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a b s t r a c t

Due to its wide applications in information retrieval, document summarization is attracting increasing
attention in natural language processing. A large body of recent literature has implemented document
summarization by extracting sentences that cover the main topics of a document with a minimum
redundancy. In this paper, we take a different perspective from data reconstruction and propose a novel
unsupervised framework named Document Summarization based on Data Reconstruction (DSDR).
Specifically, our approach generates a summary which consist of those sentences that can best
reconstruct the original document. To model the relationship among sentences, we firstly introduce
the linear reconstruction which approximates the document by linear combinations of the selected
sentences. We then extend it into the non-negative reconstruction which allows only additive, not
subtractive, linear combinations. In order to handle the nonlinear cases and respect the geometrical
structure of sentence space, we also extend the linear reconstruction in the manifold adaptive kernel
space which incorporates the manifold structure by using graph Laplacian. Extensive experiments on
summarization benchmark data sets demonstrate that our proposed framework outperform state of
the art.

& 2015 Published by Elsevier B.V.

1. Introduction

With the explosion of the textual information on the World
Wide Web, people are overwhelmed by innumerable accessible
documents. This means that we are in great need for technologies
like document summarization that can better help users digest the
information on the Web. Summarization techniques address this
problem by condensing the document into a short piece of text
covering the main topics. For example, search engines can provide
users with snippets as the previews of the document contents, and
help them to find the desired document. News sites usually
describe hot news topics in concise headlines to facilitate browsing
all news. Both the snippets and headlines are specific forms of
document summary in real applications. Especially in the micro-
blogging services, such as Twitter, Weibo and Tumblr, a hot topic
can yield millions of short massages including enormous noises and
redundancies. The possible solution is to summarize the massive
tweets into a set of short text pieces covering the main topics [1].

Document summarization can be categorized as abstractive sum-
maries or extractive summaries. Given a document, the abstractive

summary is generated from complex natural language processing like
information fusion, sentence compression and reformulation.
Obviously, it is a difficult task for computer to automatically generate
a satisfactory summary by abstraction. So the common practice is to
perform extractive summarization in which a subset of existing
sentences is used to form a final summary. Most of the existing
generic summarization approaches use a ranking model to select
sentences from a candidate set [2–4]. But these methods suffer from
the redundancy problem in that top ranked sentences usually share
much information in common. Although there are some methods
[5–7] trying to reduce the redundancy, selecting sentences which have
both good information coverage and minimum redundancy is a non-
trivial task.

The motivation of our work is that the traditional methods usually
solve the document summarization as a natural language problem
rather than a data reconstruction problem although the second has
been explored greatly in the literature of machine learning such as
dimension reduction and feature selection. So in this paper, we
propose a novel unsupervised summarization framework from the
perspective of data reconstruction. As far as we know, our work is the
first to treat the document summarization as a data reconstruction
problem. We argue that a good summary should consist of those
sentences that can best reconstruct the original document. Therefore,
the reconstruction error becomes a natural criterion for measu
ring the quality of summary. The new framework, namely Document
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Summarization based on Data Reconstruction (DSDR), finds the sum-
mary sentences by minimizing the reconstruction error. DSDR learns a
reconstruction function for each candidate sentence of an input
document and then formulates an objective function minimizing the
error to obtain an optimal summary. The geometric interpretation is
that DSDR tends to select sentences that span the intrinsic subspace
of candidate sentence space, so that it is able to cover the core
information of the document.

We firstly introduce the linear reconstruction to model the
relationship between the document and the summary. The linear
reconstruction aims to approximate the document by linear com-
binations of the selected summary sentences. Further, inspired by
previous studies which indicate the existence of psychological and
physiological evidence for parts-based representation in the human
brain [8–10], we assume that document summary should consist of
the parts of sentences, and introduce the non-negative constraints
into the DSDR framework. With the non-negative constraints, our
method leads to parts-based representation so that no redundant
information needs to be subtracted from the combination. Still
another issue to be addressed in document summary is the
nonlinearity of the sentence space, as recent research [11] shows
that the raw sentences are supposed to be highly nonlinear in
distribution. The linear functions therefore lead to suboptimal fit in
that neither the linear reconstruction nor the non-negative linear
reconstruction respect the nonlinear manifold structure of sentence
space. So we propose a novel nonlinear reconstruction which is
performed in the manifold adaptive kernel space by using graph
Laplacian [11–13]. By extracting sentences which can reconstruct
the document in the kernel space, we are able to produce a better
summary than the classical methods.

It is worthwhile to highlight the following three contributions
of our proposed DSDR framework in this paper:

� We propose a novel unsupervised summarization framework
from the perspective of data reconstruction which as we
known is the first work to treat the document summarization
from such a perspective.

� We firstly introduce the linear reconstruction and a greedy
optimization method to solve the problem efficiently and
effectively. Further, we propose the non-negative reconstruc-
tion and the corresponding iterative method to get a global
optimum. To handle the nonlinearity, we finally propose the
nonlinear reconstruction based on the manifold adaptive
kernel.

� The proposed framework should not be restricted to the three
types of reconstruction mentioned in this paper. Actually it is
suitable for any other data reconstruction types. Since DSDR is
unsupervised and language independent, it can be extended to
summarize non-English document easily and even multi-
language document.

This work is an extended and improved follow-up to our earlier
work [14]. In comparison, we add a substantially theoretical
analysis about extending DSDR in the manifold adaptive kernel
space. For both linear reconstruction and non-negative linear
reconstruction, the details of the mathematical translations are
introduced additionally. We also extend the experiments here,
such as implementing DSDR in the manifold adaptive kernel space
and comparing it with existing approaches.

Our paper is organized as follows. We briefly review the related
work in Section 2. In Section 3, we introduce the details of the
Document Summarization based on Data Reconstruction (DSDR)
including the optimization algorithms. Finally, we experimentally
demonstrate the effectiveness of our proposed approaches in
Section 4 and conclude in Section 5.

2. Related work

Recently, lots of extractive document summarization methods
have been studied. Most of them involve assigning salient scores
to sentences or paragraphs of the original document and compos-
ing the result summary of the top units with the highest scores.
The computation rules of salient scores can be categorized into
three groups [15]: feature based measurements, lexical chain
based measurements and graph based measurements [4]. Salient
scores in feature based measurements are usually related with
various features such as term frequency, position, length, and topic
presentation. The first method proposed in [16] ranks the sen-
tences which are represented by the weighted term frequency
vectors according to the relevance scores to the whole document.
In the second type of measurements, a lexical chain is defined by a
coherent sequence of related nouns, verbs and others. Sentence
scores are then computed according to the lexical chain. In [17],
the semantic relations of terms in the same semantic role are
discovered by using the WordNet [18]. The relations are finally
used in pairwise semantic similarity calculations which serve for
the construction of their semantic similarity matrix. A tree pattern
expression for extracting information from syntactically parsed
text is proposed in [19]. In the graph based measurements, the
sentence scores propagate around the graph on the basic idea that
the score of one sentence affects scores of its neighbor sentences
in the graph. Algorithms like PageRank [2] and HITS [3] are used in
the sentence score propagation based on the graph constructed
through the semantic affinity among sentences. In [4], it is also
shown that this kind of measurements can improve single-
document summarization by integrating multiple documents of
the same topic.

Almost all the mentioned document summarization methods
based on sentence scores have to incorporate with the adjustment
of term weights which is one of the most important factors that
influence summarization performance [20]. The adjustment pro-
cess is used to eliminate the redundant information while it is not
necessary when methods without saliency scores are applied in
summarization. For extracting sentences, the methods without
saliency scores include classification-based methods [21,22],
clustering-based methods [23], as well as model-based methods
[5–7]. Inspired by the latent semantic indexing (LSA), Ref. [16]
applies the singular value decomposition (SVD) to select highly
ranked sentences for generic document summarization. Besides, to
improve summarization performance, there are some other stu-
dies like clustering sentences into topic themes, improving the
topic representation and also time series text. Ref. [17] uses
symmetric non-negative matrix factorization (SNMF) to cluster
sentences into groups and selects sentences from each group for
summarization. And [24] analyzes five different topic representa-
tions and proposes a novel topic representation based on topic
themes. In [24], authors propose a novel symbolic representation
of time series for text processing.

However, all the above summarization methods aim to obtain
the summary which covers the core information, but few conduct
the extractive task from the data reconstruction perspective. We
believe that a good generic summary should contain those
sentences that can best reconstruct the document. So how to best
reconstruct the original document by the selected sentences is the
main focus of the proposed DSDR in this study.

Notation: Small letters (e.g. x) denote scalars. Lowercase bold
letters (e.g. x) denote column vectors and J � J denotes the vector
l2-norm. Uppercase letters (e.g. X) denote matrices or graphs. The
matrix trace is denoted by Trð�Þ and the Forbenius norm of a matrix
is denoted by ‖ � ‖F . Script uppercase letters (e.g. X) denote
ordinary sets and jX j is the size of the set. Blackboard bold capital
letters (e.g. R) denote number sets.
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3. The proposed framework

Suppose we have a document and its summary as shown in
Fig. 1. It can be found that a good summary should match the
following two conditions. First, the selected sentences are able to
cover most information of all sentences so that they can represent
the original document. And we call the process of covering as
“reconstruction”. Second, the reconstruction of these sentences
should be concise so that the summary will keep minimum
redundancy. So we believe that a good summary should contain
those sentences that can be used to reconstruct the document as
well as possible, namely minimizing the reconstruction error.

In the following, we describe the details of our proposed
framework Document Summarization based on Data Reconstruction
(DSDR) which minimizes the reconstruction error for summariza-
tion. The algorithm procedure of DSDR is as follows:

� After stemming and stop-word elimination, we decompose the
document into individual sentences and create a weighted
term-frequency vector for every sentence. All the sentences
form the candidate set.

� For the document (or, a set of documents), DSDR aims to find
an optimal set of representative sentences to approximate the
entire document (or, the set of documents), by minimizing the
reconstruction error.

We denote the candidate sentence set as V ¼ ½v1; v2;…; vn�T
where viARd is a weighted term-frequency vector for sentence i.
Here notice that we use V to represent both the matrix and the
candidate set fvig. Suppose there are totally d terms and n sentences
in the document, we will have a matrix V in the size of n�d. We
denote the summary sentence set as X ¼ ½x1; x2;…; xm�T with mon
and X � V .

Given a sentence viAV , DSDR attempts to represent it with a
reconstruction function fi(X) given the selected sentence set X.
Denoting the parameters of fi as ai, we obtain the reconstruction
error of vi as

Lðvi; f iðX; aiÞÞ ¼ ‖vi� f iðX; aiÞ‖2;

where J � J is the L2-norm.
By minimizing the sum of reconstruction errors over all the

sentences in the document, DSDR picks the optimal set of
representative sentences. The objective function of DSDR can be

formally defined as

min
X;ai

∑
n

i ¼ 1
‖vi� f iðX; aiÞ‖2:

The result summary must cover the main content so that it can
reconstruct the original document and it must keep less redun-
dancy so that it can minimize the reconstruction error.

3.1. Linear reconstruction

To model the relationship between sentences, we firstly define
the reconstruction functions fi(X) as a linear function

f iðX; aiÞ ¼ ∑
m

j ¼ 1
xjaij; X ¼ ½x1;x2;…; xm�T : ð1Þ

Namely a candidate sentence vi can be approximately represented
as

vi � ∑
m

j ¼ 1
xjaij; 1r irn:

Now, the reconstruction error of the document can be obtained as

∑
n

i ¼ 1
‖vi�XTai‖2

The solution from minimizing the above equation often exhibits
high variance and results in high generalization error especially
when the dimension of sentence vectors is smaller than the
number of sentences. The variance can be reduced by shrinking
the coefficients ai, if we impose a penalty on its size. Inspired by
ridge regression [25], we penalize the coefficients of linear
reconstruction error in DSDR as follows:

min
X;A

J ¼ ∑
n

i ¼ 1
‖vi�XTai‖2þλ‖ai‖2

s:t: X � V ; jXj ¼m

A¼ ½a1; a2;…; an�T ARn�m: ð2Þ

The set fxig includes the selected representative sentences from
the original candidate sentence set V and will be used as the
document summary finally. λ is the regularization parameter
controlling the amount of shrinkage. In limited case, if m¼n, the
solution of (2) should be X¼V which reasonably means that the
optimal summary with length of n is the document itself.

The optimization problem in (2) faces two combinatorial
challenges:

� Evaluating the best reconstruction error of one candidate
sentence vi, we would find the optimal X with the size of m
out of exponentially many options.

� The optimal set for vi is usually not optimal for vj. So to
reconstruct all the candidate sentences, we would have to
search over an exponential number of possible sets to deter-
mine the unique optimal X.

Actually, a similar problem that selects mon basic vectors from n
candidates to approximate a single vector in the least squares
criterion has been proved to be NP hard [26].

Inspired by the previous work in [27], the optimization pro-
blem in (2) is equivalent to the following problem:

min
X

J ¼ Tr½VðXTXþλIÞ�1VT �

s:t: X � V ; jXj ¼m ð3Þ

where V is the candidate sentence set, X is the selected sentence
set, I is the identity matrix, and Tr½�� is the matrix trace calculation.

Fig. 1. Shown in this diagram, the columns separated by vertical dashes denote
word terms, and the five lines denote sentences which covering different word
terms. For example, the sentence denoted by circles covers the first and second
word terms. Suppose we have a document with five sentences. Given the overlap
between the triangle sentence and the other two, it is obvious that three sentences
denoted by circles, stars and triangles will make a good summary. Because from
these three sentences, we can obtain most of the information in a brief way.
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Proof. By fixing X and setting the derivative of (2) with respect to
A to be zero

∂J
∂A

¼ �2VXT þ2AXXT þ2λA¼ 0;

we can obtain the optimal An as an expression of X

An ¼ VXT ðXXT þλIÞ�1:

Submitting this optimal An into the objective function (2), we can
get

Tr½ðV�AXÞðV�AXÞT �þλ TrðAAT Þ
¼ TrðVVT Þ�Tr½VXT ðXXT þλIÞ�1XVT �
¼ λ Tr½VðXTXþλIÞ�1VT �

where the Woodbury matrix identity [28]

ðHþUCDÞ�1 ¼H�1�H�1UðC�1þDH�1UÞ�1DH�1;

is applied in the second step with H ¼ λI, U¼X, C¼ I and D¼ XT

Tr½VXT ðXXT þλIÞ�1XVT �
¼ 1
λ
Tr VXT ½I�XðXTXþλIÞ�1XT �XVT
n o

¼ TrfV ½I�λðXTXþλIÞ�1�VT g: □

For the optimization problem of (3), we use a greedy algorithm to
find the approximate solution. Given the previously selected sen-
tence set X1, DSDR selects the next new sentence xiAV as follows:

min
xi

JðxiÞ ¼ Tr½VðXTXþλIÞ�1VT �
s:t: X ¼ X1 [ xi; xiAV : ð4Þ
Denoting P ¼ XT

1X1þλI, (4) can be rewritten as

JðxiÞ ¼ Tr½VðXTXþλIÞ�1VT �
¼ Tr½VðPþxixT

i Þ�1VT �

¼ Tr VP�1VT �VP�1xixT
i P

�1VT

1þxT
i P

�1xi

" #
;

where the Woodbury matrix identity [28] is applied in the
second step.

Since the candidate sentence set V and the selected sentence
set X1 are both fixed, Tr½VP�1VT � is a constant, so the objective
function is the same as maximizing the second part in the trace

max
xi

Tr
VP�1xixT

i P
�1VT

1þxT
i P

�1xi

" #
¼ JVP�1xi J2

1þxT
i P

�1xi

:

To simplify the computation, we introduce a matrix
B¼ VP�1VT . Then the index of the new sentence xi can be
obtained by

i¼ arg max
i

‖Bni‖2

1þBii
;

where i is the index of the new sentence xi in the candidate
sentence set V, Bni and Bii are the ith column and diagonal entry of
matrix B, respectively.

Once we find the new sentence xi, we add it into X1 and update
the matrix B as follows:

Bt ¼ VP�1
t VT

¼ VðPt�1þxixT
i Þ�1VT

¼ Bt�1�Bt�1
ni ½Bt�1

ni �T
1þBt�1

ii

: ð5Þ

where the matrix Bt�1 denotes the matrix B at the step t�1.

Algorithm 1. DSDR with linear reconstruction.

Input:
� The candidate data set: V ¼ ½v1; v2;…; vn�T
� The number of sentences to be selected: m
� The trade off parameter: λ

Output:
� The set of m summary sentences: X ¼ ½x1;x2;…; xm�T DV

1: initialize X’∅;
2: B0’VVT=λ;
3: for t¼1 to m do
4: for i¼1 to n and xi =2X do
5: scoreðxiÞ’‖Bt�1

ni ‖2=ð1þBt�1
ii Þ

6: end for
7: xi’arg maxxi scoreðxiÞ
8: X’X [ xi

9: Bt’Bt�1�Bt�1
ni ½Bt�1

ni �T=ð1þBt�1
ii Þ

10: end for
11: return X;

Initially the previously selected sentence set X1 is empty. So the
matrix P is initialized as

P0 ¼ λI:

Then the initialization of the matrix B can be written as

B0 ¼ VP�1
0 VT ¼ 1

λ
VVT :

We describe our sequential method for linear reconstruction in
Algorithm 1. Given a document with n sentences and each
sentence viARd, Algorithm 1 generates a summary with m
sentences with the complexity as follows:

� Oðn2dÞ to calculate the initialization B0 according to Step (2).
� Oðn2mÞ for the Steps (3)–(10) where O(n) to calculate scoreðxiÞ

in Step (5) and Oðn2Þ to update the matrix B in Step (9).

The overall cost for Algorithm 1 is Oðn2ðdþmÞÞ.

3.2. Non-negative linear reconstruction

The linear reconstruction optimization problem (2) in the
previous section might come up with aij's with negative values,
which means that redundant information needs to be removed
from the summary sentence set X. As shown in Fig. 2, suppose we
have three summary sentences and one original sentence, we can
obtain the combination parameters on the right. We can find that
the negative value of aij meaning that there exists redundant
information to be subtracted from the reconstruction. To compose
a final summary, the two sentences denoted by stars and pluses
are enough. This indicates that better optimization can be
achieved by adding nonnegative constraint for aij.

Non-negative constraints on data representation has received
considerable attention due to its psychological and physiological
interpretation of naturally occurring data whose representation may
be parts-based in the human brain [8–10]. Our non-negative linear
reconstruction method leads to parts-based reconstruction because it
allows only additive, not subtractive, combinations of the sentences.

In order to solve the optimization problem, we convert the
objective function into a relaxed formula

min
ai

J ¼ ∑
n

i ¼ 1
‖vi�VTai‖2þ2 ∑

n

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ ∑

n

i ¼ 1
a2ij

s

s:t: aijZ0 and aiARn:
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Notice that the vector of ai was a vector with size m, and now
its size becomes n. We can find that XTai and VTai are the same if
some elements of ai are zeros. In order to guarantee that some
elements of ai will be zeros, we use the group sparse regulariza-
tion. This regularization will result that some elements of a1, a2
and all other aj to be zeros. So that the relaxed formula will
approximate the original objective function.

One challenge introduced by this group sparse regularization is
non-differentiability. As many other group sparse problems
[29,30], we use a relaxation inequality

2 ∑
n

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ ∑

n

i ¼ 1
a2ij

s
r ∑

n

j ¼ 1

∑n
i ¼ 1a

2
ij

βj
þγ‖β‖1; βjZ0:

For the sake of efficient optimization, following [31], we
formulate the objective function of non-negative DSDR as follows:

min
ai ;β

J ¼ ∑
n

i ¼ 1
‖vi�VTai‖2þ ∑

n

j ¼ 1

a2ij
βj

( )
þγ‖β‖1

s:t: βjZ0; aijZ0 and aiARn; ð6Þ

where β¼ ½β1;…;βn�T is an auxiliary variable to control the
candidate sentences selection. Similar to LASSO [29], the L1 norm
of β will enforce some elements to be zeros. If βj ¼ 0, then all
a1j;…; anj must be 0 which means the j-th candidate sentence is
not selected. The new formulation in (6) is a convex problem and
can guarantee a global optimal solution.

By fixing ai's and setting the derivative of J with respect to β to
be zero

∂J
∂βj

¼ γ� ∑
n

i ¼ 1

a2ij
β2
j

¼ 0;

we can obtain the minimum solution of β

βj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1a
2
ij

γ

s
ð7Þ

since βjZ0 as stated in (6); once the β is obtained, the minimiza-
tion under the non-negative constraints can be solved using the
Lagrange method. Let αij be the Lagrange multiplier for constraint
aijZ0 and A¼ ½aij�, the Lagrange L is

L¼ JþTr½αAT �; α¼ ½αij�:

The derivative of L with respect to A is

∂L
∂A

¼ �2VVT þ2AVVT þ2A diagðβÞ�1þα;

where diagðβÞ is a matrix with diagonal entries of β1;…;βn. Setting
the above derivative to be zero, α can be represented as

α¼ 2VVT þ2AVVT �2A diagðβÞ�1:

Using the Kuhn–Tucker condition αijaij ¼ 0, we get

ðVVT Þijaij�ðAVVT Þijaij�ðA diagðβÞ�1Þijaij ¼ 0:

This leads to the following updating formula:

aij’
aijðVVT Þij

½AVVT þA diagðβÞ�1�ij
: ð8Þ

The formulations in (7) and (8) are iteratively performed until
convergence. For the convergence of this updating formula, we
have the following Theorem 1.

Theorem 1. Under the iterative updating rule as (8), the objective
function J is non-increasing with fixed β, and that the convergence of
the iteration is guaranteed.

Proof. To prove Theorem 1, we introduce an auxiliary function as

Gðu; aiÞ ¼ ∑
n

j ¼ 1

ðCaiÞj
aij

u2
j �2ðVVT Þijuj

� �
;

where C ¼ VVT þdiagðβÞ�1, and u¼ ½u1;…;un�T is a positive vector.
Gðu; aiÞ can also be identified as the sum of singular-variable
functions

Gðu; aiÞ ¼ ∑
n

j ¼ 1
GjðujÞ:

Let FðaiÞ ¼ aTi Cai�2ðVVT Þinai, Sha et al. [32] have proved that if aij
updates as:

aij’arg min
uj

GjðujÞ;

Gðu; aiÞ converges monotonically to the global minimum of FðaiÞ.

Algorithm 2. DSDR with non-negative linear reconstruction.

Input:
� The candidate sentence set: V ¼ ½v1; v2;…; vn�T
� The trade off parameter: γ40

Output:
� The set of the summary sentences: XDV

Procedure:
1: initialize aij, βj;
2: initialize X’∅;
3: repeat
4:

βj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1a
2
ij

γ

s
;

5: repeat
6:

aij’
aijðVVT Þij

½AVVT þA diagðβÞ�1�ij
;

7: until converge;
8: until converge;
9: X’fvjjvj � V ;βja0g;
10: return X;

Taking the derivation of GjðujÞ with respect to uj and setting it
to be zero, we obtain the updating formulation as

aij’
aijðVVT Þij

½AVVT þA diagðβÞ�1�ij
; ð9Þ

which agrees with (8).

Fig. 2. Similar as Fig. 1, the columns denote word terms and the lines denote
sentences. Suppose we have three summary sentences and one original sentence
from the document. Because of the overlap between the sentences, it is obvious to
obtain the linear combination parameters on the right. Actually, we can see that the
two sentences denoted by stars and pluses are enough to compose a final summary.
Therefore, the sentences with negative combination parameters can be moved from
the summary.
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We can rewrite the objective function J as

J ¼ ∑
n

i ¼ 1
FðaiÞþTr½VVT �þγ‖β‖1: ð10Þ

Fixing β, we can obtain the minimizer of J byminimizing each FðaiÞ
separately. Since the objective function J is the sum of all the individual
terms FðaiÞ plus a term independent of ai, we have shown that J is
non-increasing with fixed β under the updating rule as (8). □

Algorithm 2 describes the DSDR with non-negative linear
reconstruction. Suppose the maximum number of iterations for
Step (4) and Step (6) are t1 and t2 respectively, the total computa-
tional cost for Algorithm 2 is Oðt1ðnþt2ðn3ÞÞÞ.

3.3. DSDR in manifold adaptive kernel space

Since the original sentence space is believed to be an nonlinear
sub-manifold embedded in the ambient space [33], the linear
reconstruction will lead to a sub-optimal fit. We thus need to
extend our algorithm to consider the nonlinear geometric struc-
ture in the sentence space. The kernel trick is a usual way for
discovering the nonlinear structure in the data by mapping the
original nonlinear observations into a higher dimensional inner
product space [34]. It can represent an implicit mapping of the
sentences in a higher dimensional space. The most commonly
used kernels include Gaussian kernel and polynomial kernel. Let
VARd denote the candidate sentence space and H be the reprodu-
cing kernel Hibert space (RKHS) [35]. The feature mapping func-
tion φ : V-H is implicitly induced by a kernel function
K : V � V-R that defines the similarity between sentences in
the original space. It can be shown that if there is a kernel function
Kð�; �Þ then the function φð�Þ and the feature space H exist [36], and
furthermore the kernel function is as follows:

Kðvi; vjÞ ¼ 〈φðviÞ;φðvjÞ〉; vi; vjARd: ð11Þ

With the kernel method, we can deal with the problem by a
kernel function instead of the feature mapping φð�Þ. In the
transformed feature space H, we denote the candidate sentences
by φðV Þ ¼ ½φðv1Þ;…;φðvnÞ�T and the summary sentences by
φðXÞ ¼ ½φðx1Þ;…;φðxmÞ�T . Since the choice of K is flexible, we use
Gaussian kernel in our experimental setting. Namely the kernel
function is formed as

Kðvi; vjÞ ¼ e�‖vi �vj‖2=2σ2
;

where σ is the parameter for Gaussian kernel.
However, such nonlinear structure captured by the data inde-

pendent kernels may not be consistent with the intrinsic manifold
structure, such as geodesic distance, curvature, and homology [11].
Vikas et al. [37] construct a family of data-dependent norms and
propose the manifold adaptive kernel. Let O be a linear space with
a positive semi-definite inner product (quadratic form) and let S :
H-O be a bounded linear operator. We define ~H to be the space
of functions from H with the modified inner product

〈f ; g〉 ~H ¼ 〈f ; g〉Hþ 〈Sðf Þ; SðgÞ〉O:

Vikas et al. have shown that ~H is still a RKHS [37]. Given the
sentences v1;…; vn, let S : H-Rn be the evaluation map

Sðf Þ ¼ ðf ðv1Þ;…; f ðvnÞÞT :

Denote f ¼ ðf ðv1Þ;…; f ðvnÞÞT and g¼ ðgðv1Þ;…; gðvnÞÞT . Notice that
f;gAO, thus we have

〈Sðf Þ; SðgÞ〉O ¼ 〈f;g〉¼ fTMg

where M is a positive semi-definite matrix. We define the ith
column of the kernel matrix as

Kni ¼ ðKðvi; v1Þ;…;Kðvi; vnÞÞT :
It can be shown that the reproducing kernel in ~H is

~Kðvi; vjÞ ¼Kðvi; vjÞ�λKT
niðIþMKÞ�1MKnj

where I is an identity matrix, K is the kernel matrix in H, and λZ0
is a constant controlling the smoothness of the functions. The
choice of M is the key issue which makes the adaptive kernel be
data-dependent. The graph Laplacian matrix is usually proposed
since it models the underlying geometrical structure of the data.

In order to model the manifold structure, we construct a
nearest neighbor graph G. For each sentence vi, we find its k
nearest neighbors denoted by NðviÞ and put an edge between vi

and its neighbors. There are many choices for the weight matrix on
the graph. A simple one is as follows [37,11]:

Wij ¼
1 if viANðvjÞ or vjANðviÞ;
0 otherwise:

�

The graph Laplacian [12,13,38] is defined as L¼D�W where D
is a diagonal degree matrix given by Dii ¼∑jWij. By setting M¼L,
we eventually get the following manifold adaptive kernel
[37,11,39]:

~Kðvi; vjÞ ¼Kðvi; vjÞ�λKT
niðIþLKÞ�1LKnj:

In RKHS, the objective function of linear reconstruction can be
rewritten as follows:

min
X;A

∑
n

i ¼ 1
‖φðviÞ�φðXÞTai‖2þλ‖ai‖2

s:t: φðXÞ �φðVÞ; A¼ ½a1; a2;…; an�T :
Given the previously selected sentence set φðX1Þ, the sequential

optimization seeks the next new sentence φðxiÞ �φðVÞ by
min
φðxiÞ

J ¼ fφðVÞ½φðXÞTφðXÞþλI��1φðVÞT g

s:t: φðXÞ ¼φðX1Þ [ φðxiÞ; φðxiÞAφðVÞ:
Defining P ¼φðXÞTφðXÞþλI and initializing P0 ¼ λI, we again

introduce the matrix B¼φðV ÞP�1φðV ÞT . Then the initialization of
B is

B0 ¼φðVÞP�1
0 φðVÞT ¼ ~K=λ; ~K ij ¼ ~Kðvi; vjÞ:

And iteratively update B as follows:

Bt ¼ Bt�1�Bt�1
ni ½Bt�1

ni �T
1þBt�1

ii

;

where t denotes the tth iteration, Bni and Bii are the ith column and
diagonal entries of matrix B, respectively.

At each step t, the index of the new sentence φðxiÞ can be
selected by

i¼ arg max
i

‖Bni‖2

1þBii
:

Setting trm, we can get the summary sentences iteratively. The
sequential algorithm in kernel space is similar to that mentioned
before, except that the input should include the definition of the
kernel function K which is directly related to the initialization of
the matrix B.

4. Experiments

In this study, we use the standard summarization benchmark
data sets DUC 2006 and DUC 2007 for the evaluation. DUC 2006
and DUC 2007 contain 50 and 45 document sets respectively, with
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25 news articles in each set. The sentences in each article have
been separated by NIST.1 And every sentence is either used in its
entirety or not at all for constructing a summary. The length of a
result summary is limited by 250 tokens (whitespace delimited).

4.1. Evaluation metric

We use the ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) toolkit [40] which has been widely adopted by DUC for
automatic summarization evaluation. ROUGE measures summary
quality by counting overlapping units such as the n-gram, word
sequences and word pairs between the peer summary (produced
by algorithms) and the model summary (produced by humans).
We choose two automatic evaluation methods ROUGE-N and
ROUGE-L in our experiment. Formally, ROUGE-N is an n-gram
recall between a candidate summary and a set of reference
summaries and ROUGE-L uses the longest common subsequence
(LCS) metric. ROUGE-N is computed as follows:

ROUGE�N¼∑SARef∑gramn ASCountmatchðgramnÞ
∑SARef∑gramn A SCountðgramnÞ

where n stands for the length of the n-gram, Ref is the set of
reference summaries. CountmatchðgramnÞ is the maximum number
of n-grams co-occurring in a candidate summary and a set of
reference summaries, and CountðgramnÞ is the number of n-grams
in the reference summaries. Among these different scores, the
unigram-based ROUGE score (ROUGE-1) has been shown to agree
with human judgment most [41]. ROUGE toolkit reports separate
scores for 1, 2, 3 and 4-gram, and also for the longest common
subsequence (ROUGE-L). Given a reference summary of u sen-
tences containing a total of m words and a result summary C of v
sentences containing a total of n words, the F-measure of ROUGE-L
score can be computed as follows:

ROUGE�LR ¼
∑u

i ¼ 1LCS[ ðri;CÞ
m

ROUGE�LP ¼
∑u

i ¼ 1LCS[ ðri;CÞ
n

ROUGE�LF ¼
2� ROUGE�LR � ROUGE�LP

ROUGE�LRþROUGE�LP

where ri is a reference summary sentence and LCS[ ðri;CÞ is
the LCS score of the union longest common subsequence
between reference sentence ri and candidate summary C. For exa
mple, if ri ¼w1w2w3w4w5, and C contains two sentences: c1 ¼w1w2

w6w7w8 and c2 ¼w1w3w8w9w5, then the longest common subse-
quence of ri and c1 is “w1w2” and the longest common subsequence of
ri and c2 is “w1w3w5”. The union longest common subsequence of
ri, c1, and c2 is “w1w2w3w5” and LCS[ ðri;CÞ ¼ 4=5. More information
can be referred to the toolkit package [40].

4.2. Compared methods

To the best of our knowledge, our work is the first approach
which treats the document summarization as a sentence recon-
struction problem. It is important to note that our algorithm is
unsupervised. Thus we do not compare with those supervised
summarization systems [42–45]. Because they need to train the
summarization model using human labeled training data. We
compare our DSDR with several unsupervised state-of-the-art
summarization approaches described briefly as follows:

� Random: Selects sentences randomly for each document set.
We implement the random function offered by MATLAB.

� Lead [46]: For each document set, orders the documents
chronologically and takes the leading sentences one by one.

� LSA [16]: Applies the singular value decomposition (SVD) on
the terms by sentences matrix to select highest ranked
sentences.

� ClusterHITS [47]: Considers the topic clusters as hubs and the
sentences as authorities, then ranks the sentences with the
authorities scores. Finally, the highest ranked sentences are
chosen to constitute the summary. The number of clusters is
the same as the number of document sets, namely 50 and 45
for DUC 2006 and DUC 2007, respectively.

� SNMF [17]: Uses symmetric non-negative matrix factorization
(SNMF) to cluster sentences into groups and select sentences
from each group for summarization. The group number is the
same as the number of document sets.

For convenience, we denote DSDR with the linear reconstruc-
tion, DSDR with the non-negative reconstruction and DSDR in the
manifold adaptive kernel space by “DSDR-lin”, “DSDR-non” and
“DSDR-adap” respectively.
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Fig. 3. Average F-measure performance on DUC 2006.
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Fig. 4. Average F-measure performance on DUC 2007.1 http://www.nist.gov/index.html.
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4.3. Experimental results

4.3.1. Overall performance comparison
ROUGE can generate three types of scores: recall, precision and

F-measure. We get similar experimental results using the three
types with DSDR taking the lead. In this study, we use F-measure
to show the experimental results. The F-measure of four ROUGE
metrics are shown in our experimental results: ROUGE-1, ROUGE-
2, ROUGE-3 and ROUGE-L. Figs. 3 and 4 plot the ROUGE scores vs.
different evaluation metrics, and show the results on DUC 2006
and DUC 2007 data sets respectively.

As shown in the two figures, the three proposed approaches
outperform other compared algorithms in all evaluation metrics. It
is worthwhile to notice that DSDR-adap performs especially good
since it receives the highest scores which are much greater than
the others. By utilizing both the reconstruction relationships and
the sentences' manifold structure in the adaptive kernel space,
DSDR-adap is able to find those sentences that can reconstruct the
original document in the sentence-dependent kernel space. Since
DSDR-lin obtains a suboptimal solution and DSDR-non gets the
global optimum, the evaluation scores of DSDR-lin is a little lower
than that of DSDR-non. The experimental results confirm the
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Fig. 5. The scores of all algorithms on each document set of DUC 2006 and DUC 2007, the black stars denote our proposed methods have the greatest scores while the red
circles denote otherwise. (a) ROUGE scores on DUC 2006, (b)ROUGE scores on DUC 2007, (c) ROUGE scores on DUC 2006, (d) ROUGE scores on DUC 2007, (e) ROUGE scores
on DUC 2006 and (f) ROUGE scores on DUC 2007. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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algorithms we presented in the last section that DSDR-lin is solved
greedily and is suboptimal; DSDR-non is solved globally and is
better; DSDR-adap considers the non-linear cases in kernel space
and is the best. Following our three proposed approaches, Clus-
terHITS gets the highest scores among the remaining. ClusterHITS
considers topics as hubs and sentences as authorities where hubs
and authorities can interact with each other. With the interactions
between hubs and authorities, the correlations between topics and
sentences can be explored to improve the quality of summary.
Besides, selecting sentences randomly is a little better than just
selecting the leading sentences. Because it is equal for every
sentence by selecting them randomly. Among all the summariza-
tion algorithms, LSA and SNMF show the poorest performance on
both data sets. Directly applying SVD on the terms by sentences
matrix, summarization by LSA chooses those sentences with the
largest indexes along the orthogonal latent semantic directions.
Although SNMF relaxes the orthogonality, it relies on the sentence
pairwise similarity. Whereas our DSDR selects sentences which
span the intrinsic subspace of the candidate sentence space. Such
sentences are contributive to reconstruct the original document,
and so are contributive to improve the summary quality.

4.3.2. Evaluations on different document sets
In Fig. 5, we illustrate the ROUGE-1 scores for each document

set from DUC 2006 and DUC 2007. In each panel, the vertical axis
describes the scores of the DSDR approach and the horizontal axis
contains the best scores of other methods. The black stars indicate
that DSDR gets the best scores on the corresponding document
sets while the red circles suggest the best scores are obtained from
other methods. It can be obviously observed that the proposed
reconstruction approaches are better than others, since the num-
ber of black stars are much more than that of red circles in each
panel. And again, DSDR-non outperforms DSDR-lin since the
numbers of black stars in panel (c) and (d) are more than that in
panel (a) and (b). Compared with DSDR-non, DSDR-adap gets more
black stars on DUC 2006 but less on DUC 2007. The reason might
be that though DSDR-adap can handle the reconstruction problem
in nonlinear space, it cannot obtain the global optimum. So it is an
interesting future study to extend the non-negative reconstruction
in the manifold adaptive space.

In order to check whether the difference between DSDR and
other approaches is significant, we perform the paired t-test
between the ROUGE-1 scores of DSDR and that of other approaches
on both data sets. Tables 1 and 2 show the associated p-values on
DUC 2006 and DUC 2007 data sets, respectively. For example, in
Table 1, the value of 4:6� 10�14 in row two and column two means
the associated p-value of the paired t-test between DSDR-lin and
Random. As can be seen, all the tested values are close to zero. So at

nearly 100% confidence interval, the test demonstrates that our
proposed framework can obtain very encouraging and promising
results compared to the others. Moreover, the values in lines 2 and
3 are lower than line 1 in both tables except the last one in Table 2
which further prove that DSDR-non and DSDR-adap can get better
results than DSDR-lin.

5. Conclusion

In this paper, we propose a novel unsupervised summarization
framework called the Document Summarization based on Data
Reconstruction (DSDR) which selects the most representative
sentences that can best reconstruct the entire document. We
introduce the linear reconstruction firstly and extend it in two
different ways (non-negative and manifold adaptive kernel). The
experimental results show that our DSDR framework can outper-
form other state-of-the-art summarization approaches. DSDR with
linear reconstruction is more efficient while DSDR with nonnega-
tive reconstruction has better performance (by generating less
redundant sentences). We also show that extending the linear
reconstruction in the manifold adaptive kernel space can get
excellent summary. Because it models the underlying geometrical
structure of the sentences by using the graph Laplacian.

In the future, we are interested in several problems. First, like
other kernel based methods, the computational complexity of
DSDR-adap scales with the number of sentences. So it might not
be suitable to large-scale document with many sentences. Second,
it would be expected to efficiently develop DSDR with non-
negative reconstruction in the manifold adaptive kernel space.
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