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ABSTRACT

Content Based Image Retrieval (CBIR) has become one of the most
active research areas in computer science. Relevance feedback is
often used in CBIR systems to bridge the semantic gap. Typically,
users are asked to make relevance judgements on some query re-
sults, and the feedback information is then used to re-rank the im-
ages in the database. An effective relevance feedback algorithm
must provide the users with the most informative images with re-
spect to the ranking function. In this paper, we propose a novel
active learning algorithm, called Convex Laplacian Regularized I-
optimal Design (CLapRID), for relevance feedback image retrieval.
Our algorithm is based on a regression model which minimizes the
least square error on the labeled images and simultaneously pre-
serves the intrinsic geometrical structure of the image space. It
selects the most informative images which minimize the average
predictive variance. The optimization problem of CLapRID can be
cast as a semidefinite programming (SDP) problem, and solved via
interior-point methods. Experimental results on COREL database
have demonstrate the effectiveness of the proposed algorithm for
relevance feedback image retrieval.

Categories and Subject Descriptors

H.3.3 [Information storage and retrieval]: Information search
and retrieval—Relevance feedback; G.3 [Mathematics of Com-

puting]: Probability and Statistics—Experimental design

General Terms

Algorithms, Performance, Theory

Keywords

Image retrieval, active learning, convex optimization, relevance feed-
back, semidefinite programming
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1. INTRODUCTION
With the rapid increase in the volume of electronically archived

image and video materials, Content Based Image Retrieval (CBIR)
has become one of the most active research areas for the last few
decades [10, 17]. Query by example (QBE) is the traditional type
of query in CBIR. In this environment, users formulate a query by
means of giving an example image [21]. CBIR systems use the low
level visual features (mostly color, texture and shape) to represent
an image’s content, and relevant images are retrieved based on the
similarity of their visual features. Although CBIR has been exten-
sively studied, the semantic gap between low-level image features
and high-level semantic concepts limits its performance largely.

To narrow down the semantic gap, relevance feedback is intro-
duced into CBIR [16]. Typically, users are asked to make relevance
judgements on the top images returned by the system, and their
preference is used to train a classifier to separate images that match
the query concept from those that do not. However, in general the
top returned images may not be the most informative ones. In the
worst case, all the top images labeled by the user may be positive
and thus the standard classification techniques can not be applied
due to the lack of negative examples. The key problem then be-
comes how to select the most informative samples from the image
database. In machine learning, this problem is called active learn-
ing, which studies the phenomenon of a learner selecting actions
or making queries that influence what data are added to its training
set [9].

Active learning algorithm is highly correlated with the under-
lying ranking mechanism. The most popular active learning tech-
niques include Support Vector Machine active learning (SVMactive)
[19,20] and regression based active learning [2,14,23,24]. SVMactive

asks the user to label those images which are closest to the SVM
boundary. The rationale is that the closer to the SVM boundary an
image is, the less reliable its classification is. One of the major dis-
advantages of SVMactive is that the estimated boundary may not
be accurate enough, especially when the number of labeled image
is small. Moreover, SVMactive can not be applied at the first round
of the retrieval when there is no feedback images.

In statistics, the problem of selecting samples to label is usu-
ally referred to as experimental design. The study of Optimum
Experimental Design (OED) [2] is concerned with the design of
experiments that are expected to minimize variance of a parame-
terized model. There are two types of selection criteria of OED.
One type is to choose points to minimize the confidence region
for the estimated model parameters, which results in D-, A-, and
E-optimal Design. The other is to minimize the variance of the pre-
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diction value, which results in I- and G-optimal Design. Recently,
Yu et al. propose an active learning formulation, called Transduc-
tive Experimental Design (TED) [23]. TED selects data points to
minimize the average predictive variance of the learned function
on some pre-given dataset. It is also formulated into a convex opti-
mization problem (CovTED) [24].

Both SVMactive and OED are based on supervised learning al-
gorithms (SVM or linear regression). These algorithms only con-
sider the labeled data while ignoring those unlabel data. In rele-
vance feedback image retrieval, the user is usually not willing to
provide too many feedbacks. Thus, we have a large unlabeled im-
age database and a small number of labeled images (feedbacks).
In this case, supervised learning algorithms may not be able to get
good performance due to the lack of training data. The research
in semi-supervised learning [7] shows that unlabeled data, when
used in conjunction with a small amount of labeled data, can im-
prove the learning performance greatly. For example, the intrinsic
manifold structure in the data space has been shown very useful for
improving the learning performance [3, 25].

In this paper, we propose a novel active learning algorithm, called
Convex Laplacian Regularized I-optimal Design (CLapRID), for
relevance feedback image retrieval. CLapRID is essentially based
on a graph-based semi-supervised learning algorithm— Laplacian
Regularized Least Squares (LapRLS) [3]. It makes use of both
labeled and unlabeled points to discover the intrinsic geometrical
structure in the data. By constructing a nearest neighbor graph, the
geometrical structure of the image space can be described by the
graph Laplacian. CLapRID then selects those images which can
minimize the average predictive variance once labeled. The opti-
mization problem of CLapRID can be cast as a semidefinite pro-
gramming (SDP), and solved exactly via interior-point methods.

The rest of the paper is organized as follows. In Section 2, we
provide a brief description of the related work. Our proposed Con-
vex Laplacian Regularized I-optimal Design (CLapRID) is intro-
duced in Section 3. In Section 4, we describe how to perform
CLapRID in Reproducing Kernel Hilbert Space (RKHS) which leads
to nonlinear extension. In Section 5, we compare our algorithm
with the state-of-the-art active learning algorithms and present the
experimental results on image retrieval. Finally, we provide some
concluding remarks and suggestions for future work in Section 6.

2. RELATED WORK
The generic problem of active learning is the following. Given

a set of points X = {x1, · · · ,xm} in R
n, find a subset Z =

{z1, · · · , zk} ⊆ X which contains the most informative points.
That is, if points zi(i = 1, · · · , k) are labeled and used as training
points, we can predict the labels of the unlabeled points most pre-
cisely. Active learning is usually referred to as experimental design
in statistics. Since our approach is motivated by recent progress in
experimental design, we begin with a brief description of it. For
details, please see [2, 14, 23, 24].

Experimental design [2, 4] considers learning a linear function
f(x) = wT x, from experiments yi = wT zi + ǫi, i = 1, · · · , k

where ǫi are independent Gaussian random variables with zero mean
and constant variance σ2. The most popular estimation method is
least squares, in which we minimize the residual sum of squares:

RSS(w) =

k∑

i

(yi − f(zi))
2

(1)

Let Z = [z1, · · · , zk] and y = [y1, · · · , yk]T . The optimal solu-
tion is

ŵ = (ZZ
T )−1

Zy (2)

It can be proved [13] that ŵ is a unbiased estimation of w with
covariance matrix

Cov(ŵ) = σ
2(ZZ

T )−1
(3)

The criteria of Optimum Experimental Design (OED) [2] can be
classified into two types. The first type is to choose points zi’s to
minimize the confidence region for the estimated parameter ŵ in
some sense [1, 2]. The three most common criteria are:

• D-optimal design: minimizes the determinant of Cov(ŵ),
and thus minimizes the volume of the confidence region.

• A-optimal design: minimizes the trace of Cov(ŵ), and thus
minimizes the dimensions of the enclosing box around the
confidence region.

• E-optimal design: minimizes the maximum eigenvalue of
Cov(ŵ), and thus minimizes the size of the major axis of
the confidence region.

The other type is to choose points zi’s to minimize the vari-
ance of prediction value over some region of interest O. Given
a test point v ∈ O, the prediction value is ŵ

T
v with variance

v
T Cov(ŵ)v. The two most common criteria are:

• I-optimal design: minimizes the average predictive variance:∫
v∈O

v
T Cov(ŵ)v dµ(v), where µ is a probability distri-

bution on O.

• G-optimal design: minimizes the maximum predictive vari-
ance: maxv∈O{vT Cov(ŵ)v}.

Recently, Yu et. al [23] proposed Transductive Experimental De-
sign (TED) approach which is based on I-optimal design. TED con-
siders the regularized least squares formulation (ridge regression)
as follows:

ŵridge = argmin
w

k∑

i

(yi − f(zi))
2 + γ‖w‖2

(4)

where γ ≥ 0 is the trade-off parameter for the regularizer ‖w‖2,
and ‖ · ‖ is the vector ℓ2-norm. The optimal solution is given by

ŵridge = (ZZ
T + γI)−1

Zy (5)

where I is the identity matrix. The covariance matrix of ŵridge is

Cov(ŵridge)

=(ZZ
T + γI)−1

Z Cov(y)ZT (ZZ
T + γI)−1

=σ
2(ZZ

T + γI)−1
ZZ

T (ZZ
T + γI)−1

=σ
2(ZZ

T + γI)−1(ZZ
T + γI − γI)(ZZ

T + γI)−1

=σ
2(ZZ

T + γI)−1 − γ(ZZ
T + γI)−1(ZZ

T + γI)−1

(6)

Since the regularization parameter γ is usually set to be very small,
we have

Cov(ŵridge) ≈ σ
2(ZZ

T + γI)−1
(7)

Similar to I-optimal design, TED also selects those samples which
can minimize the average predictive variance. Let X = [x1, · · · ,xm],
the average predictive variance is

1

m

m∑

i=1

x
T
i Cov(ŵridge)xi ≈

σ2

m

m∑

i=1

x
T
i (ZZ

T + γI)−1
xi

=
σ2

m
Tr(XT (ZZ

T + γI)−1
X)

(8)
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TED is then formulated as the following optimization problem:

min Tr(XT (ZZT + γI)−1X)
s.t. {z1, · · · , zk} ⊆ X

(9)

with variable Z = [z1, · · · , zk]. After some mathematical deriva-
tion, the above problem can be formulated as an equivalent opti-
mization problem as follows:

min
∑m

i=1
‖xi − Zαi‖

2 + γ‖αi‖
2

s.t. {z1, · · · , zk} ⊆ X
(10)

where the variables are Z = [z1, · · · , zk] and αi ∈ R
k, i =

1, · · · , m.
The above problem is NP-hard. Yu et al. have proposed a sequen-

tial greedy algorithm [23] and a convex relaxation [24] to solve it.
The convex relaxation (CovTED) is shown as follows:

min
m∑

i=1

(

‖xi − Xαi‖
2 +

m∑
j=1

α2
i,j

βj

)

+ γ‖β‖1

s.t. βj ≥ 0, j = 1, · · · , m

(11)

where the variables are β ∈ R
m and αi ∈ R

m, i = 1, · · · , m.
Here, ‖β‖1 is the ℓ1-norm of β, which is used to enforce some
elements of β to be zero. An iterative algorithm is proposed to
solve it [24].

3. CONVEX LAPLACIAN REGULARIZED

I-OPTIMAL DESIGN
Traditional active learning algorithms, such as SVMactive and

OED, are based on supervised learning algorithms (SVM or linear
regression). These approaches only consider the labeled data points
while neglecting the large amount of unlabel data points which may
play essential rules in selecting informative samples. We introduce
in this section a novel active learning algorithm which is based on
one semi-supervised learning algorithm. We will first introduce
the linear algorithm and then generalize it to the nonlinear case by
applying kernel tricks. Our algorithm is fundamentally based on
Laplacian Regularized Least Squares (LapRLS) [3], and motivated
by recent progress in experimental design [2, 14, 23, 24].

3.1 Laplacian Regularized Least Squares
Laplacian Regularized Least Squares (LapRLS) [3] makes use

of both labeled and unlabeled points to discover the intrinsic geo-
metrical structure in the data. It assumes that if two points xi and
xj are close then their measurements f(xi) and f(xj) are close as
well. Specifically, LapRLS adds a new locality preserving regular-
izer into the loss function of ridge regression (Eq. 4). Let W be a
similarity matrix, the new loss function is defined as follows:

JL(w)=
k∑

i

(f(zi)− yi)
2+

α

2

m∑

i,j=1

(f(xi)−f(xj))
2
Wij +β‖w‖2

(12)

where α ≥ 0 and β ≥ 0 are the regularization parameters. The
second term of the right-hand side in the cost function is the locality
preserving regularizer, which incurs a heavy penalty if neighboring
points xi and xj are mapped far apart.

There are many choices of similarity matrix W . A simple defi-
nition is as follows:

Wij =






1, if xi is among the p nearest neighbors of xj ,
or xj is among the p nearest neighbors of xi;

0, otherwise.
(13)

Let D be a diagonal matrix with Dii =
∑m

j=1
Wij , and L =

D −W . The matrix L is called Graph Laplacian in spectral graph
theory [8]. The solution to minimize equation (12) is given as fol-
lows:

ŵL = (ZZ
T + αXLX

T + βI)−1
Zy (14)

Let H = ZZT + αXLXT + βI , the covariance matrix of ŵL is

Cov(ŵL) =H
−1

Z Cov(y)ZT
H

−1

=σ
2
H

−1
ZZ

T
H

−1

=σ
2
H

−1(H − αXLX
T + βI)H−1

=σ
2
H

−1 − σ
2
H

−1(αXLX
T + βI)H−1

(15)

Since the regularization parameters (α and β) are usually set to be
very small, we have

Cov(ŵL) ≈ σ
2
H

−1 = σ
2(ZZ

T + αXLX
T + βI)−1

(16)

3.2 Convex Laplacian Regularized I-optimal
Design

Through making use of both labeled and unlabeled data, LapRLS
estimates a linear fitting function f(x) = ŵT

Lx that respects the
intrinsic geometrical structure in the data space. An ideal design
would choose a subset Z ⊆ X which simultaneously minimizes
the confidence region for ŵ

T
L and the predictive variance of f(x).

However, usually a choice has to be made between these desiderata
[2]. In image retrieval, we aim at learning a regression function
which can distinguish the relevant images from irrelevant ones. It
is natural to require that the predictions of the learned function on
the image database are as stable as possible. Thus, we use the I-
optimal design criterion to select those images which can minimize
the average predictive variance of learned regression function.

Here, we consider a set V = {v1, · · · , vl} of test data points
besides candidates in X = {x1, · · · ,xm}. In special cases, V and
X can be the same set. Given a test point v, its prediction value
is f(v) = ŵ

T
Lv with variance Var(f(v)) = v

T Cov(ŵL)v. Let
V = [v1, · · · ,vl], the average predictive variance on V is

1

l

l∑

i=1

v
T
i Cov(ŵL)vi

≈
σ2

l

l∑

i=1

v
T
i (ZZ

T + αXLX
T + βI)−1

vi

=
σ2

l
Tr(V T (ZZ

T + αXLX
T + βI)−1

V )

(17)

Then, our problem is to find a subset Z ⊆ X to minimize equation
(17). A simple sequential greedy approach was suggested to select
zi’s one after another in [14].

By introducing m indicator variables {λi}
m
i=1 ∈ {0, 1} where

λi indicates whether or not point xi is chosen, finding a subset Z to
minimize equation (17) is equivalent to the following optimization
problem:

min Tr(V T (
∑m

i=1
λixix

T
i + αXLXT + βI)−1V )

s.t. {λi}
m
i=1 ∈ {0, 1},

∑m

i=1
λi = k

(18)

where the variables are {λi}
m
i=1 and k is the number of data points

to be chosen. To simplify our presentation, we use vector λ =
[λ1, · · · , λm] to denote all the m variables. The variable vector λ

is sparse and has only k non-zero entries.
Due to its combinatorial nature, the above optimization is NP-

hard. In order to solve the above optimization problem efficiently,
we relax the integer constraints on λi’s and allow them to take real
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nonnegative values. Then, the value of λi indicates how signif-
icantly xi contributes to the minimization in problem (18). The
sparseness of λ can be controlled through minimizing the ℓ1-norm
of λ, which is a very popular technique in regression [4, 13].

Following the convention in the field of optimization, we use
λ � 0 to denote that all the elements in λ should be nonnegative.
And because all the elements of λ are nonnegative, ‖λ‖1 is equal
to 1

T λ, where 1 is a column vector containing all ones. Finally,
our optimization problem becomes:

Definition 1. Convex Laplacian Regularized I-optimal Design
(CLapRID):

min Tr(V T (
m∑

i=1

λixix
T
i +αXLXT +βI)−1V )+γ1T λ

s.t. λ � 0
(19)

where the variable is λ ∈ R
m, and γ ≥ 0 is the trade-off parameter

for sparsity.

THEOREM 1. Problem (19) is a convex optimization problem

with variable λ ∈ R
m.

PROOF. Let g(X) = Tr(V T X−1V ) =
∑l

j=1
vT

j X−1vj and

h(λ) =
∑m

i=1
λixix

T
i + αXLXT + βI . We know that matrix

fractional function f1(X) = v
T X−1

v is a convex function of X
[4]. Since nonnegative weighted sum preserves convexity, g(X) is
also a convex function of X. We define

g ◦ h(λ) = Tr(V T (
m∑

i=1

λixix
T
i + αXLX

T + βI)−1
V )

Because h(λ) is an affine function of λ and composition with an
affine function preserves convexity, g ◦h is a convex function of λ.

Since f2(λ) = γ1
T λ is a convex function of λ, the objective

function of problem (19) (g ◦ h(λ)+ f2(λ)) is also convex.
Because the objective function is convex, the inequality con-

straint function (−λ) is convex, problem (19) is a convex optimiza-
tion problem with variable λ ∈ R

m [4].

3.3 Optimization Scheme
The success of Semidefinite programming (SDP) in various ap-

plications motivates us to formulate and solve CLapRID as an SDP
problem. Semidefinite programming has been the most exciting
mathematical development in mathematical programming. It has
applications in traditional convex constrained optimization, as well
as in such diverse domains as control theory and combinatorial op-
timization [12]. Moreover, the powerful interior-point methods for
linear programming have been extended to SDP [11].

By introducing a new variable P ∈ R
l×l, optimization problem

(19) can be equivalently rewrote as:

min Tr(P ) + γ1
T λ

s.t. P �
S
+

l

V T (
∑m

i=1
λixix

T
i +αXLXT + βI)−1V

λ � 0

(20)

with variables P ∈ R
l×l and λ ∈ R

m. Here, S
+

l denotes the set
of symmetric positive semidefinite l × l matrices, which is called
positive semidefinite cone in the field of optimization. The asso-
ciated generalized inequality �

S
+

l

is the usual matrix inequality:

A �
S
+

l

B means A− B is a positive semidefinite l × l matrix [4].

THEOREM 2. Problem (19) is equivalent to problem (20).

PROOF. Let λ∗
a be the optimal solution of problem (19), and

(P ∗, λ∗
b ) be the optimal solutions of problem (20). Then, λ∗

a= λ∗
b is

a sufficient condition for Theorem 2. Let f(λ) = T T (
∑m

i=1
λixix

T
i +

αXLXT + βI)−1T .
Assume λ∗

a 6= λ∗
b . Since λ∗

a minimizes problem (19), we must
have Tr f(λ∗

a) + γ1
T λ∗

a < Tr f(λ∗
b) + γ1

T λ∗
b . Because (P ∗,

λ∗
b ) satisfies the constraints in problem (20), we have

P
∗ �

S
+

l

f(λ∗
b) ⇔ P

∗ − f(λ∗
b) ∈ S

+

l

⇒ Tr(P ∗ − f(λ∗
b)) ≥ 0

⇒ Tr(P ∗) ≥ Tr f(λ∗
b)

⇒ Tr(P ∗) + γ1
T
λ

∗
b ≥ Tr f(λ∗

b) + γ1
T
λ

∗
b

⇒ Tr(P ∗) + γ1
T
λ

∗
b > Tr f(λ∗

a) + γ1
T
λ

∗
a

It is clear that (f(λ∗
a), λ∗

a) satisfies the constraints in problem
(20). Then, for problem (20), (f(λ∗

a), λ∗
a) is more optimal than

(P ∗, λ∗
b ), which contradicts our assumptions. So, we mush have

λ∗
a = λ∗

b .

Problem (20) can be cast as an SDP using the Schur complement
theorem [4]. Given a symmetric matrix X partitioned as

X =

[
A B

BT C

]

If A is invertible, the matrix S = C−BT A−1B is called the Schur
complement of A in X. Schur complement theorem states that, if
A is positive definite, then X is positive semidefinite if and only if
S is positive semidefinite.

According to this theorem, problem (20) is equivalent to the fol-
lowing semidefinite programming (SDP):

min Tr(P ) + γ1
T λ

s.t.

[∑m

i=1
λixix

T
i + αXLXT + βI V

V T P

]
�

S
+

n+l

0

λ � 0

(21)

with variables P ∈ R
l×l and λ ∈ R

m. As explained previously,
A�

S
+

n+l

0 means A is a positive semidefinite (n+l)×(n+l) matrix.

We can solve this problem exactly via interior-point methods [4].
After obtaining the optimal solution λ∗, we select k points with the
largest significant indicators (λ∗

i ’s) for user to label.

4. CONVEX KERNEL LAPLACIAN REGU-

LARIZED I-OPTIMAL DESIGN
Traditional experimental design only considers linear functions.

When the data is highly nonlinear distributed, the linear function
might not be able to fit the data well. In this Section, we ex-
tend CLapRID to handle nonlinear cases by performing experimen-
tal design in the Reproducing Kernel Hilbert Space (RKHS) [3].
We begin with a brief description of Kernel Laplacian Regularized
Least Squares [3].

4.1 Kernel Laplacian Regularized Least Squares
Let K be a positive definite mercer kernel K : R

n × R
n → R,

and HK be the corresponding Reproducing Kernel Hilbert Space
(RKSH). Consider the optimization problem (12) in RKHS. Then,
we seek a function f ∈ HK such that the following objective func-
tion is minimized:

JL(f) =
k∑

i=1

(yi−f(zi))
2+

α

2

m∑

i,j=1

(f(xi)−f(xj))
2
Wij+β‖f‖2

HK

(22)
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The Representer Theorem [3] can be used to show that the solu-
tion is an expansion of kernel functions over both the labeled and
the unlabeled data:

f̂(x) =

m∑

i=1

α̂iK(x,xi) (23)

Let α̂ = [α̂1, · · · , α̂m]T . The optimal solution is given by

α̂ = (KXZKZX + αKXXLKXX + βKXX)−1
KXZy (24)

with covariance

Cov(α̂) ≈ σ
2(KXZKZX + αKXXLKXX + βKXX)−1

(25)

where KXZ is a m × k matrix with KXZ,ij = K(xi, zj), KXX

is a m×m matrix with KXX,ij = K(xi, xj), and KZX = KT
XZ .

4.2 Convex Kernel Laplacian Regularized I-
optimal Design

The estimated function of Kernel Laplacian Regularized Least

Squares is f̂(x) =
∑m

i=1
α̂iK(x,xi). Given a test point v, its

prediction value is α̂
T Kv with variance KT

v
Cov(α̂)Kv, where

Kv = [K(x1,v), · · · , K(xm,v)]T . Let M = αKXXLKXX +

βKXX , the average predictive variance of f̂(x) on test set V =
{v1, · · · ,vl} is

=
1

l

l∑

i=1

K
T
vi

Cov(α̂)Kvi

≈
σ2

l

l∑

i=1

K
T
vi

(KXZKZX + M)−1
Kvi

=
σ2

l
Tr(KV X(KXZKZX + M)−1

KXV )

(26)

where Kvi
= [K(x1,vi), · · · , K(xm,vi)]

T , KV X is a l × m

matrix with KV X,ij = K(vi, xj), and KXV = KT
V X . Then,

our problem is to find a subset Z ⊆ X to minimize equation (26).
Following the steps in Section 3.2, this combinatorial problem can
be relaxed as:

Definition 2. Convex Kernel Laplacian Regularized I-optimal De-
sign (CKerLapRID):

min Tr(KV X(
∑m

i=1
λiKxi

KT
xi

+ M))−1KXV +γ1
T λ

s.t. λ � 0
(27)

where λ∈R
m is the variable, and Kxi

=[K(x1,xi),· · · ,K(xm,xi)]
T .

Using the optimization scheme in Section 3.3, problem (27) can
also be cast as an SDP:

min Tr(P ) + γ1
T λ

s.t.

[∑m

i=1
λiKxi

KT
xi

+ M KXV

KV X P

]
�

S
+

m+l

0

λ � 0

(28)

with variables P ∈ R
l×l and λ ∈ R

m. After solving it, the most
informative images are defined as those with the largest significant
indicators (λ∗

i ’s).

5. CONTENT BASED IMAGE RETRIEVAL

USING CLAPRID
To demonstrate the effectiveness of our proposed CLapRID al-

gorithm, we compare it with Laplacian Regularized Least Squares
(LapRLS) [3], Support Vector Machine (SVM) [5], Support Vector

Machine Active Learning (SVMactive) [19,20], and Convex Trans-
ductive Experimental Design (CovTED) [24].

The SVMactive, CovTED, and CLapRID are active learning al-
gorithms, while LapRLS and SVM are standard classification algo-
rithms. SVM only makes use of the labeled images, while LapRLS
is a semi-supervised learning algorithm which makes use of both la-
beled and unlabeled images. For SVMactive, CovTED, and CLapRID,
the training images are selected by the algorithms themselves. While
for LapRLS and SVM, we use the top images as training data. It
would be important to note that SVMactive is based on the ordi-
nary SVM, CovTED is based on ridge regression, and CLapRID is
based on LapRLS.

5.1 A Toy Example
A toy example is given in Figure 1. The data set contains two

circles with random noise added. There are twenty points on the
big circle, and ten points on the small circle. We let CovTED and
CLapRID select 6 most informative points respectively. We use
the same gaussian kernel for the two algorithms. As can be seen,
all the points selected by CovTED are from the small circle, while
CLapRID selects 4 points from the big circle and 2 from the small
circle. The numbers beside the selected points denote their orders
to be selected. Clearly, the points selected by our CLapRID algo-
rithm can better represent the original data set. We did not compare
our algorithm with SVMactive, because SVMactive can not be ap-
plied in this case due to the lack of the labeled points.

5.2 Relevance Feedback Image Retrieval
The generic problem of image retrieval is the following. Given

a query image and an image database, return the most relevant im-
ages to the user. Relevance feedback is one of the most important
techniques to narrow down the gap between low level visual fea-
tures and high level semantic concepts [16]. A typical scenario for
relevance feedback in CBIR is as follows [26].

• Initially, the user submits a query image example to the CBIR
system. The system ranks the images in database according
to some pre-defined distance metric and presents to the user
the top ranked images.

• Then, the user is asked to provide relevance judgements on
some chosen images. The system uses the user’s provided
information to re-rank the images in database and returns to
the user the top images. This process continues until the user
is satisfied.

Active learning algorithms are applied to select the most infor-
mative images to label. Take our CLapRID algorithm as an exam-
ple. Firstly, we use CLapRID to select the most informative images
to label. After we get user’s feedback, relevant images are treated
as having a real value measurement 1, and irrelevant images as -1.
A linear function f(x) = ŵ

T
Lx can be learned based on LapRLS

as discussed in Section 3.1. Then, all the images in database are
re-ranked according to their function values.

5.3 Experimental Design
The image database we used consists of 7,700 images of 77 se-

mantic categories, from COREL data set. It is a large and heteroge-
neous image set. Figure 2 shows some sample images. In this work,
we combine 64-dimensional color histogram and 64-dimensional
Color Texture Moment (CTM) [22] to represent the images. The
color histogram is calculated using 4 × 4 × 4 bins in HSV space.
The Color Texture Moment is proposed by Yu et al. [22]. Then,
each image is represented as a 128-dimensional vector.
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(a) Data set
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(b) Data points chosen by CovTED
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(c) Data points chosen by CLapRID

Figure 1: Data selection by different active learning algorithms. The numbers beside the selected points denote their orders to be

selected.

(a) Bird (b) Dish (c) Surfing

Figure 2: Sample images from category Bird, Dish, and Surfing.

To exhibit the advantages of using our algorithm, we need a re-
liable way of evaluating the retrieval performance and the compar-
isons with other algorithms. We list different aspects of the experi-
mental design below.

5.3.1 Evaluation Metrics

We use precision-scope curve and precision rate [15] to evaluate
the effectiveness of the image retrieval algorithms. The scope is
specified by the number (N ) of top-ranked images presented to the
user. The precision is the ratio of the number of relevant images
presented to the user to the scope N . The precision-scope curve
describes the precision with various scopes and thus gives an over-
all performance evaluation of the algorithms. On the other hand,
the precision rate emphasizes the precision at a particular value
of scope. In general, it is appropriate to present 20 images on a
screen. Putting more images on a screen may affect the quality of
the presented images. Therefore, the precision at top 20 (N = 20)
is especially important.

In real world image retrieval systems, the query image is usually
not in the image database. To simulate such environment, we ran-
domly select 20 images per category as query images, and the other
images are used as the database for retrieval. The precision-scope
curve and precision rate are computed by averaging the results over
the 1540 (20×77) queries.

5.3.2 Automatic Relevance Feedback Scheme

We designed an automatic feedback scheme to model the re-
trieval process. For each submitted query, our system retrieves and
ranks the images in the database. At the beginning of retrieval,
the Euclidean distances in the original 128-dimensional space are

used to rank the images in database. To reduce the computational
cost, we select the most informative images from the top 300 im-
ages. For active learning algorithms (SVMactive, CovTED, and
CLapRID), 5 images are selected from the database for user label-
ing. For passive learning algorithms (LapRLS and SVM) the top 5
images are selected for labeling. The label information is used by
the system for re-ranking. Images which have been selected at pre-
vious iterations are excluded from later selections. For each query,
the automatic relevance feedback mechanism is performed for four
iterations.

5.4 Experimental Results
For CLapRID and LapRLS algorithms, we use the same graph

structure (Eq. 13) and set the value of p (number of nearest neigh-
bors) to be 5. The parameters α and β in our CLapRID algorithm
are empirically set to be 1e−3 and 1e−6. The parameter γ which
controls sparsity is set to be 1e9. We use Gaussian Kernel for all the
five algorithms. SVM and SVMactive are implemented based on
LIBSVM [6], and CLapRID is implemented based on SDPT3 [18].

Figure 3 shows the precision-scope curves of the five algorithms
for the four feedback iterations. It is important to note that, dur-
ing the retrieval process of each query, the user-labeled images at
the previous iterations are excluded from future retrieval. Because
SVMactive can only be applied when there is a initial classifier
available. It can not be applied at the first round and we use the
standard SVM to build the initial classifier. As can be seen, our
CLapRID algorithm outperforms the other four algorithms on the
entire scope.

By iteratively adding the user’s feedbacks, the corresponding
precision results (at top 10, top 20, and top 30) of the five algo-
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Table 1: Precision at top 20 returns of the five algorithms after the second feedback iteration. The highest precision is in bold for

each category.

Category SVM LapRLS SVMactive CovTED CLapRID Category SVM LapRLS SVMactive CovTED CLapRID

Antelope 0.12 0.13 0.15 0.17 0.21 Horse 0.71 0.86 0.72 0.92 0.90

Antique 0.35 0.48 0.37 0.42 0.62 Indoor decorate 0.19 0.50 0.20 0.39 0.57

Aquarelle 0.14 0.13 0.16 0.17 0.18 Jewelry 0.06 0.07 0.07 0.10 0.10

Balloon 0.24 0.25 0.27 0.40 0.41 Kungfu 0.88 0.79 0.89 0.89 0.89

Beach 0.13 0.13 0.13 0.14 0.15 Leopard 0.25 0.22 0.23 0.24 0.32

Bead 0.16 0.12 0.16 0.23 0.20 Lighthouse 0.10 0.06 0.10 0.11 0.10

Bird 0.05 0.05 0.06 0.07 0.06 Lion 0.28 0.28 0.26 0.29 0.31

Bobsled 0.22 0.25 0.25 0.31 0.34 Lizard 0.18 0.17 0.14 0.22 0.29

Bonsai 0.22 0.38 0.25 0.38 0.46 Marble 0.29 0.28 0.28 0.35 0.29

Building 0.08 0.13 0.08 0.12 0.13 Mask 0.32 0.44 0.32 0.43 0.57

Bus 0.35 0.40 0.33 0.35 0.44 Men 0.12 0.10 0.12 0.11 0.10

Butterfly 0.31 0.34 0.33 0.31 0.45 Model 0.11 0.13 0.12 0.15 0.16

Cactus 0.12 0.10 0.14 0.15 0.15 Mosaic 0.61 0.62 0.57 0.72 0.69

Canvas 0.31 0.27 0.27 0.39 0.35 Mountain 0.29 0.28 0.25 0.31 0.40

Cards 0.88 0.94 0.89 0.90 0.93 Old Car 0.41 0.39 0.38 0.41 0.45

Castle 0.17 0.17 0.16 0.09 0.15 Orbit 0.19 0.20 0.25 0.28 0.27

Cat 0.17 0.19 0.20 0.26 0.30 Owl 0.63 0.64 0.65 0.67 0.68

Cave 0.16 0.19 0.17 0.15 0.26 Penguin 0.20 0.22 0.18 0.17 0.20

Cell 0.36 0.41 0.44 0.54 0.51 Plane 0.12 0.09 0.11 0.13 0.11

Cougar 0.10 0.14 0.11 0.15 0.11 Postcard 0.74 0.83 0.75 0.87 0.91

Couples 0.08 0.08 0.08 0.10 0.11 Pyramid 0.46 0.49 0.49 0.59 0.66

Cuisine 0.44 0.51 0.40 0.61 0.57 Race Car 0.39 0.45 0.40 0.42 0.49

Dinosaur 0.96 0.96 0.97 0.92 1 Road Sign 0.16 0.18 0.20 0.26 0.23

Dish 0.65 0.80 0.67 0.76 0.84 Rodeo 0.46 0.48 0.45 0.52 0.58

Dog 0.10 0.14 0.11 0.12 0.12 Shell 0.14 0.16 0.13 0.16 0.16

Doll 0.53 0.53 0.53 0.75 0.74 Ship 0.31 0.37 0.31 0.35 0.42

Drink 0.31 0.41 0.35 0.43 0.49 Ski 0.21 0.20 0.22 0.24 0.21

Eagle 0.30 0.31 0.31 0.35 0.31 Stamp 0.43 0.53 0.40 0.55 0.61

Elephant 0.21 0.35 0.29 0.37 0.40 Sunset 0.46 0.46 0.45 0.63 0.62

Firework 0.44 0.45 0.44 0.60 0.48 Surfing 0.45 0.39 0.39 0.45 0.47

Fitness 0.75 0.80 0.76 0.69 0.94 Tiger 0.24 0.24 0.23 0.26 0.24

Flag 0.67 0.72 0.66 0.91 0.96 Tools 0.46 0.50 0.48 0.44 0.55

flower 0.39 0.38 0.43 0.55 0.57 Train 0.22 0.22 0.23 0.22 0.21

Forest 0.10 0.12 0.09 0.11 0.14 Tropical fish 0.29 0.35 0.30 0.37 0.38

Fox 0.07 0.06 0.07 0.10 0.10 Volcano 0.13 0.14 0.16 0.27 0.23

Fruit 0.44 0.50 0.41 0.51 0.62 Water fall 0.12 0.18 0.17 0.19 0.20

Fungus 0.09 0.12 0.10 0.13 0.11 Waves 0.29 0.29 0.29 0.32 0.37

Goat 0.14 0.13 0.14 0.12 0.15 Wolf 0.12 0.14 0.13 0.14 0.13

Gun 0.27 0.36 0.27 0.38 0.50

rithms are respectively shown in Figure 4. Again, CLapRID algo-
rithm performs the best in all the cases. Table 1 shows the precision
at top 20 returns after the second feedback iteration for all the 77
categories. As can be seen, the retrieval performance of all the algo-
rithms varies with the different categories. Among all the 77 cate-
gories, our CLapRID algorithm performs the best on 48 categories,
CovTED performs the best on 25 categories, LapRLS performs the
best on 4 categories, SVMactive performs the best on 2 categories,
and SVM performs the best on 1 category.

We summarize some important points as follows:

1. CLapRID outperforms the other four algorithms on the entire
scope and in every iteration.

2. Both CovTED and CLapRID are regression based algorithms,
and both select points to minimize the average variance of
prediction value. The difference is that CovTED is based
on a supervised learning algorithm (ridge regression) and

CLapRID is based on a semi-supervised learning algorithm
(LapRLS). The advantage of CLapRID compared with CovTED
shows that exploiting the manifold structure discovered from
both labeled and unlabeled data can improve the precision
significantly.

3. Both CovTED and CLapRID outperform SVMactive. This
indicates that, for image retrieval, active learning based on
regression is more effective than SVMactive. Compared with
SVM, SVMactive gained little improvement. The main rea-
son is that in our experiments, we excluded labeled images
at the previous iterations from future retrieval, which is the
key difference from previous studies [19, 20].

4. The precision rate of CovTED and CLapRID keep increasing
as more feedback is added. But for SVM and SVMactive,
the increase rate is very slow. For LapRLS, the precision

51



10 20 30 40 50 60 70 80

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Scope

P
re

c
is

io
n

 

 

CLapRID

LapRLS

CovTED

SVM

(a) First Iteration

10 20 30 40 50 60 70 80
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Scope

P
re

c
is

io
n

 

 

CLapRID

LapRLS

CovTED

SVM

SVM
active

(b) Second Iteration

10 20 30 40 50 60 70 80

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Scope

P
re

c
is

io
n

 

 

CLapRID

LapRLS

CovTED

SVM

SVM
active

(c) Third Iteration
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(d) Fourth Iteration

Figure 3: The average precision-scope curves of different algorithms for the four feedback iterations. The CLapRID algorithm

performs the best on the entire scope. Note that, at the first round of feedback, the SVMactive algorithm can not be applied.
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(b) Precision at Top 20
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(c) Precision at Top 30

Figure 4: Precision rate of the five learning algorithms at Top 10, 20 and 30. As can be seen, CLapRID consistently outperforms the

other four algorithms.
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rate even decreases after the second feedback iteration. This
phenomenon validates that the top images may not be the
most informative ones.

6. CONCLUSIONS
In this paper, we propose a novel active learning algorithm, called

Convex Laplacian Regularized I-optimal Design (CLapRID), for
relevance feedback image retrieval. Our algorithm is fundamen-
tally based on Laplacian Regularized Least Squares (LapRLS), and
motivated by many recent advances in experimental design [2, 14,
23, 24]. CLapRID makes use of both labeled and unlabeled points
to discover the intrinsic geometrical structure in the data. It se-
lects images to minimize average variance of prediction value, and
can be solved via semidefinite programming. Experimental results
on COREL database show that the proposed approach outperforms
Support Vector Machines [5], Laplacian Regularized Least Squares
[3], Support Vector Machine Active Learning [19,20], Convex Trans-
ductive Experimental Design [24].

In this paper we use I-optimal design criterion. However, other
classic optimal criteria, such as D-, A-, E-, and G-optimal designs,
can also be reformulated under this framework to reflect the under-
ling geometrical structure.
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