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ABSTRACT
Bag of features (BoF) representation has attracted an in-
creasing amount of attention in large scale image process-
ing systems. BoF representation treats images as loose col-
lections of local invariant descriptors extracted from them.
The visual codebook is generally constructed by using an
unsupervised algorithm such as K-means to quantize the lo-
cal descriptors into clusters. Images are then represented
by the frequency histograms of the codewords contained in
them. To build a compact and discriminative codebook,
codeword selection has become an indispensable tool. How-
ever, most of the existing codeword selection algorithms are
supervised and the human labeling may be very expensive.
In this paper, we consider the problem of unsupervised code-
word selection, and propose a novel algorithm called Dis-
criminative Codeword Selection (DCS). Motivated from re-
cent studies on discriminative clustering, the central idea
of our proposed algorithm is to select those codewords so
that the cluster structure of the image database can be best
respected. Specifically, a multi-output linear function is fit-
ted to model the relationship between the data matrix after
codeword selection and the indicator matrix. The most dis-
criminative codewords are thus defined as those leading to
minimal fitting error. Experiments on image retrieval and
clustering have demonstrated the effectiveness of the pro-
posed method.

Categories and Subject Descriptors
I.4.10 [Image Processing and Computer Vision]: Im-
age Representation—Statistical ; I.5.2 [Pattern Recogni-
tion]: Design Methodology—Feature evaluation and selec-
tion
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1. INTRODUCTION
With the continuous development of digital cameras, stor-

age devices and computer networks, large scale image li-
braries are available in various application areas. The de-
mands for managing image databases of ever-growing size
lead to a great amount of research into Content Based Image
Retrieval (CBIR) [5, 7, 32, 38]. In CBIR, images are usually
represented by the low level visual features (e.g., color, tex-
ture and shape) extracted from them, and relevant images
are retrieved based on the similarity of their visual features.
CBIR is attractive since it provides one way to access the
image database without manual annotation. However, as
the visual features are usually high-dimensional and non-
sparse, traditional CBIR systems suffer from the scalability
problem. Efficient indexing and retrieval schemes remain
the key factors for making CBIR a real-world technique.

Motivated by the success of text information retrieval,
many existing CBIR systems rely on the bag of features
(BoF) representation. The basic idea of BoF is to treat each
image as a loose collection of local invariant descriptors (e.g.,
SIFT [23]) extracted from keypoints [18]. And a visual code-
book is constructed by quantizing these local descriptors into
clusters using an unsupervised algorithm such as K-means.
The cluster centers are called codewords, analogous to the
words in text documents. By mapping the descriptors in
an image to the codewords, an image is then represented
by the frequency histogram over the codebook [16]. In this
way, the existing methods for text retrieval, such as inverted
indexing, can be naturally applied to CBIR. Recent stud-
ies [17, 26, 27, 31, 36, 41] have shown that the BoF model
is promising in both performance and scalability for image
clustering and retrieval, object recognition, and video event
detection.

The quality of the codebook is essential for the BoF-based
systems [39,43]. A small codebook may be lack of discrimi-
native power, because dissimilar descriptors may be mapped
to the same codeword. On the other hand, a large code-
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(a) Before codeword selection.

(b) After codeword selection by the method proposed in this paper.

Figure 1: An illustration of the role of codeword selection. There are three images selected from the Corel
image database: the first and fourth images belong to the Eagle category and the third image is the same
as the first one. The second image belongs to the Horse category. SIFT descriptors are extracted from each
image and are indicated by the green squares on the images. Initially, a codebook of size 1000 is constructed
by using the K-means clustering algorithm. (a) Using the original codebook, we connect descriptors mapped
to the same codeword with red lines. Although the first two images belong to different categories, there are
a large number of connected lines between them. (b) After codeword selection by the method proposed in
this paper, the number of connected lines between the first two images decreases greatly, whereas there is
still a large number of connected lines between the last two images.

book may cause the problem that similar descriptors are
mapped to different codewords. Notice that the dimension
of the frequency histograms in BoF representation is equal
to the size of the codebook. A large number of codewords
not only requires more storage and computation resources,
but also degrades the performance of many machine learn-
ing algorithms, due to the curse of dimensionality [13]. To
resolve these problems, codeword selection has become an
indispensable tool for building a compact and discrimina-
tive visual codebook.

Fig. 1 shows an illustrative example from our experimental
evaluation. In this example, there are three images selected
from the Corel image database: two from the Eagle cate-
gory and one from the Horse category. SIFT descriptors are
extracted for each image, and their positions are indicated
by the green squares drawn on each image. Initially, a code-
book of size 1000 is constructed for the BoF representation,
and the SIFT descriptors mapped to the same codeword are
connected with the red lines. As can be seen from Fig. 1(a),
although the first two images belong to different categories,
there are a large number of common codewords (connected
by red lines) shared by the two images. This is probably
due to the interference of the background. Note that, the
numbers of extracted SIFT descriptors for the first (also the
third), second, and fourth images are 245, 344, and 337, re-
spectively. For the sake of clarity, we only show those SIFT
descriptors corresponding to common codewords. Fig. 1(b)
shows the results after codeword selection by the method
proposed in this paper. As can be seen, a majority of the
codewords shared by the first two images are removed, and
for the last two images selected from the Eagle category,
there are still many codewords shared by them. Thus, the

new codebook after codeword selection becomes more com-
pact and has more discriminating power.

However, most of the existing codeword selection algo-
rithms [11,18,19,24,29,37] are supervised, which largely lim-
its their applicability in a variety of applications. With the
growth of the number of images, providing label information
to guide the selection of discriminative codewords becomes
infeasible in both time and cost-wise. In this paper, we con-
sider the problem of unsupervised codeword selection for im-
age representation. Inspired by the discriminative clustering
framework [1], a novel unsupervised algorithm named Dis-
criminative Codeword Selection (DCS) is proposed. DCS
fits a linear function to model the relationship between the
data matrix after codeword selection and the indicator ma-
trix. The resulting fitting error can be written in closed
form, and is dependent on the selected codewords and the
indicator matrix. The most discriminative codewords are
thus defined as those which lead to minimal fitting error.
An efficient sequential approach is developed to solve the
optimization problem of DCS.

The outline of the paper is as follows. In Section 2, we
review the related work in codeword selection and feature
selection. Our proposed Discriminative Codeword Selection
(DCS) is introduced in Section 3. In Section 4, we develop
a computational scheme to solve the optimization problem.
Experiments are presented in Section 5. Finally, we provide
some concluding remarks and suggestions for future work in
Section 6.

Notation. Small letters (e.g. α) are used to denote
scalars. Lower-case bold letters (e.g. w) are used to de-
note column vectors and ‖ · ‖ is used to denote the �2-norm
of a vector. Capital letters (e.g. A) are used to denote ma-
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trices. We use Tr(·) to denote the trace of a matrix, and
‖ · ‖F to denote the Frobenius norm of a matrix. Diag(·)
denotes a diagonal matrix formed from its vector argument,
and diag(·) denotes a column vector consisting of the di-
agonal elements of its matrix argument. Let � denote the
associated generalized inequality of the positive semidefinite
cone: A � B means A−B is a positive semidefinite matrix.
Script capital letters (e.g. C) are used to denote ordinary
sets.

2. RELATED WORK
In this section, we give a brief review of the existing code-

word selection algorithms. Since many codeword selection
algorithms are based on the feature selection techniques, we
begin with a discussion of feature selection.

2.1 Feature Selection
In real applications, dimensionality reduction techniques

[9,20,21,30,34] are widely used to deal with the curse of di-
mensionality [13]. Among various methods, feature selection
reduces the dimensionality by choosing a subset of revelent
features for compact representation [12]. Two types of fea-
ture selection techniques have been studied: supervised and
unsupervised.

The typical approach for supervised feature selection is to
evaluate the correlation between features and labels to de-
termine their relevance. Pearson correlation, Fisher score,
Kolmogorov-Smirnov test and Information Gain [10] are sev-
eral popular methods. More advanced supervised techniques
leverage some supervised learning models to select the most
useful features. Linear regression based feature selection [35]
and Support Vector Machine (SVM) based feature selec-
tion [28] have received a lot of attention in recent years. For
example, in the Enhanced Biologically Inspired Model [15],
SVM and AdaBoost are combined to select the effective fea-
tures.

Due to the lack of labels, unsupervised feature selection is
much harder. Existing unsupervised feature selection tech-
niques can be classified into two categories. The first cat-
egory exploits the geometrical structure of the data space
to guide the selection [3, 14, 25]. The typical algorithms in
this category include maximum variance, unsupervised fea-
ture selection for PCA [3] and Laplacian score [14]. Maxi-
mum variance selects features with the largest variances and
unsupervised feature selection for PCA selects a subset of
features that can best reconstruct other features. Different
from these two methods, Laplacian score [14] selects features
that best preserve the local geometrical structure. The sec-
ond category of unsupervised feature selection techniques
aims to maximize some clustering performance [2,6,40]. For
example, Q − α [40] measures the cluster coherence by an-
alyzing the spectral properties of the affinity matrix. A re-
markable property of this algorithm is that it always yields
sparse solutions.

2.2 Codeword Selection
The goal of codeword selection is to remove the redun-

dancy and noise in the codebook, which is usually con-
structed by using an clustering algorithm. Since each code-
word corresponds to one feature in the frequency histogram,
feature selection techniques can be used for codeword selec-
tion.

In [18], three feature selection methods: mutual informa-
tion (MI), odds ratio (OR) and linear SVM weights (LSVM)
are used to select the most informative codewords. The cri-
terion of information gain (IG) is used in [29] to select the
codewords that are most informative about specific location.
As more images can be utilized, the retrieval performance
of city-scale location recognition is significantly improved.
An entropy-based minimum description length (MDL) cri-
terion is proposed in [19] for simultaneous classification and
codeword selection.

In [37], a boosting feature selection approach is proposed
to select the most discriminative codewords from a multi-
resolution codebook. The key idea is to associate each weak
classifier with a codeword, and the selection of codeword can
be achieved by the selection of the weak classifier. Code-
word selection is formulated as a multi-subset search prob-
lem in [11], and a novel region selection algorithm is pro-
posed to identify region types that are frequently found in
a particular class of scenes but rarely exist in other classes,
and also consistently occur together in the same class of
scenes. The work in [24] introduces one online codeword
selection algorithm based on the dual-gradient descent ap-
proach. Side information in the form of pairwise constraints
(must-link and must-not link) is required for this algorithm.
A subset of codewords is selected such that the distance com-
puted using them satisfies the given pairwise constraints.
The work in [44] considers finding the Descriptive Visual
Words (DVWs) and Descriptive Visual Phrases (DVPs) for
each image category.

3. DISCRIMINATIVE CODEWORD SELEC-
TION

3.1 Problem Formulation
Let I = {I1, · · · , Im} be the given set of m images, which

is represented over a visual codebook C = {c1, · · · , cn}. The
goal of codeword selection is to identify a subset of code-
words D = {d1, . . . ,dk} ⊂ C that are most informative for
describing the image set I.

By mapping the descriptors in an image to the codewords,
an image can be represented by the frequency histogram
over the codebook C. Then, image Ii is represented by a
vector xi ∈ R

n. Let F = [xT
1 ; · · · ;xT

m] ∈ R
m×n be the data

matrix consisting of all the images, where the i-th row is xT
i .

We denote the j-th column (feature) of F by fj , and define
the feature set F = {f1, . . . , fn}. Notice that, there exists
a one-to-one correspondence between the codebook C and
the feature set F . Thus, the problem of codeword selection
can be cast as the problem of selecting the most informative
feature subset H = {h1, . . . ,hk} ⊂ F .

3.2 The Objective
In this paper, we propose to perform codeword selection

under the discriminative clustering framework [1]. The goal
is to select the codeword subset D (or equivalently the fea-
ture subset H), such that the performance of discriminative
clustering is the best.

Suppose the given images belong to r clusters, we use
an indicator matrix Y ∈ {0, 1}m×r to denote the clustering
result, where Yij = 1 if xi is assigned to the j-th cluster,
and Yij = 0 otherwise. Let H = [h1, . . . ,hk] ∈ R

m×k denote
the new data matrix containing the selected features only.
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We consider fitting a multi-output linear function f(H) =
HW + 1mbT to model the relationship between H and Y .
In this linear function, 1m is a m-dimensional vector of all
ones, W ∈ R

k×r is the coefficient matrix, and b ∈ R
r is

the intercept. Following ridge regression [13], fitting this
function can be mathematically formulated as

min
W,b
‖Y −HW − 1mbT ‖2F + α‖W‖2F (1)

where ‖ · ‖F denotes the matrix Frobenius norm, and α ≥ 0
is the trade-off parameter for the regularizer ‖W‖2F .

Taking the first order partial derivatives of Eq. (1) with
respective to W , b and requiring them to be zero, we get
the optimal W ∗ and b∗:

W ∗ = (HTΠH + αI)−1HTΠY (2)

b∗ =
1

m

(
Y T − (W ∗)THT )1m (3)

where I is the identity matrix and Π = I − 1
m
1m1T

m is the
centering matrix. To simplify the presentation, we assume
that the data has zero mean, so that we have

ΠH = H (4)

Substituting the values of W ∗ and b∗ into Eq. (1), we
obtain the fitting error of the estimated linear function [1]:

J(Y,H)

=‖Y −HW ∗ − 1m(b∗)T ‖2F + α‖W ∗‖2F

=

∥∥∥∥Y −HW ∗ − 1m1T
m

m
(Y −HW ∗)

∥∥∥∥
2

F

+ α‖W ∗‖2F

=‖Π(Y −HW ∗)‖2F + α‖W ∗‖2F
=‖Π(I −H(HTH + αI)−1HT )Y ‖2F

+ α‖(HTH + αI)−1HTY ‖2F
=Tr

(
Y T (Π−H(HTH + αI)−1HT )2Y )

+ αTr
(
Y TH(HTH + αI)−2HTY

)
=Tr

(
Y T (Π−H(HTH + αI)−1HT )Y )

(5)

In the above derivation, we have used the fact that the cen-
tering matrix is idempotent, that is, Π = Πk for k = 1, 2, · · · .
Following the Woodbury-Morrison formula [33], Eq. (5) can
be simplified as [1]:

Tr
(
Y T (Π−H(HTH + αI)−1HT )Y )

=Tr
(
Y TΠ

(
I −H(HTH + αI)−1HT )ΠY

)
=Tr

(
Y TΠ(I +

1

α
HHT )−1ΠY

)
=αTr

(
Y TΠ(αI +HHT )−1ΠY

)
(6)

As can be seen, the fitting error J(Y,H) contains Y and
H as the variables. Then, it is natural to require that a good
indicator matrix Y and the sub-matrix H lead to minimal
J(Y,H). In other words, we are looking for a feature subset
H, such that if the data is represented by these features, the
performance of discriminative clustering is the best.

In the following, we give a mathematical formulation of
our codeword selection problem. The constraint that Y is
a m × r indicator matrix is equivalent to the following two

constraints:

Y ∈ {0, 1}m×r, Y 1r = 1m (7)

By introducing a n-dimensional vector λ = [λ1, · · · , λn]
T ∈

{0, 1}n, where λi indicates whether or not feature fi is cho-
sen, we have

HTH =
k∑

i=1

hih
T
i =

n∑
i=1

λifif
T
i (8)

To ensure that k features are selected, the following con-
straints should be added

1T
nλ = k (9)

Then, our codeword selection problem is formally stated be-
low:

Definition 1. Discriminative Codeword Selection (DCS):

min
Y,λ

Tr
(
Y TΠ(

∑n
i=1 λifif

T
i + αI)−1ΠY

)
s. t. Y ∈ {0, 1}m×r, Y 1r = 1m

λ ∈ {0, 1}n, 1T
nλ = k

(10)

4. OPTIMIZATION
The problem (10) is difficult to solve due to its combi-

natorial nature. In this section, we develop a sequential
algorithm to find a sub-optimal solution.

Let (Y ∗,λ∗) be the optimal solution of the problem (10).
Initially, we solve the standard discriminative clustering prob-
lem [1] with all the features selected. The resulting indicator
matrix E can be used as a good estimation of Y ∗. Then, by
fixing Y = E, we solve the problem (10) to find the k most
discriminative features.

4.1 Estimation of the Optimal Indicator Ma-
trix

Our goal in this step is to find a good estimation E of the
optimal indicator matrix Y ∗, which can be used to guide
the search of the most discriminative features. Without any
prior knowledge, one natural choice is to solve the origi-
nal discriminative clustering problem. Setting λ = 1n, the
problem (10) becomes

min
Y

Tr
(
Y TΠ(

∑n
i=1 fif

T
i + αI)−1ΠY

)
s. t. Y ∈ {0, 1}m×r, Y 1r = 1m

(11)

In the following, we adopt the optimization procedure pro-
posed in [1] to solve the above problem. Instead of comput-
ing Y , we introduce the variable M = Y Y T . Using the
fact that Tr(AB) = Tr(BA), the objective function in the
problem (11) becomes:

Tr

(
Π(

n∑
i=1

fif
T
i + αI)−1ΠM

)
(12)

Following [1], we replace the constraint that M is the prod-
uct of a m × r indicator matrix and its transpose with the
following constraints:

diag(M) = 1m, M � 1

r
1m1T

m, M ≥ 0 (13)

Define A = Π(
∑n

i=1 fif
T
i + αI)−1Π. We have the following

optimization problem:

min
M

Tr(AM)

s. t. diag(M) = 1m, M � 1
r
1m1T

m, M ≥ 0
(14)
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The above problem is a Semidefinite Program (SDP), and
can be solved by general purpose interior-point methods [4].
However, directly solving the problem (14) has the com-
plexity of O(m7), which is too slow for large scale data set.
In [1], Bach and Harchaoui have proposed a more efficient
approach by solving the following partial dual problem of
(14):

max
a,b,c,D

min
M

Tr
((

A+ f(a,b, c,D)
)
M
)
− g(a,b, c,D)

s. t. M � 0, Tr(M) = m

f(a,b, c,D) = Diag(a) + bbT

2c
−D

g(a,b, c,D) = aT1m + bT1m + cr
2

c ≥ 0, D ≥ 0

(15)

where the variables a ∈ R
m, (b ∈ R

m, c ∈ R+) and D ∈
R

m×m
+ are the dual variables of the constraints diag(M) =

1m, M � 1
r
1m1T

m and M ≥ 0. The problem (15) can be

solved more efficiently due to the fact that min
M

Tr
((

A +

f(a,b, c,D)
)
M
)
can be solved simply through an eigenvalue

decomposition.
Denote the optimal solution of (15) by M∗. The discrete

indicator matrix E are recovered as follows:

1. Computing the first r eigenvectors of M∗, and forming
a matrix Z by stacking the eigenvectors in columns;

2. Rescaling the rows of Z to unit norms and then per-
form K-means to obtain E.

For details, please refer to [1].

4.2 Selecting the Most Discriminative Features
After solving the discriminative clustering problem, we

obtain the indicator matrix E. Substituting Y = E into the
problem (10), we get the following problem:

min
λ

Tr
(
ETΠ(

∑n
i=1 λifif

T
i + αI)−1ΠE

)
s. t. λ ∈ {0, 1}n, 1T

nλ = k
(16)

where the value of λi indicates whether or not feature fi is
chosen as the most discriminative one. This problem is still
difficult to solve due to the integer constraint λ ∈ {0, 1}n.

In the following, we introduce an efficient sequential ap-
proach to find the k most informative features. For concise-
ness, we firstly update E by centering its columns:

E ← ΠE (17)

Suppose a set of t features Ht = {h1, · · · ,ht} ⊆ F have
been selected as the t most discriminative ones, and define
Ht = [h1, · · · ,ht]. The (t+1)-th feature ht+1 can be found
by solving the following problem:

min
f

Tr
(
ET (HtH

T
t + ffT + αI)−1E

)
s. t. f ∈ F \ Ht

(18)

The most expensive calculation in (18) is the matrix in-
verse (HtH

T
t +ffT+αI)−1, which need be computed for each

f ∈ F \Ht. We use the Woodbury-Morrison formula [33] to
avoid directly inverting a matrix. Let P = (HtH

T
t + αI)−1,

we have

(HtH
T
t + ffT + αI)−1

=(HtH
T
t + αI)−1

− (HtH
T
t + αI)−1ffT (HtH

T
t + αI)−1

1 + fT (HtHT
t + αI)−1f

=P − PffTP

1 + fTP f

(19)

Then, the objective function of (18) can be rewritten as

Tr
(
ET (HtH

T
t + ffT + αI)−1E

)
=Tr

(
ET

(
P − PffTP

1 + fTP f

)
E

)

=Tr(ETPE)− Tr(ETPffTPE)

1 + fTP f

=Tr(ETPE)− fTPEETP f

1 + fTP f

=Tr(ETPE)− ‖E
TP f‖2

1 + fTP f

(20)

Notice that Tr(ETHE) is a constant when selecting the
(t + 1)-th feature. The optimization problem (18) can be
simplified as

max
f

‖ETP f‖2/(1 + fTP f)

s. t. f ∈ F \ Ht

(21)

After we have obtained the (t+ 1)-th point ht+1 by solving
the problem (21), the matrix P can be updated as

P ← (HtH
T
t + ht+1h

T
t+1 + αI)−1 (22)

where the matrix inverse can be computed according to (19).
The above process is repeated until we have selected k

features. In the beginning, there are no features selected.
Therefore, we set P = (αI)−1 = 1

α
I.

5. EXPERIMENTAL RESULTS
In this section, we investigate the use of our proposed

codeword selection algorithm for image retrieval and clus-
tering.

5.1 Experimental Setting
Two image databases are used in our experiments. The

first one is a subset of 4970 images from the Corel image
database. This image subset contains 50 categories and the
images are evenly divided among them. We denote this data
set by Corel50. The second data set consists of the 10 largest
categories, except the BACKGROUND Google category, in
the Caltech-101 object database [8]. This subset contains
3044 images, and is referred to as Caltech10. Fig. 2 shows
some sample images from the Corel50 and Caltech10 image
data sets.

The SIFT1 descriptors [23] are extracted from each image.
Each descriptor is represented using a 128-dimensional vec-
tor. We adopt the fast K-means [27] provided by the Visual
Geometry Group2 to generate the codewords for each image

1An implementation can be downloaded from http://www.
vlfeat.org/~vedaldi/code/sift.html.
2An implementation can be downloaded from http://www.
robots.ox.ac.uk/~vgg/software/fastcluster/.
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(a) Samples images from Corel50 (b) Samples images from Caltech10

Figure 2: Sample images from the Corel50 and Caltech10 image data sets.

database. The number of SIFT descriptor extracted from
the Corel50 data set is 1,755,935 and 1000 codewords are
generated. By assigning the descriptors to the closest code-
words, each image in Corel50 is represented by one 1000-
dimensional frequency histogram according to the count of
each codeword. For the Caltech10 data set, the number of
SIFT descriptor is 555,292 and 500 codewords are gener-
ated. Thus, each image in Caltech10 is represented by one
500-dimensional frequency histogram.

In the following, several experiments were performed to
show the effectiveness of our proposed DCS for unsuper-
vised codeword selection. These experiments include image
retrieval and image clustering. The following three codeword
selection algorithms are compared:

• Discriminative Codeword Selection (DCS)3. The
unsupervised codeword selection algorithm introduced
in this paper.

• Codeword selection based on the Q−α algorithm [40].
Q−α is a unsupervised feature algorithm which selects
features to maximize the cluster coherence.

• Codeword selection based on the Unsupervised Fea-
ture Selection using Feature Similarity (FSFS)
[25]. FSFS4 uses feature similarity for redundancy re-
duction.

We also provided the results of the Baseline method, which
uses the original codebook without codeword selection. We
compare our proposed approach with Q − α since both of
these two approaches aim at discovering the cluster struc-
ture of the image database. We compare with FSFS since
it has been shown that FSFS is superior to many existing
unsupervised feature selection methods such as correlation
coefficients and sometimes even better than supervised fea-
ture selection methods such as Relief-F [25].

5.2 Image Retrieval
We perform image retrieval experiments on the Corel50

image database. Precision is used to evaluate the effec-
tiveness of different codeword selection algorithms. The
precision at top N is defined as the ratio of the relevant

3The implementation is based on the code for discrimina-
tive clustering (http://www.di.ens.fr/~fbach/diffrac/
index.htm).
4An implementation can be downloaded from http://www.
facweb.iitkgp.ernet.in/~pabitra/paper.html.

images presented to the user in the top N ranked images.
Each image in the Corel50 database is used as a query im-
age, and the other images are ranked according to the their
Euclidean distances to the query image. For Baseline, the
Euclidean distances are computed using the original 1000-
dimensional frequency histogram. For Q − α, FSFS and
DCS, a given number (k = 100, 200, · · · , 900) codewords are
selected. Then, the part of the original frequency histogram
that corresponds to the selected codewords, is used to de-
scribe each image. Thus, after codeword selection, the calcu-
lation of Euclidean distances will be much faster. The final
precision rate is computed by averaging the results over the
4970 queries.

Fig. 3 shows the average precision (at top 20, 40 and 60)
versus the number of the selected codewords. As can be
seen, our DCS algorithm significantly outperforms the other
algorithms in most cases. DCS is very effective in select-
ing those discriminative visual codewords. With only 100
codewords (selected by DCS), the retrieval performance is
almost the same as using all the 1000 codewords. Q − α
performs the second best. The accuracy of Q− α is similar
to that of DCS when the number of the selected codewords
is more than 600. When the number of the selected code-
words is more than 400, the accuracy of Q − α is better
than Baseline. However, when the number of codewords is
smaller than 600, its performance decreases drastically as
the number of codewords reduces.

The advantage of DSC and Q − α compared with Base-
line validates that codeword selection not only reduces the
computational cost, but also has the ability to improve the
performance. The performance of FSFS is worse than the
Baseline in this experiment. This is probably because FSFS
can only remove the redundant codewords, and fails to re-
move the noisy ones. One common property of Q − α and
DCS is that they both aim to maximize the performance of
clustering. Thus, the clustering guided codeword selection
is more effective for image retrieval. Since DCS is optimized
for the discriminative clustering criterion, DCS can select
those codewords with higher discriminative power and has
higher retrieval performance.

In general, it is appropriate to present 20 images on a
screen. Putting more images on a screen may affect the
quality of the presented images. Therefore, the precision at
top 20 is especially important. Table 1 shows the average
precision at top 20 for the 50 categories. Q − α, FSFS and
DCS are applied to selecting 300 codewords in this table.
Considering only the three codewords selection methods, our
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Figure 3: The results of image retrieval on the Corel50 image database. The figures show the average precision
versus the number of the selected codewords.

Table 1: Precision (%) at top 20 returns of the four algorithms. For Q − α, FSFS and DCS, 300 codewords
are selected. The highest precision achieved by the three codeword selection algorithms is in bold for each
category.

Category Baseline Q− α FSFS DCS Category Baseline Q− α FSFS DCS
Antelope 1.80 2.65 3.25 4.30 Doll 51.25 46.35 43.55 46.95
Antique 7.60 7.00 7.05 11.10 drink 22.80 13.20 16.50 16.10
aquarelle 8.05 5.90 6.05 9.55 Eagle 17.35 13.05 13.65 14.40
Balloon 4.75 4.95 3.75 5.80 Easter Egg 42.60 47.00 24.95 41.70
Beach 3.10 4.05 3.65 3.80 elephant 1.30 2.65 3.40 6.35
bead 29.50 47.70 31.40 33.25 Firework 39.60 25.35 25.70 49.85
Bird 4.70 3.95 3.40 3.85 Fitness 51.95 34.25 35.10 47.40

Bobsled 4.35 4.05 3.30 5.30 Flag 36.05 30.45 39.65 42.80
Bonsai 6.45 12.85 5.50 13.10 flower 8.20 15.50 6.95 12.60
Building 5.00 3.75 3.20 6.15 Forest 4.50 7.85 3.75 9.30

Bus 8.45 11.65 11.15 20.45 Fox 1.00 1.10 1.45 2.85
Butterfly 2.95 3.50 2.50 4.40 Fruit 17.15 11.55 12.25 20.50
cactus 1.95 3.00 1.85 2.50 Fungus 3.30 5.30 3.95 3.75
Canvas 2.40 5.05 2.75 6.60 Goat 1.35 2.05 1.05 2.85
Cards 71.30 53.95 74.20 64.85 Gun 32.05 18.25 26.70 32.90
Castle 0.55 2.05 0.85 2.10 Horse 6.85 4.40 6.75 11.35
Cat 5.90 6.60 9.05 17.05 Indoor decorate 10.55 3.30 8.85 18.30
Cave 4.75 3.85 4.70 6.10 Jewelry 25.80 10.95 13.40 21.50
Cell 20.75 16.75 11.55 23.10 KungFu 57.20 50.05 56.05 50.70
cougr 1.20 2.50 2.50 2.35 Leopard 3.55 2.60 1.55 7.55

Couples 0.70 1.55 0.30 1.95 LightHouse 4.00 5.10 2.75 5.10
Cuisine 6.30 3.00 6.45 7.40 Lion 2.45 3.80 3.45 7.95
Dinosaur 60.65 54.15 45.65 68.50 Lizard 12.80 11.00 10.45 14.50
Dish 29.75 32.25 19.80 30.45 Marble 11.15 16.90 8.95 11.90
Dog 1.35 2.00 2.05 3.30 Mask 33.20 27.00 21.85 40.80

DCS performs the best on 37 categories, Q−α performs the
best on 11 categories, and FSFS performs the best on 4
categories.

5.3 Image Clustering
In this section, we show the experimental results of image

clustering. Firstly, we introduce the evaluation metrics used
in the experiments.

5.3.1 Evaluation Metric
Two metrics, the accuracy (AC) and the normalized mu-

tual information (MI), are used to measure the clustering
performance [42]. Given an image xi, let pi and qi be the ob-
tained cluster label and the label provided by the database,

respectively. The AC is defined as follows:

AC =

∑m
i=1 δ(qi,map(pi))

m
, (23)

where m is the total number of images, δ(x, y) is the delta
function that equals one if x = y and equals zero other-
wise, and map(pi) is the permutation mapping function that
map each cluster label pi to the equivalent label from the
database. The best mapping can be found by using the
Kuhn-Munkres algorithm [22].

Let C denote the set of clusters provided by the database
and C′ obtained from the clustering algorithm. Their mu-
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Figure 4: Clustering performance measured in terms of accuracy on the Caltech10 image database. The
figures show the average accuracy versus the number of clusters.
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300 codewords selected.

Figure 5: Clustering performance measured in terms of normalized mutual information on the Caltech10
image database. The figures show the average normalized mutual information versus the number of clusters.

Table 2: Clustering performance on the Caltech10 image database. For Q−α, FSFS and DCS, 200 codewords
are used. The highest accuracy (normalized mutual information) achieved by the three codeword selection
algorithms is in bold for each number of clusters.

Number of Clusters
Accuracy (%) Normalized Mutual Information (%)

Baseline Q− α FSFS DCS Baseline Q− α FSFS DCS
2 68.76 67.38 67.52 68.59 24.79 19.93 17.79 23.01
3 66.76 64.11 59.29 67.27 34.72 28.42 23.97 34.21
4 56.45 53.09 54.00 57.26 33.97 26.11 28.35 32.81
5 53.81 52.04 52.84 54.60 36.69 26.61 31.42 35.96
6 51.91 49.36 50.04 51.83 37.44 28.64 31.52 36.36
7 47.43 43.38 45.58 45.76 38.22 26.33 32.04 35.62
8 45.97 42.15 43.94 44.30 38.94 26.81 32.69 36.46
9 45.98 39.81 43.70 44.05 39.73 26.39 33.38 36.62

Avg. 54.63 51.41 52.11 54.21 35.56 26.15 28.89 33.88

tual information metric MI(C,C′) is defined as following:

MI(C,C′) =
∑

ci∈C, c′j∈C′
p(ci, c

′
j). log2

p(ci, c
′
j)

p(ci).p(c′j)
, (24)

where p(ci) and p(c′j) are the probabilities that an image
arbitrarily selected from the database belongs to the clusters
ci and c′j , respectively, and p(ci, c

′
j) is the joint probability

that the arbitrarily selected image belongs to the cluster ci
as well as c′j at the same time. In our experiments, we use

the normalized mutual information MI as follows:

MI =
MI(C,C′)

max(H(C), H(C′))
(25)

where H(C) and H(C ′) are the entropies of C and C′, re-
spectively. It is easy to check that MI takes values between
0 and 1.

5.3.2 Clustering Results
The image clustering experiments are performed on the

Caltech10 image database. For the Baseline algorithm, we
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cluster the images using the original 500-dimensional fre-
quency histogram. For Q − α, FSFS and DCS, a given
number (k = 100, 200, 300) codewords are selected. After
codeword selection, each image is represented by the part of
the original frequency histogram that corresponds to the se-
lected codewords. And the clustering experiments are con-
ducted with this new representation. In the experiments,
K-means is used as the clustering algorithm. Because the
procedure for solving K-means can only find the local op-
timum, we ran K-means 10 times with different random
starting points and the best result in terms of the objective
function of K-means was recorded.

The evaluations were conducted with different number of
clusters c, ranging from 2 to 9. At each run of the test,
c clusters are randomly selected from the whole database.
For each given cluster number c, 10 test runs are conducted,
and the average performance was computed over these 10
tests. Fig. 4 shows the average accuracy versus the number
of the selected clusters. As can be seen, DCS outperforms
the other two codeword selection algorithms in all the cases.
With only 200 codewords selected, the accuracy achieved by
DCS is better than or comparable to that of Baseline. In
terms of accuracy, the performance of Q − α and FSFS is
very close. The clustering performance measured by normal-
ized mutual information is shown in Fig. 5. Our DCS still
outperforms Q − α and FSFS, and the advantage becomes
more obvious. Table 2 shows the detailed clustering results
for each algorithm with 200 codewords selected. With all
the 500 codewords, the baseline achieves 54.63% in terms of
accuracy and 35.56% in terms of normalized mutual infor-
mation on average. By using only 200 selected codewords,
DCS can achieve 54.21% in terms of accuracy (4% relative
improvement over FSFS) and 33.88% in terms of normal-
ized mutual information (17.2% relative improvement over
FSFS).

6. CONCLUSIONS AND FUTURE WORK
In this paper, a novel unsupervised codeword selection al-

gorithm called Discriminative Codeword Selection (DCS) is
proposed. DCS uses the performance of discriminative clus-
tering, a recently proposed unsupervised clustering frame-
work, to guide the selection of the most discriminative code-
words. As a result, DCS can select those features with most
discriminative power. Image retrieval and clustering exper-
iments on two standard image databases show the effective-
ness of our proposed approach.

Because the objective function of DCS contains the indica-
tor matrix as a variable, DCS can be easily extend to incor-
porate the prior knowledge to the indicator matrix. We will
investigate this in our future work. More advanced methods
for solving the optimization problem will be studied too.
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