for the lower-level problems, which is crucial for achieving parallel speed-up and the optimal
convergence rate. First, we consider the stochastic gradient estimators z for the lower-level
problems and the update rule for λ:

ztq =

⎧
⎪⎨

⎪⎩

(1 − γz,t )zt−1
q + γz,t∇Lq(λ

t
q ;wt ;Bq)

+βz,t (∇λLq(λ
t
q ;wt ;Bq) − ∇λLq(λ

t−1
q ;wt−1;Bq)), if q ∈ B

zt−1
q , o.w.

,

λt+1
q =

{
λtq − ττtztq if q ∈ B
λtq o.w.

.

Our proof strategy is to first establish the estimation error bound for the components
updated in the t-th iteration, and then extend this to establish the estimation error bound for
all components. For the convenience of the subsequent proof,wedefine these two intermediate
variables: λ̃tq = λtq − τ ztq , λ̄

t
q = λtq + τt (λ̃

t
q − λtq) for q ∈ B. Note that

∥∥∥λ̄tq − λq(wt )

∥∥∥
2 =

∥∥∥λtq + τt (λ̃
t
q − λtq) − λq(wt )

∥∥∥
2

=
∥∥∥λtq − λq(wt )

∥∥∥
2 + τ 2t

∥∥∥λ̃tq − λtq

∥∥∥
2 + 2τt (λ

t
q − λq(wt ))(λ̃

t
q − λtq).

By rearranging the above equation, we obtain:

(λtq − λq(wt ))(λ̃
t
q − λtq) = 1

2τt

(∥∥∥λ̄tq − λq(wt )

∥∥∥
2 −

∥∥∥λtq − λq(wt )

∥∥∥
2 − τ 2t

∥∥∥λ̃tq − λtq

∥∥∥
2
)

.

(69)
Next, we derive a tight bound by leveraging the strongly convexity and smoothness of

Lq . By utilizing the strongly convexity property of Lq(wt , λ), we can establish the following
lower bound

Lq(wt , λ) ≥ Lq(wt , λ
t
q) + ∇λLq(wt , λ

t
q)(λ − λtq) + μL

2

∥∥∥λ − λtq

∥∥∥
2

= Lq(wt , λ
t
q) + ∇λLq(wt , λ

t
q)(λ − λ̃tq) + ∇λLq(wt , λ

t
q)(λ̃

t
q − λtq) + μL

2

∥∥∥λ − λtq

∥∥∥
2

= Lq(wt , λ
t
q)+ztq(λ − λ̃tq)+(∇λLq(wt , λ

t
q) − ztq)(λ − λ̃tq)+∇λLq(wt , λ

t
q)(λ̃

t
q−λtq)

+ μL

2

∥∥∥λ−λtq

∥∥∥
2
.

It is notable that we perform a fine-grained decomposition of the RHS terms. In fact, we
will see that (∇λLq(wt , λ

t
q) − ztq)(λ − λ̃tq) is closely related to the estimation error of ztq .

For ∇λLq(wt , λ
t
q)(λ̃

t
q−λtq) and z

t
q(λ− λ̃tq), they can actually be bounded by the smoothness
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property of Lq and the update rule of zq . Specifically, since the function Lq(wt , λ) is also
smooth, we have

Lq(wt , λ̃
t
q) − ∇λLq(wt , λ

t
q)(λ̃

t
q − λtq) − LL

2

∥∥∥λ̃tq − λtq

∥∥∥
2 ≤ Lq(wt , λ

t
q).

Combining the above inequalities, we have

Lq(wt , λ) ≥ Lq(wt , λ̃
t
q)+ztq(λ − λ̃tq)+(∇λLq(wt , λ

t
q)−ztq)(λ − λ̃tq)

+μL

2

∥∥∥λ−λtq

∥∥∥
2− LL

2

∥∥∥λ̃tq−λtq

∥∥∥
2
.

Besides, by using the update rule of zq , we obtain

ztq(λ − λ̃tq) = 1

τ
(λtq − λ̃tq)(λ − λ̃tq) = 1

τ
(λtq − λ̃tq)(λ − λtq) + 1

τ
(λtq − λ̃tq)(λ

t
q − λ̃tq)

= 1

τ
(λtq − λ̃tq)(λ − λtq) + 1

τ

∥∥∥λtq − λ̃tq

∥∥∥
2
.

By combining the above two formulations, we obtain the following:

Lq(wt , λ) ≥ Lq(wt , λ̃
t
q) + 1

τ
(λtq − λ̃tq)(λ − λtq) + 1

τ

∥∥∥λtq − λ̃tq

∥∥∥
2

+ (∇λLq(wt , λ
t
q) − ztq)(λ − λ̃tq) + μL

2

∥∥∥λ − λtq

∥∥∥
2 − LL

2

∥∥∥λ̃tq − λtq

∥∥∥
2
.

Note that the second term on the RHS of the above equation can be bounded using (69).
Thus, we have

Lq (wt , λ̃
t
q ) ≥ Lq (wt , λq (wt )) ≥ Lq (wt , λ̃

t
q ) + 1

τ
(λtq − λ̃tq )(λq (wt ) − λtq ) + 1

τ

∥∥∥λtq − λ̃tq

∥∥∥
2

+ (∇λLq (wt , λ
t
q ) − ztq )(λq (wt ) − λ̃tq ) + μL

2

∥∥∥λq (wt ) − λtq

∥∥∥
2 − LL

2

∥∥∥λ̃tq − λtq

∥∥∥
2

≥ Lq (wt , λ̃
t
q ) + 1

τ
(λtq − λ̃tq )(λq (wt ) − λtq ) + 1

τ

∥∥∥λtq − λ̃tq

∥∥∥
2 − 2

μL

∥∥∥∇λLq (wt , λ
t
q ) − ztq

∥∥∥
2

− μL

4

∥∥∥λq (wt ) − λtq

∥∥∥
2 − μL

4

∥∥∥λtq − λ̃tq

∥∥∥
2 + μL

2

∥∥∥λq (wt ) − λtq

∥∥∥
2 − LL

2

∥∥∥λ̃tq − λtq

∥∥∥
2

≥ Lq (wt , λ̃
t
q ) + 1

2τt τ

(∥∥∥λ̄tq − λq (wt )
∥∥∥
2 −

∥∥∥λtq − λq (wt )
∥∥∥
2 − τ2t

∥∥∥λ̃tq − λtq

∥∥∥
2
)

− 2

μL

∥∥∥∇λLq (wt , λ
t
q ) − ztq

∥∥∥
2 + μL

4

∥∥∥λq (wt ) − λtq

∥∥∥
2 +

(
1

τ
− μL

4
− LL

2

)∥∥∥λ̃tq − λtq

∥∥∥
2
.

Since Lq(wt , λ̃
t
q) cancels out on both sides of the equation, we finally obtain the following

result regarding the estimation error bound for the components updated in the t-th iteration
∥∥∥λ̄tq − λq(wt )

∥∥∥
2

≤ 4τtτ

μL

∥∥∥∇λLq(wt,λ
t
q)−ztq

∥∥∥
2+

(
1− ττtμL

2

)∥∥∥λq(wt )−λtq

∥∥∥
2

− 2ττt

(
1

τ
− μL

4
− LL

2
− τt

2τ

)∥∥∥λ̃tq−λtq

∥∥∥
2

≤
(
1 − ττtμL

2

) ∥∥∥λq(wt ) − λtq

∥∥∥
2 + 4τtτ

μL

∥∥∥∇λLq(wt , λ
t
q) − ztq

∥∥∥
2

− 2ττt

(
3

4τ
− 3

4
LL

)∥∥∥λ̃tq − λtq

∥∥∥
2
,
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where we use τt ≤ 1
2 and μL ≤ LL in the second inequality, and use λ̄tq = λtq + τt (λ̃

t
q − λtq)

in the last inequality.
Notice that for q ∈ B, we have λ̄tq = λt+1

q , and according to the properties of conditional
expectation, we obtain

E

[∥∥∥λt+1
q − λq(wt )

∥∥∥
2
]

= |B|
N

E

[∥∥∥λ̄tq − λq(wt )

∥∥∥
2
]

+ N − |B|
N

E

[∥∥∥λtq − λq(wt )

∥∥∥
2
]

≤
(
1− ττtμL|B|

2N

)∥∥∥λq(wt )−λtq

∥∥∥
2+ 4τtτ|B|

μL N

∥∥∥∇λLq(wt,λ
t
q)− ztq

∥∥∥
2

− 3τ |B|
2τtN

(
1

τ
−LL

)∥∥∥λt+1
q −λtq

∥∥∥
2
.

Further, we can derive the recursion for the estimation error bound as follows

E

[∥∥∥λt+1
q − λq (wt+1)

∥∥∥
2
]

≤
(
1 + ττtμL |B|

4N

)
E

[∥∥∥λt+1
q − λq (wt )

∥∥∥
2
]

+
(
1 + 4N

ττtμL |B|
)
E

[∥∥λq (wt+1) − λq (wt )
∥∥2
]

≤
(
1 − ττtμL |B|

4N

)
E

[∥∥∥λq (wt ) − λtq

∥∥∥
2
]

+ 8τt τ |B|
μL N

∥∥∥∇λLq (wt , λ
t
q ) − ztq

∥∥∥
2

− 3τ |B|
τt N

(
1

τ
− LL

)∥∥∥λt+1
q − λtq

∥∥∥
2 + 8NC2

λ

ττtμL |B|E
[∥∥wt+1 − wt

∥∥2
]
,

wherewe use inequality ‖a+b‖2 ≤ (1+γ )‖a‖2+(1+ 1
γ
)‖b‖2 γ > 0, (1−ε)(1+ ε

2 ) ≤ 1− ε
2 ,

and the assumption τtτ ≤ 4N
μL |B| i.e.,

τt τμL |B|
4N ≤ 1 in the last inequality.

Taking summation over all queries and expectation over all randomness, we have

E

[∥∥∥λt+1−λ(wt+1)
∥∥∥
2
]

≤
(
1− ττtμL |B|

4N

)
E

[∥∥λ(wt )−λt
∥∥2
]
+ 8τt τ |B|

μL N

∥∥∇λL(wt , λ
t )−zt

∥∥2

− 3τ |B|
τt N

(
1

τ
− LL

)∥∥∥λt+1 − λt
∥∥∥
2 + 8N2C2

λ

ττtμL |B|E
[∥∥wt+1 − wt

∥∥2
]
.

We can see that due to the unique design of z and the meticulous analysis, the RHS

of the above equation includes a negative
∥∥λt+1 − λt

∥∥2 term, This is crucial for offsetting

the positive
∥∥λt+1 − λt

∥∥2 terms that appear elsewhere in the proof, thereby establishing
convergence. ��
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