
Neurocomputing 179 (2016) 26–36
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
journal homepage: www.elsevier.com/locate/neucom
Online kernel learning with nearly constant support vectors

Ming Lin a, Lijun Zhang b, Rong Jin b, Shifeng Weng c, Changshui Zhang a,n

a State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology(TNList), Department of
Automation, Tsinghua University, Beijing 10084, China
b Computer Science and Engineering, Michigan State University, East Lansing, MI 48823, USA
c School of Electronics and Information, Zhejiang Wanli University NO 8 South Qianhu Road, Ningbo City, Zhejiang Province 315100, China
a r t i c l e i n f o

Article history:
Received 30 April 2013
Received in revised form
14 September 2015
Accepted 3 October 2015

Communicated by Steven Hoi

focus on the sample complexity, i.e. the number of randomly sampled support vectors that are needed to
Available online 14 October 2015

Keywords:
Online learning
Kernel machine
Nyström
Sample complexity
x.doi.org/10.1016/j.neucom.2015.10.002
12/& 2015 Elsevier B.V. All rights reserved.

esponding author.
a b s t r a c t

Nyström method has been widely used to improve the computational efficiency of batch kernel learning.
The key idea of Nyström method is to randomly sample M support vectors from the collection of T
training instances, and learn a kernel classifier in the space spanned by the randomly sampled support
vectors. In this work, we studied online regularized kernel learning using the Nyström method, with a

yield the optimal convergence rate Oð1=TÞ, where T is the number of training instances received in online
learning. We show that, when the loss function is smooth and strongly convex, only Oðlog 2 TÞ randomly
sampled support vectors are needed to guarantee an Oðlog T=TÞ convergence rate, which is almost
optimal except for the log T factor. We further validate our theory by an extensive empirical study.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Kernel machines are powerful tools to handle non-linear data
learning tasks. Kernel function improves the flexibility of learning
methods by implicitly mapping data to a high dimensional space
[1]. Kernel based methods have been successfully applied to
classification, dimensionality reduction, and clustering, including
kernel SVM [2], kernel logistic regression [3], kernel PCA [4] and
spectral clustering [5].

A main drawback of kernel based methods is their high demand
on both storage space and computational cycles. Given T training
instances, the storage requirement and computational cost are OðT2Þ.
Online learning improves the efficiency of kernel learning by going
through the training data once [6–8]. Although it reduces the storage
requirement by retrieving training instances one by one in online
settings, its time complexity is still OðT2Þ because each received
training instance can potentially be a support vector. Budget online
learning [9–12] ameliorates this problem by limiting number of
support vectors of the intermediate classifiers obtained by online
learning. But the final classifier obtained by online-to-batch conver-
sion [13] may still include most of the training examples as support
vector, leading to a high computational cost in prediction.

An alternative approach to efficient kernel learning is to gen-
erate a compact representation for the target kernel classifier.
Random Fourier feature [14] and polynomial feature [15,16] are
two examples of this category. Both methods approximate kernel
function by an expansion of appropriate basis functions. Since the
approximation is made independently from data, both schemes
are data independent, and therefore often leads to suboptimal
performance, according to the analysis in [17].

In this work, we focus on Nyström method [18], another pop-
ular scheme for improving the efficiency of kernel learning. It
randomly samples M instances as support vectors from a collec-
tion of T training examples, and learns a kernel classifier in the
subspace spanned by the randomly sampled support vectors.
Nyström method was first introduced to kernel learning in [19],
and has found applications in kernel classification [20,21], spectral
clustering [22], and eigenmap embedding [23].

The generalization performance of Nyström method was
examined recently in [17], in which the authors show that Nyström
method is overall more effective for batch kernel learning than
random Fourier feature because of the data dependence induced by
Nyström method. Unlike [17] where the effect of Nyström method
was examined in batch learning, we focus on online regularized
kernel learning where training examples are received sequentially
with one at each time, and every training example will be discarded
after it is used to update the prediction model. We show that, in
online regularized kernel learning, only Oðlog 2TÞ randomly sam-
pled support vectors are needed to achieve an Oðlog T=TÞ con-
vergence rate. Compared to the optimal convergence rate Oð1=TÞ for
online regularized kernel learning, our result is almost optimal
except for the log ðTÞ factor. We verify our theory by an extensive

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.002
http://dx.doi.org/10.1016/j.neucom.2015.10.002
http://dx.doi.org/10.1016/j.neucom.2015.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.002&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2015.10.002

M. Lin et al. / Neurocomputing 179 (2016) 26–36 27
empirical study. To the best of our knowledge, this is the first work
that analyzes the performance of Nyström method in online set-
tings, with nearly optimal guarantee.

The rest of this paper is organized as follows. Section 2 dis-
cusses the related work on kernel learning and Nyström method.
Section 3 describes online regularized kernel learning with
Nyström method in details, and present our theoretical guaran-
tees, where the detailed proof can be found in the Appendix.
Section 4 demonstrates our theory by an extensive empirical
study. Section 5 encloses our paper with future work.
2. Related work

In this section we briefly review the related works on kernel
learning.

2.1. Kernel learning

As mentioned in the introduction section, the main challenge
arising from kernel learning is its high demand on computational
cycles and storage space. Below we list several major efforts in
improving the efficiency of kernel learning.

Explicit kernel feature mapping: Explicit kernel feature mapping
approximates a kernel similarity function by a finite feature
representation of data. When the kernel is shift-invariant, it can be
accomplished by random Fourier sampling [14]. It was shown in
[24] that the generalization error caused by random Fourier fea-
tures is bounded by Oð1=

ffiffiffiffiffi
M

p
Þ, where M is the number of random

Fourier features. When kernel is not shift-invariant, polynomial
feature representation is often used to approximate the kernel
function by a truncated Taylor expansion [25,15,16]. The key lim-
itation of methods in this category is that the kernel approxima-
tions are made independently from the data distribution, leading
to suboptimal performance as argued in [17].

Batch sparse kernel learning: Sparse kernel learning aims to com-
pute a compact representation of kernel classifier with a limited
number of support vectors. A common idea is to confine the support
vectors in a reduced set of training data [26,27]. The reduced set is
constructed either by a greedy method [3,28] or by minimizing some
criterion as a complementary process [26,29,30]. In [31,32], the
authors consider approaches for sparse kernel learning by making
appropriate changes to the objective function. In [30], the authors
propose to first learn a dense kernel SVM through batch learning, and
then approximate the learned SVM by a sparse one. Although the
output classifier is sparse in support vectors, most methods in this
category are expensive in both storage space and computational cost
as they have to deal with the full kernel matrix in the first place.

Budget online learning: Budget Online Learning restricts the
number of support vectors to a given budget. Crammer et al. [9]
propose the first budget online learning, which was refined later on
in [10]. The key of these approaches is to remove the support vec-
tors of least significance to maintain the budget. The Forgetron [33]
is the first budget online learning with theoretical guarantees. It
decreases the weights of support vectors at each iteration of online
learning and removes the support vectors with the smallest weight
when the number of support vectors exceeds the budget. Rando-
mized Budget Perceptron [34] achieves similar bounds as Forgetron
by replacing one of the randomly selected support vectors with new
instances. Projectron [35] improves these ideas by making a new
training example to be a support vector only when it is far from the
space spanned by the existing support vectors. Peilin et al. [8]
developed a stochastic gradient descent based method for budget
online learning. Very recently, Wang et al. [36] study the con-
vergence rate of online kernel with random Fourier features and
Nyström features. Although their analysis is very similar with ours,
they only give a linear sampling complexity for Nyström features,
which is significantly inferior than the results presented in this
paper. It is important to note that our method needs to sample
support vectors beforehand and needs independent assumptions,
that are not required in conventional analysis. The method pro-
posed in this paper can be viewed as an extension of Projectron
with online-to-batch conversion. In our analysis, the optimal con-
vergence rate is only possible with online-to-batch conversion, thus
it is not surprising that Projectron cannot provide such guarantee.

Sparse online kernel learning: Sparse online kernel learning
maintains a sparse support vector set at each online step and out-
puts a compact kernel machine without having to take the online-
to-batch conversation. Engel et al. [37] proposed a sparse kernel
support vector machine for kernel regression, where a new training
instance is added into the set of support vectors only when it
cannot be linearly approximated by current support vectors. Their
method does not provide any guarantee on generalization bounds.
Zhang et al. [11] proposed a stochastic gradient method for sparse
online kernel learning that shares the similar idea as [8].

2.2. Nyström method

Nyström method was first proposed by Nyström [18]. It was
introduced by Williams and Seeger [19] to accelerate kernel
learning, followed by [20]. Various sampling schemes have been
proposed to improve the effectiveness of Nyström method [38,39].

Nyström method is often viewed as a low rank matrix approx-
imation method: it approximates the kernel matrix K by a low rank
matrix bK . Several analyses have been developed to bound the dif-
ference between K and bK [20,40–43]. The most interesting result is
given in [40,41], which stated that when the rank of kernel matrix is
r, only Oðr log rÞ samplings is needed by Nyström method to
achieve a zero error in approximating the kernel matrix. The impact
of the low rank approximation made by Nyström method on the
generalization performance of kernel learning was studied in [44].
In [17], the authors proved that the generalization error caused by
Nyström method is low bounded by OðN=MÞ, where N is the
number of training instances, which can be improved to OðN=Mp�1Þ
if the eigenvalues of the kernel matrix follow a p power law. Dif-
ferent from the existing studies, we focus on the generalization
performance of Nyström method in the online setting.
3. Online kernel learning with nyström method

3.1. Background and notation

Let κð�; �Þ be a bounded kernel function, i.e., 8x; x0AX ,
jκðx; x0Þjr1. Denote by H the Reproducing Kernel Hilbert Space
(RKHS) endowed with κð�; �Þ. Let �; �h iH be the inner product on H
and J � JH be the corresponding norm. Let zt ¼ fxt ; ytg; t ¼ 1;…; T
be the sequence of training examples received in the online set-
ting, where xtAXDRd is a column vector of d dimension and the
label ytAfþ1; �1g. We assume that all the training examples are i.
i.d. samples from an unknown underlying distribution Pðx; yÞ.

Given the sequence of training examples fz1; z2;…; zT g, we
define the kernel matrix KART�T by Ki;j ¼ κðxi; xjÞ. Through out the
paper, we assume that the kernel to be bounded,

jκðx; yÞjr1:

We denote by X the set of training instances, and by V the set of
support vectors, i.e.,

X9fx1; x2;…; xT g; V9fx̂1; x̂2;…; x̂Mg;
where each x̂i is a support vector used by the kernel classifier and
M is the number of support vectors. We define HV , the subspace

1:

2:

3:
4:
5:
6:

8:e

9:

M. Lin et al. / Neurocomputing 179 (2016) 26–3628
spanned by the support vectors in V, i.e.

HV 9spanfκðx̂1; �Þ; κðx̂2; �Þ;…; κðx̂M ; �Þg:
For brevity, we define

fKV ;V gi;j9κðx̂i; x̂jÞ; fK >
X;V gi;j ¼ fKV ;Xgi;j9κðx̂i; xjÞ;

KV ;x9 ½κðx̂1; xÞ;…; κðx̂M ; xÞ�>

where KV ;V is the kernel matrix for all the support vectors in V,
KV ;X is the kernel matrix between the support vectors in V and all
the training instances in X, and KV ;x is a column vector repre-
senting the kernel similarities between instance x and all the
support vectors in V. We will use K�1 to represent the Moore–
Penrose pseudoinverse of matrix K.

Similar to most studies of online learning, we use ℓðy; zÞ for loss
function, where y is the true label and z¼ f ðxÞ is the prediction made
by function f AH : X↦R. We assume that ℓðy; zÞ to be β-smooth and
convex in the second argument with bounded gradient, i.e.

jℓ0ðy; zÞ�ℓ0ðy; z0Þjrβj z�z0 j ; jℓ0ðy; zÞjrG 8z; z0;
where the derivative is taken with respect to z. Let ℓðf Þ ¼ Ex;yℓðy; f ð
xÞÞ be the expected loss of f, and f n be the minimizer of ℓð�Þ, i.e.,
f n ¼ arg min

f
ℓðf Þ9Ex;yℓðy; f ðxÞÞ:

We assume that f n exists but not necessarily unique.
To ensure the learnability of our problem [45,46], we minimize

the regularized loss Lðf Þ instead of ℓ, which is defined as

Lðf Þ9λ
2
J f J2Hþℓðf Þ:

Clearly Lðf Þ is λ-strongly convex and ðλþβÞ-smooth. Similarly, we
define the regularized loss at step t of online learning as

Ltðf Þ9λ
2
J f J2Hþℓðyt ; f ðxtÞÞ:

To measure the generalization performance of the classifier f̂
learned in an online learning process, we will compare Lðf̂ Þ with
Lðf nÞ. For online regularized kernel learning using Nyströmmethod,
we will show that Lðf̂ Þ�Lðf nÞ is bounded by Oðlog T=TÞ as long as
the number of randomly sampled support vectors is Oðlog 2TÞ.

3.2. The Nyström method

Nyström method is usually viewed as a low rank matrix
approximation approach. In order to approximate the full kernel
matrix K, it first randomly samples M training instances as support
vectors from a collection of T training examples, and approximates
K by bK ¼ KX;VK

�1
V ;VK

>
X;V . This is equivalent to providing, for each

instance x, a new vector representation ϕðxÞ ¼ ½ϕ1ðxÞ;…;ϕMðxÞ> �,

ϕðxÞ ¼ K �1=2
V ;V KV ;x:

As a result, instead of learning a kernel classifier f ð�ÞAH, we will
learn a linear classifier f ðxÞ ¼ w; xh i, where the parameter wARM

is a vector of M dimension.
An alternative view is to treat Nyström method as a con-

strained kernel learning problem [23], in which the solution is
restricted to a subspace spanned by the randomly sampled sup-
port vectors in V, i.e.

min
f AHV

λ
2
J f J2Hþ1

T

XT
t ¼ 1

ℓðyt ; f ðxtÞÞ

Since f AHV , we can express f as a linear combination of the
randomly sampled support vectors, i.e.

f ðxÞ ¼
XM
i ¼ 1

αiκðbxi; xÞ ¼αTKV ;x ð1Þ
where α¼ ðα1;…;αMÞ> are the combination coefficients, and
therefore, we have

J f J2H ¼αTKV ;Vα:

Under this view, in this paper we will show that, the quality of the
kernel classifier obtained by Nyström method is determined by the
projection errors fδtgTt ¼ 1 of individual training examples given as

δ2t ¼ min
f AHV

‖κðxt ; �Þ� f ð�Þ‖2H ð2Þ

It is easy to verify that (see Appendix B)

δ2t ¼ κðxt ; xtÞ�KT
V ;xt K

�1
V ;VKV ;xt : ð3Þ

and the optimal solution to the projection problem in (2) is given by

Pf ð�Þ ¼ Pκðxt ; �Þ ¼ϕðxtÞ>ϕð�Þ; ð4Þ
where P is the projection operator that projects a function f ð�ÞAH
into the subspace HV .

3.3. Online regularized kernel learning with Nyström method

Algorithm 1 presents the detailed steps for online regularized
kernel learning with Nyström method. It first randomly samples M
training instances as support vectors from a collection of T training
examples. Following the standard stochastic gradient descent
approach, it then computes the gradient of the loss function for each
training example and updates the solution using the computed
gradient. The key difference between Algorithm 1 and standard
online kernel learning is at step 7, where the computed gradient ∇Lt

is projected into the subspace HV through the operator P before it is
used for updating the solution. This is where the Nyström method
plays the role. We set step size ηtp1=½λT � because the regularized
loss function is strongly convex and according to [47], setting step
size 1=½λT� yields optimal convergence rate (up to a log T factor).

Algorithm 1. Online Nyström Kernel Learning (ONL).
Input: Budget of support vectors M, regularization para-
meter λ40, and training sequence fxt ; ytg, t ¼ 1;2;⋯T .
Choose step size parameter cAð1;1Þ. We assume c¼3 if not
specified.
Randomly sampling M training instance as support vectors,
V ¼ fx̂1; x̂2;…; x̂Mg
f 1ð�Þ ¼ 0
for all t ¼ 1;2;⋯T do
Retrieve training instance xt . Set step size ηt ¼ c=ðλtÞ.
Compute the gradient:∇Ltðf tÞ ¼ λf tþℓ0ðyt ; f tðxtÞÞκðxt ; �Þ.
Update the kernel classifier
7:

f tþ1 ¼ f t�ηtP ∇Ltðf tÞ
� �

¼ ð1�ηtλÞf t�ηtℓ
0 yt ; f ðxtÞ
� �

Pκðxt ; �Þ
nd for

Output: bf T ¼ 1
T

PT
i ¼ 1 f i
In the implementation, we need to store the support vector set
V, kernel matrix K �1=2

V ;V , and the coefficients fαigMi ¼ 1 for the kernel
classifier f ð�Þ learned by Algorithm 1. The space complexity is d�
M for storing V, is M �M for storing KV ;V , and is M for storing
fαigMi ¼ 1. Thus, the total space complexity is OðM2þdMÞ. Since the
cost of computing Pκðxt ; �Þ at each iteration of online learning is
OðM2Þ, the total time complexity of running Algorithm 1 is OðM2 TÞ
where M¼ Oðlog TÞ, which is almost linear in number of training
examples, a significant improvement over standard online kernel
learning.

Table 1
Statistics of data sets.

M. Lin et al. / Neurocomputing 179 (2016) 26–36 29
One potential issue of Algorithm 1 is that the Nyström method
requires to pass data at least once to get a uniform sampling,
which is an undesirable feature in online learning. This flaw is
amenable if the data is coming in independently and identically (I.
I.D.). In this I.I.D. case, we only need to simply take the first M
instances as support vectors. Other possible solution includes
reservoir sampling and adaptive sampling, which we leave for
future development.

The following theorem claims that only Oðlog 2TÞ randomly
sampled support vectors (i.e. M¼ Oðlog 2TÞ) are needed by Algo-
rithm 1 to achieve an almost optimal convergence rate for online
regularized kernel learning.

Theorem 1. Let ðui; λiÞ; i¼ 1;…; T be the eigenvectors and eigenva-
lues of K that are ranked in the descending order of eigenvalues.
Define bλr9

PT
i ¼ rþ1 λi as the tail sum of the eigenvalues, and μ as

the coherence measure of U, i.e.

μ¼ max
1r irT ;1r jrT

Tu2
i;j

Assume that rZmaxfCablnð3 T3Þ;4log T=γg, where Cab and γ are
universal positive constants. Then, with a high probability, we have

L bf T� �
�Lðf nÞrOðlog T=TÞ:

provided the number of randomly sampled support vectors M is
sufficiently large, i.e.

MZmax
96βμ2rbλr

λ
;16μ2 log T

γ

� �2

;μ2C2
ablog

2ð3T3Þ;
(

4μ2Cablog ð3T3Þlog T
γ

	
;

The complete proof for Theorem 1 can be found in Appendix.
The coherence measure μ used by Theorem 1 is used to indicate

how well individual training examples are related to the others [40].
A small coherence measure implies that most training examples can
be well approximated by the other training examples, and therefore
it is possible to accurately learn the kernel classifier using a set of
randomly sampled examples as support vectors. Constants Cab and γ
were first introduced in [48] for compressive sensing, and were
later on utilized for analyzing the generalization performance of
Nyström method in [40]. We note that the number of support
vectors M depends on bλr , the tail sum of eigenvalues. When the
kernel matrix is nearly low-rank, we will have a small value for bλr ,
and consequentially a small number of randomly sampled support
vectors will be required by Algorithm 1. In the case when bλr ¼ OðλÞ,
we have M¼ Oðlog 2TÞ, an almost constant number of support
vectors that are needed to achieve a convergence rate of Oðlog T=TÞ.
Although Oðlog 2 TÞ is slightly worse than the Oðlog TÞ sample
complexity for requested by the Projectron algorithm [7], the focus
of our algorithm is different from that of Projectron: Algorithm 1 is
designed for online regularized kernel learning that achieves an Oð
log T=TÞ convergence rate; in contrast, Projectron is designed for
standard online kernel learning that achieves an Oð1=

ffiffiffi
T

p
Þ con-

vergence rate, which is significantly slower than ours. We finally
note that according to [47], the optimal convergence rate for online
regularized kernel learning is Oð1=TÞ, and the convergence rate of
Algorithm 1 is almost optimal except for a log T factor.
Data set #features #instance σ

adult 123 182,357 0.78
COD-RNA 8 271,617 0.0057
covtype 54 581,012 0.35
ijcnn1 22 49,990 0.57
mnist 780 60,000 0.86
vehicle 100 78,823 0.86
4. Experiments

In this section, we conduct experiments to verify our theory, i.e.
only a small number of random sampled support vectors is needed for
online regularized kernel learning with Nyströmmethod.We compare
the proposed algorithm Online Nyström kernel Learning (ONL) with
four state-of-the-art baselines for large-scale kernel learning:

� Pegasos (PEG) algorithm using full kernel matrix [49], a state-
of-the-art algorithm for large-scale learning based on the
theory of stochastic gradient descent.

� Projectron (PTR) [35], a state-of-the-art algorithm for budget
online kernel learning. We set the threshold for the projection
distance threshold, a key parameter for the Projectron algo-
rithm, to be 0.001, according to the recommendation by the
original authors [35].

� Forgetron (FGT) [33], which throws support vectors according
to their weights after exceeding budget.

� Budget Online Gradient Descend (BOGD) [8]. We tune the
parameter η¼ 1=8; γ ¼ 2 in BOGD as suggested in [8].

For the proposed algorithm and baseline methods, we set the number
of support vectors M¼2000, which appears to yield the best trade off
between classification accuracy and computational efficiency.

We test all the algorithms on six public large data sets: adult,
COD–RNA, covtype, ijcnn1, mnist, and vehicle. All the features are
normalized to unit norm. For the mnist dataset, we convert it into
binary classification problem by treating digit ‘0’ to ‘4’ as positive
instances and ‘5’ to ‘9’ as negative instances. We use the Gaussian
kernel in the experiments for its popularity. The kernel width σ is set
to be the fifth percentile of the pairwise distances [50,51]. Table 1
summarized the statistics of data sets. We choose the logit function
ℓðzÞ ¼ log ð1þexpð�zÞÞ as the loss function because it is a smooth
loss function and has been used by many studies. We randomly
sample 20% data for testing and use the remaining for training. We
apply cross validation to tune the regularization parameter λ in the
set of f10�8;10�6;10�4;10�2;1g. All experiments are repeated five
times. The averaged performances over five trials are reported.

4.1. Convergence rate

In order to evaluate the convergence rate of the proposed
algorithm ONL, we compare the loss function Lðf tÞ of the proposed
algorithm over iterations to that of the Pegasos algorithm. Since
Pegasos is known to yield a convergence rate of Oðlog T=TÞ for
online regularized kernel learning, this comparison will tell if the
theoretical convergence result given in Theorem 1 is correct. In
this experiment, for the convenience of comparison, we set the
regularization parameter λ¼ 10�4 for both methods. The value λ
¼ 10�4 is shown to be optimal on most dataset. We fix λ for both
methods because we are interested in the convergence rate of
objective value of a fix optimization problem. For different value of
λ, the only difference is the declivity of the curve. In Fig. 1, we plot
the loss function value on testing set against iteration steps.
According to Fig. 1, we observe that ONL converges to almost the
same value of loss function as Pegasos with increasing number of
iterations, indicating an Oðlog T=TÞ convergence for ONL. The curve
of ONL is always above Pegasos, which indicates ONL has a larger
constant in the convergence rate, as shown in our upper bound.
The peak in early stages of iteration of ONL and Pegasos is because

Fig. 1. Evaluation of convergence rates.

M. Lin et al. / Neurocomputing 179 (2016) 26–3630
we choose step size 1=ðλtÞ, which is large at the beginning, so the
changes in objective value is intensive at the first few steps.

To further verify that the convergence rate is on order of Oð1=tÞ,
we take logarithm both on loss function value and t. If f ðtÞ ¼ 1=t,
we have log ðf ðtÞÞ ¼ � log ðtÞ. Therefore the curve should be a line
with slope �1. In Fig. 2, the x-axis is the logarithm of iteration
steps. The y-axis is the logarithm of loss function value on testing
set. From the figure, the slope of ONL is almost the same as that of
Pegasos, except for the convergent part near the end of the
iteration. This verifies that the convergence rate of ONL is the same
as Pegasos, which is well known to be Oð1=tÞ.

4.2. Classification accuracy

We evaluate the binary classification accuracies of different
methods in Table 2. We observe that with only M¼2000 support
vectors, ONL achieves almost the same accuracy as Pegasos using full
kernel for most datasets. Projectron performs significantly worse
than the proposed algorithm on datasets vehicle and covtype, and
slightly better than the proposed algorithm on the mnist and ijcnn. In
addition, compared to the proposed algorithm, Projectron exhibits a
significantly larger variance in its classification accuracy, making it a
less reliable algorithm for choice. BOGD is reasonable good on adult,
COD-RNA, ijcnn1, vehicle, and does not perform well on covtype,
mnist. ONL is always better than BOGD on all datasets. Forgetron is
the worst method in average and also has large variance, which is
also reported by many previous researches [35].

In Fig. 3, we evaluate the performance of the proposed algo-
rithm with the number of support vectors M varied in the set
f50;100;200;500;1000;2000g. We also include in Fig. 3 the clas-
sification accuracy of Projectron with varied number of support
vectors, and the classification accuracy of Pegasos (highlighted by
a straight dotted line). We observe that for several datasets (i.e.
covtype, adult, and vehicle), even a few hundred of support vec-
tors would be sufficient for the proposed algorithm to yield a
classification performance similar to that of Pegasos using full
kernel matrix. Similar to the observation from Table 2, we also
observe that the Projectron algorithm exhibits a large variance in
its classification performance in almost all cases.

4.3. Running time

In Table 3, we list the running time of different methods, where
the number of support vectors is set as M¼2000 for the proposed

Fig. 2. Evaluation of convergence rates (loglog).

Table 2
Classification accuracy. The number of support vectors for the proposed algorithm ONL is set M¼2000.

Dataset ONL PTR PEG BOGD FGT

adult 84:970:2% 83:071:78% 85:0870:3% 82:770:9% 70:177:9%
COD-RNA 89:770:2% 90:772:16% 90:470:6% 88:870:2% 82:472:7%
covtype 79:070:3% 73:971:38% 79:570:3% 70:271:1% 59:974:0%
ijcnn1 92:670:3% 95:970:68% 94:070:2% 90:370:3% 86:572:4%
mnist 92:070:7% 93:873:14% 93:770:5% 79:073:2% 69:678:3%
vehicle 84:770:3% 76:075:4% 85:370:2% 81:470:7% 71:077:8%

M. Lin et al. / Neurocomputing 179 (2016) 26–36 31
algorithm. We observe that the proposed algorithm is significantly
more efficient than Pegasos on all datasets except for the ijcnn
dataset where both method share similar running time. The small
difference in running time for the ijcnn dataset is mostly due to
the fact that it is the smallest dataset used in our study. For some
large datasets such as adult and covtype, the improvement made
by the proposed algorithm in computational efficiency over
Pegasos can be quite dramatic. For example, for the covtype
dataset, it takes the proposed algorithm ONL less than 1/30 of the
running time of Pegasos to complete the training process. Com-
pared to the Projectron algorithm, the proposed algorithm is
significantly more efficient on the datasets adult, covtype, and
vehicle, and is less efficient on the other three datasets (i.e. COD-
RND, ijcnn1, and mnist). This is because the number of support
vectors in Projectron is adaptively increasing during iterations.
Although ONL and Projectron share same computational com-
plexity, Projectron will be faster at beginning due to small number
of support vectors. However, after large enough iterations, Pro-
jectron will select all M support vectors and becomes slower. Thus
on large scale dataset such as covtype, ONL is faster than Projec-
tron, while on small dataset such as ijcnn1, Projectron seems to be
more efficient. BOGD is very fast on all dataset, because each

Fig. 3. Classification accuracy with varied number of support vectorsM. The performance of Pegasos algorithm is highlighted by a straight line because it cannot dynamically
adjust the number of support vectors.

Table 3
Running time (second) for different algorithms. The number of support vectors is fixed to be 2000 for the proposed algorithm ONL.

Dataset ONL PTR PEG BOGD FGT

adult 590717 117077 1:5e470:6 193714 1:2e4727
COD-RNA 888730 8871 6:3e370:07 5370:2 2:5e378
covtype 1:4e3715 4:2e3723 5:2e470:04 24377:5 1:3e3726
ijcnn1 27179 14778 22270:4 1270:36 41776
mnist 614712 407713 4:6e371 299763 2:3e37154
vehicle 371720 61174 2:2e370:004 5672 4:1e3722

M. Lin et al. / Neurocomputing 179 (2016) 26–3632
iteration in BOGD is a simple gradient descend. Forgetron is only
faster than full kernel Pegasos and much slower than other
methods.
5. Conclusion

In this work, we study the problem of online regularized kernel
learning with Nyström method. We show that when the kernel
matrix is nearly low rank, with only M¼ Oðlog 2TÞ randomly sam-
pled support vectors, the proposed algorithm is able to yield an Oð
log T=TÞ convergence rate. We verify our theory by an extensive
empirical study over six benchmark datasets. In summary, our work
shows that we can actually train a kernel classifier efficiently
without sacrificing the generalization performance with almost
constant number of support vectors.

An open question is whether or not log 2T sample complexity
shown in our theory study can be further improved. We note that the

M. Lin et al. / Neurocomputing 179 (2016) 26–36 33
additional log T factor was introduced in the proof of Theorem 1,
where we relax the expectation of projection distance by an union of
upper bounds. A more careful analysis may be developed to remove
the additional log T and reduce the sample complexity from log 2T to
log T . Another open question is if the classification performance of the
proposed algorithm can be improved by adaptively selecting support
vectors, instead of randomly sampling support vectors before the start
of online learning, an approach that was taken by the Projectron
algorithm. We will examine both open questions in the future.
Acknowledgments

We would like to thank the anonymous editors and reviewers
for their insightful comments. This work is supported by 973
Program (2013CB329503), NSFC (Grant nos. 91120301, 91420203
and 61473167).
Appendix A. Proof of Theorem 1

To commence our proof, we first need the following lemma
which bounds the norm of ft. This lemma is important in our proof
because the standard online learning requires the gradient of Lðf tÞ
to be bounded.

Lemma 1. Let f 1; f 2;…; f T be the solutions in Algorithm 1. We have,
the norm of fT is bounded, followed by boundness of the gradient of
Lðf tÞ:

J f t JHr22G
λ

; J∇Lðf tÞJHr23G:

Proof. For 2rtrcþ1, we have

J f t Jr
ð1Þ

1� c
t�1

J f t�1 Jþ
c

λðt�1ÞG¼ c
t�1

�1
� �

‖f t�1‖þ
c

λðt�1ÞG

r
ð2Þ

c�1ð Þ‖f t�1‖þ
c
λ
Gr

ð3Þ 1þð1þcÞt�c
� �

cG
ð�2þcÞð�1þcÞλ :

(1) comes from gradient descent rule. (2) comes from the fact that
2rt in the beginning of the proof. (3) comes from expanding the
recursive inequality followed by geometrical series.

For t4cþ1, let t ¼ cþ1þu, uZ1,

‖f t‖r 1� c
t�1

‖f t�1‖þ
cG

λðt�1Þ ¼
ð1Þ 1� c

t�1

� �
‖f t�1‖þ

cG
λðt�1Þ

r
ð2ÞG
λ
þð�Gþ‖f cþ1‖λÞc!u!

λðcþuÞ! rG
λ
þð�Gþ‖f cþ1‖λÞ

λðcþ1Þ

¼ c
1þc

G
λ
þ‖f cþ1‖

cþ1
:

(2) comes from the recursive inequality about ft in the above line.
Take the equality (1), then we solve the recursive equation to get
the expression of ft at t ¼ cþ1. Then we get (2). The term f cþ1 is
the intermediate solution at t ¼ cþ1. Choosing c¼3, since the
gradient of ℓ is bounded, J f cþ1 J must be bounded by a constant.
J f cþ1 J Then the proof is completed.

Please note that the constants given in this lemma is calculated
at c¼3. If we take a different value of c, the constants should be
modified correspondingly.□

In Algorithm 1, we first compute the online gradient descent
intermediate solution f 0t based on current solution ft, then project
f 0t to the subspace HV to get f tþ1. We introduce an auxiliary
variable ut to transform the projection operation into additive
operation. More precisely, we define ut such that

f tþ1 ¼ f t�ηt∇Ltðf tÞþut :

Therefore, in Algorithm 1, ut equals to f tþ1� f 0t , while in traditional
online learning, ut ¼ 0. We have the following basic inequality:

‖f tþ1� f ‖2H ¼ ‖f t�ηt∇Ltðf tÞ�ut� f ‖2H ¼ ‖f t� f ‖2Hþ‖ηt∇Ltðf tÞ
þut‖2H�2 ηt∇Ltðf tÞ; f t� f

� �
H�2 ut ; f t� f

� �
H

r‖f t� f‖2Hþ2η2t ‖∇Ltðf tÞ‖2Hþ2‖ut‖2H
�2 ηt∇Ltðf tÞ; f t� f
� �

H�2 ut ; f t� f
� �

Hr‖f t� f ‖2H
þ1058η2t G

2þ2‖ut‖2H�2 ηt∇Ltðf tÞ; f t� f
� �

H
�2 ut ; f t� f
� �

H:

The first inequality is because ðaþbÞ2r2a2þ2b2. The second
inequality is because the boundness of J∇Lðf tÞJH. Clear up the
inequality, we have

∇Ltðf tÞ; f t� f
� �

Hr‖f t� f ‖2H�‖f tþ1� f ‖2H
2ηt

þ1058ηtG
2

þ 1
ηt
‖ut‖2H� 1

ηt
ut ; f t� f
� �

H: ðA:1Þ

The auxiliary variable ut comes from the projection step, thus is
the key part of our proof. Otherwise if ut ¼ 0, the proof is trivially a
standard online learning proof. To address the trouble of ut, we
decompose the excess risk into several parts, then we bound each
part separately. Finally, we cancel the terms containing ut by
strong convexity of the loss function.

Let the step size ηt ¼ c=ðλtÞ. From the strong convexity of L,XT
t ¼ 1

Lðf tÞ�Lðf nÞ

r
XT
t ¼ 1

∇Lðf tÞ; f t� f n
� �

H�λ
2
‖f t� f n‖2H

¼
XT
t ¼ 1

∇Ltðf tÞ; f t� f n
� �

H�λ
2
‖f t� f n‖2Hþ ∇Lðf tÞ

�
�∇Ltðf tÞ; f t� f n

�
H

r
XT
t ¼ 1

‖f t� f n‖2H�‖f tþ1� f n‖2H
2ηt

þ1058ηtG
2þ 1

ηt
‖ut‖2H

� 1
ηt

ut ; f t� f n
� �

H�λ
2
‖f t� f n‖2Hþ ∇Lðf tÞ�∇Ltðf tÞ; f t� f n

� �
H

¼ �T‖f Tþ1� f n‖2Hþ
XT
t ¼ 1

λ
2c

�λ
2

� �
‖f t� f n‖2H

þ1058ηtG
2þ 1

ηt
‖ut‖2H

� 1
ηt

ut ; f t� f n
� �

Hþ ∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

r
XT
t ¼ 1

λ
2c

�λ
2

� �
‖f t� f n‖2Hþ1058ηtG

2þ 1
ηt
‖ut‖2H

� 1
ηt

ut ; f t� f n
� �

Hþ ∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H ðA:2Þ

¼
XT
t ¼ 1

λ
2c

�λ
2

� �
‖f t� f n‖2H

()
þ 1058G2

XT
t ¼ 1

ηt

()

þ
XT
t ¼ 1

∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

()

þ
XT
t ¼ 1

1
ηt
‖ut‖2H

()
þ

XT
t ¼ 1

� 1
ηt

ut ; f t� f n
� �

H

()
: ðA:3Þ

The first inequality is because the strong convexity. The second
inequality is from Eq. (A.1). The second equality is because τ¼ c=ðλtÞ
then summation over t. The third inequality is because the first
term in the last step is always non-positive. In the last step, we
collect the upper bound into five terms. Our strategy is to bound

M. Lin et al. / Neurocomputing 179 (2016) 26–3634
these terms separately. The first term is strictly negative if we
choose c large enough. The second term is clearly bounded by
Oðlog TÞ. The third term is a martingale sequence thus can be bound
by OðPt‖f t� f n‖2HÞ. The last two terms are related to the projection
hence are the key parts of our proof. We will show that the last two
terms are small enough so they can be canceled out by the first
strictly negative term.

The second term is bounded by the upper bound of harmonic
series,

1058G2
XT
t ¼ 1

ηtr1058
cG2

λ
ð1þ log TÞ:

The third term can be bounded by Bartlett's Theorem [52]. Define

ξt ¼ ∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

as martingale difference sequence,

‖ξt‖r2GðJ f t JHþ J f n JHÞ ¼ 2G
22G
λ

þ J f n JH
� �

9b;

VarfξtgrG2‖f t� f n‖2H:

For any auxiliary variable τZ0, with probability at least 1�δ,XT
t ¼ 1

∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

r2 max 2
ffi
G2
X
t

‖f t� f n‖2H
r

; b

ffi
log

log 2T
δ

r() ffi
log

log 2T
δ

r

r
ffi
16G2

X
t

‖f t� f n‖2H
r ffi

log
log 2T
δ

r
þ2b log

log 2T
δ

¼

ffi
16G2τ
λ

λ
τ

X
t

‖f t� f n‖2H

vuut ffi
log

log 2T
δ

r
þ2b log

log 2T
δ

r16G2τffiffiffi
2

p
λ
log

log 2T
δ

þ λffiffiffi
2

p
τ

X
t

‖f t� f n‖2Hþ2blog
log 2T
δ

:

The last step is because
ffiffiffiffiffiffi
ab

p
r ðaþbÞ=

ffiffiffi
2

p
.

To bound the last terms, we first notice that

ut ¼ f tþ1�ff t�ηt∇Ltðf tÞg:
Define

at ¼ ℓ0ðyt ; f ðxtÞÞ
which is the gradient of the second argument of ℓðy; zÞ,
ut ¼ �ff t�ηt∇Ltðf tÞgþPff t�ηt∇Ltðf tÞg ¼ ηtatP? κðxt ; �Þ:
P? ¼ I�P is the projection operator which projects κðxt ; �Þ to the
subspace which is orthogonal to HV . From this observation, the
fourth term is bounded byXT
t ¼ 1

1
ηt
‖ut‖2H ¼

XT
t ¼ 1

ηta
2
t ‖P? κðxt ; �Þ‖2HrG2

XT
t ¼ 1

ηtr
G2c
λ

ð1þ log TÞ:

The second inequality is because jκðx; xÞjr1. The fifth term is
bounded byXT
t ¼ 1

� 1
ηt

ut ; f t� f n
� �

H ¼
XT
t ¼ 1

� atP? κðxt ; �Þ; f t� f n
� �

H

¼
XT
t ¼ 1

� P?∇ℓtðf tÞ; f t� f n
� �

H

¼
XT
t ¼ 1

� ∇ℓtðf tÞ; P? ðf t� f nÞ
� �

H

¼
XT
t ¼ 1

� ∇ℓtðf tÞ�∇ℓðf tÞ; P? ðf t� f nÞ
� �

H� ∇ℓðf tÞ; P? ðf t� f nÞ
� �

H:

The fourth equality is because P? is a projection operator thus is
adjoint. The first term in the last step is a martingale so we can
bound it byXT
t ¼ 1

� ∇ℓtðf tÞ�∇ℓðf tÞ; P? ðf t� f nÞ
� �

H

r
XT
t ¼ 1

∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

:
The inequality holds because JP? ðf t� f nÞJHr J ðf t� f nÞJH. For the
second term, we bound it byXT
t ¼ 1

� ∇ℓðf tÞ; P? ðf t� f nÞ
� �

H

¼
XT
t ¼ 1

∇ℓðf nÞ�∇ℓðf tÞ; P? ðf t� f nÞ
� �

H

¼
XT
t ¼ 1

P? ∇ℓðf nÞ�∇ℓðf tÞ

 �

; f t� f n
� �

H

r
XT
t ¼ 1

JP? ∇ℓðf nÞ�∇ℓðf tÞ

 �

JH J f t� f n JH

¼
XT
t ¼ 1

JE ½ℓ0
tðf nÞ�ℓ0

tðf tÞ�P? κðxt ; �Þ

 �

JH J f t� f n JH

r
XT
t ¼ 1

E Jℓ0
tðf nÞ�ℓ0

tðf tÞJH JP? κðxt ; �ÞJH

 �

J f t� f n JH

r
XT
t ¼ 1

E βJ f nðxtÞ� f tðxtÞJH JP? κðxt ; �ÞJH

 �

J f t� f n JH

¼
XT
t ¼ 1

E β‖ f n� f t ; κðxt ; �Þ
� �

H‖JP? κðxt ; �ÞJH
n o

J f t� f n JH

r
XT
t ¼ 1

E βJ f n� f t JH JP? κðxt ; �ÞJH

 �

J f t� f n JH

¼
XT
t ¼ 1

β EJP? κðxt ; �ÞJH

 �

‖f t� f n‖2H:

As we expected, the last term in Eq. (A.3), which comes from
sampling, is on order of OðPT

t ¼ 1 ‖f t� f n‖2HÞ. The coefficient is
determinated by the smoothness parameter β and the expected
projection distance EJP? κðxt ; �ÞJH. The key idea is to show that
the projection distance is small enough so we can cancel this term
with the first term in Eq. (A.3). To this end, we borrow the proofs
of Nyström in [53]. The following lemma reveals the relationship
between Projectron and Nyström method. We omitted the proof
because it is a direct evaluation.

Lemma 2. Given training instances X. K is the kernel matrix,
fKgi;j ¼ κðxi; xjÞ. Let bK ¼ KT

V ;XK
�1
V ;VKV ;X is the approximated kernel

matrix by Nyström method with i.i.d. sampled support vector set V.
We have

JP? κðxt ; �ÞJH ¼ fK� bK gt;t

:
This lemma tells that the projection distance is in fact the

absolute value of the diagonal element of K� bK . For a tight bound,
we need to bound the expectation fK� bK gt;t

 . However, if we relax
a bit by taking the union bound, we can greatly simplify our proofs
by borrowing existing results in [53].

Lemma 3. With probability at least 1�δ,

EJP? κðxt ; �ÞJHr1
T

XT
t ¼ 1

fK� bK gt;t

þ2

ffi
2 log ð2=δÞ

T

r
rmax

t
JP? κðxt ; �ÞJH

M. Lin et al. / Neurocomputing 179 (2016) 26–36 35
þ2

ffi
2 log ð2=δÞ

T

r
:

Proof. The first inequality follows Bernstein's inequality. The
second inequality takes the union bound.□

The following theorem in [53] bounds the maximum value of
projection distance.

Theorem 2 (Theorem 15 in Mahdavi et al. [53]). Give T training

instance. K is T � T kernel matrix. Let K ¼UΣUT be the eigenvalue

decomposition with Σ ¼ diagfλ1;λ2;…g, where λi is the largest i-th

eigenvalue of K. μ is the coherence coefficient of U. Let

rZmax Cab ln ð3 T3Þ;4log T=γ
n o

, where Cab and γ are some certain

positive constant. We have, with the sampling number M of support
vectors larger than

MZμ2 max 16
log T
γ

� �2

;C2
ablog

2ð3T3Þ;4Cablog ð3T3Þlog T
γ

()
;

with a probability 1�2 T �3, we have

max
t

JP? κðxt ; �ÞJHr16μ2r
M

XT
i ¼ rþ1

λi:

Theorem 2 tells that if we sample large enough M, the max-
imum projection distance is very small. The maximum projection
distance is also related to the

PT
i ¼ rþ1 λi, which is the summation

over T�r smallest eigen values. We define

bλr9
XT

i ¼ rþ1

λi

as the accumulation of tail eigenvalues. If the kernel is low rank,
then bλr ¼ 0 and we get a perfect recovery of original kernel space.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Combine all the above together,XT
t ¼ 1

Lðf tÞ�Lðf nÞr
XT
t ¼ 1

λ
2c

�λ
2

� �
‖f t� f n‖2H

()
þ 1058G2

XT
t ¼ 1

ηt

()

þ
XT
t ¼ 1

∇Lðf tÞ�∇Ltðf tÞ; f t� f n
� �

H

()

þ
XT
t ¼ 1

1
ηt
‖ut‖2H

()
þ

XT
t ¼ 1

� 1
ηt

ut ; f t� f n
� �

H

()

r
XT
t ¼ 1

λ
2c

�λ
2

� �
‖f t� f n‖2H

()
þ1058

cG2

λ
ð1þ log TÞ

þ2
16G2τffiffiffi

2
p

λ
log

log 2T
δ

(

þ λffiffiffi
2

p
τ

X
t

‖f t� f n‖2Hþ2b log
log 2T
δ

)

þG2c
λ

ð1þ log TÞþ
XT
t ¼ 1

β
16μ2rbλr

M
‖f t� f n‖2H

r
XT
t ¼ 1

λ
2c

�λ
2
þ

ffiffiffi
2

p
λ

τ
þβ

16μ2rbλr

M

 !
‖f t� f n‖2H

()
þOðlog TÞ:

If we force the coefficient in the first term is smaller than zero, we
already prove Oðlog T=TÞ convergence rate of the excess risk. To
this end, we set

c¼ 3; τ¼ 6
ffiffiffi
2

p
;MZ

96βμ2rbλr

λ
:

It is easy to verify that the first term is strictly negative. Finally,
from convexity of L,

L 1
T

XT
t ¼ 1

f t

 !
�Lðf nÞr

1
T

XT
t ¼ 1

Lðf tÞ�Lðf nÞrOðlog T=TÞ:□

Appendix B. The kernel space functional projection and
Nyström method

We prove that the optimization problem Eq. (2) will lead to
Eq. (4).

For any vector u, denote ΦðuÞ to be the kernel mapping func-
tion. Therefore,

κðu; vÞ ¼ΦðuÞ>ΦðvÞ:
We denote ΦðXV Þ ¼ ½Φðx̂1Þ;Φðx̂2Þ;…;Φðx̂MÞ�. Let the singular value
decomposition of ΦðXV Þ to be

ΦðXV Þ ¼UΣV > 9 ½UM ;U
?
M �½ΣM ;0�> ½VM ;V

?
M �> ¼UMΣMV

>
M :

Here we ambiguously use V on the right side of the singular value
decomposition: the V in XV denotes support set while the V in U
ΣV > denotes the right singular vector matrix.

The Nyström feature for any instance u is

ϕðuÞ ¼ K �1=2
V ;V KV ;u ¼ ½ΦðXV Þ>ΦðXV Þ��1=2ΦðXV Þ>ΦðuÞ

¼ ½VMΣMU
>
MUMΣMV

>
M ��1=2VMΣMU

>
MΦðuÞ ¼ VMU

>
MΦðuÞ:

On the other hand, denote f ð�Þ to be the projection of κðxt ; �Þ, we have

f ðuÞ ¼
XM
i ¼ 1

αiκðx̂i;uÞ ¼α>KV ;u:

From Eq. (2), it is easy to see that α¼ K �1
V ;VKV ;xt . Therefore

f ðuÞ ¼α>KV ;u ¼ ½K �1
V ;VKV ;xt �>KV ;u ¼ K >

V ;xt K
�1
V ;VKV ;u

¼ΦðxtÞ>ΦðXV Þ½ΦðXV Þ>ΦðXV Þ��1ΦðXV Þ>ΦðuÞ
¼ΦðxtÞ>UMU

>
MΦðuÞ ¼ΦðxtÞ>UMV

>
M VMU

>
MΦðuÞ

¼ΦðxtÞ>ΦðuÞ:
The proof is completed.
References

[1] B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, 2001.

[2] I. Steinwart, A. Christmann, Support Vector Machines, Springer-Verlag,
New York, 2008.

[3] J. Zhu, T. Hastie, Kernel logistic regression and the import vector machine, J.
Comput. Graph. Stat. 14 (2005) 185–205.

[4] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, G. Rätsch, Kernel pca and
de-noising in feature spaces, Adv. Neural Inf. Process. Syst. 11 (1999) 536–542.

[5] P. Netrapalli, Provable matrix completion using alternating minimization, NIPS
Workshop, 2012.

[6] J. Kivinen, A. Smola, R. Williamson, Online learning with kernels, IEEE Trans.
Signal Process. 52 (2004) 2165–2176.

[7] Y. Sun, F. Gomez, J. Schmidhuber, On the size of the online kernel sparsification
dictionary, in: International Conference on Machine Learning, 2012, pp. 816–823.

[8] P. Zhao, J. Wang, P. Wu, R. Jin, S. Hoi, Fast bounded online gradient descent
algorithms for scalable kernel-based online learning, in: International Con-
ference on Machine Learning, 2012, pp. 169–176.

[9] K. Crammer, J.S. Kandola, Y. Singer, Online classification on a budget, Adv.
Neural Inf. Process. Syst. (2003) 225–232.

[10] J. Weston, A. Bordes, L. Bottou, Online (and offline) on an even tighter budget, in:
International Workshop on Artificial Intelligence and Statistics, 2005, pp. 413–420.

[11] L. Zhang, R. Jin, C. Chen, J. Bu, X. He, Efficient online learning for large-scale
sparse kernel logistic regression, in: Association for the Advancement of
Artificial Intelligence, 2012, pp. 1219–1225.

[12] L. Zhang, J. Yi, R. Jin, M. Lin, X. He, Online kernel learning with a near optimal
sparsity bound, in: International Conference on Machine Learning, 2013,
pp. 621–629.

[13] N. Cesa-Bianchi, A. Conconi, C. Gentile, On the generalization ability of on-line
learning algorithms, IEEE Trans. Inf. Theory 50 (2004) 2050–2057.

http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref2
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref2
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref3
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref3
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref3
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref4
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref4
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref4
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref6
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref6
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref6
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref13
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref13
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref13

M. Lin et al. / Neurocomputing 179 (2016) 26–3636
[14] A. Rahimi, B. Recht, Random features for large-scale kernel machines, Adv.
Neural Inf. Process. Syst. 20 (2007) 1177–1184.

[15] J. Xu, P. Pokharel, K. Jeong, J. Principe, An explicit construction of a reproducing
gaussian kernel hilbert space, in: IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. 5, 2006, p. V.

[16] A. Cotter, J. Keshet, N. Srebro, Explicit approximations of the gaussian kernel,
arXiv preprint arXiv:1109.4603 (2011).

[17] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, Z.-H. Zhou, Nyström method vs random
fourier features: a theoretical and empirical comparison, Adv. Neural Inf.
Process. Syst. (2012) 485–493.

[18] E. Nyström, Über die praktische auflösung von integralgleichungen mit
anwendungen auf randwertaufgaben, Acta Math. 54 (1930) 185–204.

[19] C. Williams, M. Seeger, Using the nyström method to speed up kernel
machines, Adv. Neural Inf. Process. Syst. (2001) 682–688.

[20] P. Drineas, M. Mahoney, On the nyströmmethod for approximating a gram matrix
for improved kernel-based learning, J. Mach. Learn. Res. 6 (2005) 2153–2175.

[21] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, The
MIT Press, 2006.

[22] C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using the nyström
method, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 214–225.

[23] M. Ouimet, Y. Bengio, Greedy spectral embedding, in: International Workshop
on Artificial Intelligence and Statistics, 2005, pp. 253–260.

[24] A. Rahimi, B. Recht, Weighted sums of random kitchen sinks: replacing
minimization with randomization in learning, Adv. Neural Inf. Process. Syst.
(2008) 1313–1320.

[25] C. Yang, R. Duraiswami, L. Davis, et al., Efficient kernel machines using the
improved fast gauss transform, Adv. Neural Inf. Process. Syst. 17 (2005) 1561–1568.

[26] B. Schölkopf, P. Simard, V. Vapnik, A. Smola, Improving the accuracy and speed
of support vector machines, Adv. Neural Inf. Process. Syst. 9 (1997) 375–381.

[27] Y. Lee, O. Mangasarian, Rsvm: Reduced support vector machines, in: The first
SIAM International Conference on Data Mining, 2001, pp. 5–7.

[28] S. Keerthi, O. Chapelle, D. DeCoste, P. Bennett, Building support vector
machines with reduced classifier complexity, J. Mach. Learn. Res. 7 (2006)
1493–1515.

[29] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K. Muller, G. Ratsch, A. Smola, Input
space versus feature space in kernel-based methods, IEEE Trans. Neural Netw.
10 (1999) 1000–1017.

[30] A. Cotter, S. Shalev-Shwartz, N. Srebro, Learning optimally sparse support vector
machines, in: International Conference on Machine Learning, 2013, pp. 266–274.

[31] E.E. Osuna, F. Girosi, Advances in Kernel Methods, MIT Press, Cambridge, MA,
USA, 1999.

[32] M. Wu, B. Schölkopf, G. Bakır, A direct method for building sparse kernel
learning algorithms, J. Mach. Learn. Res. 7 (2006) 603–624.

[33] O. Dekel, S. Shalev-Shwartz, Y. Singer, The forgetron: a kernel-based percep-
tron on a budget, SIAM J. Comput. 37 (2008) 1342–1372.

[34] G. Cavallanti, N. Cesa-Bianchi, C. Gentile, Tracking the best hyperplane with a
simple budget perceptron, Mach. Learn. 69 (2007) 143–167.

[35] F. Orabona, J. Keshet, B. Caputo, The projectron: a bounded kernel-based
perceptron, Int. Conf. Mach. Learn. (2008) 720–727.

[36] J. Wang, S.C. Hoi, P. Zhao, J. Zhuang, Z. Liu, Large scale online kernel classifi-
cation, in: International Joint Conferences on Artificial Intelligence, 2013,
pp. 1750–1756.

[37] Y. Engel, S. Mannor, R. Meir, Sparse online greedy support vector regression,
Eur. Conf. Mach. Learn. (2002) 84–96.

[38] K. Zhang, J. Kwok, Density-weighted nyström method for computing large
kernel eigensystems, Neural Comput. 21 (2009) 121–146.

[39] S. Kumar, M. Mohri, A. Talwalkar, Sampling methods for the nyström method,
J. Mach. Learn. Res. 13 (2012) 981–1006.

[40] A. Talwalkar, A. Rostamizadeh, Matrix coherence and the nyström method,
arXiv preprint (2010) arXiv:1004.2008.

[41] L. Mackey, A. Talwalkar, M.I. Jordan, Divide-and-conquer matrix factorization,
Adv. Neural Inf. Process. Syst. (2011) 1134–1142.

[42] A. Gittens, The spectral norm error of the naive nyström extension, arXiv
preprint (2011). arXiv:1110.5305.

[43] R. Jin, T. Yang, M. Mahdavi, Improved bound for the nyström's method and its
application to kernel classification, arXiv preprint (2011)arXiv:1111.2262.

[44] C. Cortes, M. Mohri, A. Talwalkar, On the impact of kernel approximation on
learning accuracy, in: Conference on Artificial Intelligence and Statistics 9
(2010) 113–120.

[45] S. Shalev-Shwartz, O. Shamir, N. Srebro, K. Sridharan, Learnability, stability
and uniform convergence, J. Mach. Learn. Res. 11 (2010) 2635–2670.

[46] S. Ross, J.A. Bagnell, Stability conditions for online learnability, arXiv preprint
(2011)arXiv:1108.3154.

[47] A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for
strongly convex stochastic optimization, in: International Conference on
Machine Learning, 2012, pp. 449–456.

[48] E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling,
Inverse Probl. 23 (2007) 969–985.

[49] S. Shalev-Shwartz, Y. Singer, N. Srebro, Pegasos: primal estimated sub-
gradient solver for svm, in: International Conference on Machine Learning,
2007, pp. 807–814.

[50] P. Mallapragada, R. Jin, A. Jain, Non-parametric mixture models for clustering,
Struct. Syntactic Stat. Pattern Recognit. (2010) 334–343.

[51] T. Abrahamsen, L. Hansen, A cure for variance inflation in high dimensional
kernel principal component analysis, J. Mach. Learn. Res. 12 (2011) 2027–2044.
[52] P.L. Bartlett, V. Dani, T.P. Hayes, S. Kakade, A. Rakhlin, A. Tewari, High-
probability regret bounds for bandit online linear optimization, in: Annual
Conference on Learning Theory, 2008, pp. 335–342.

[53] M. Mahdavi, T. Yang, R. Jin, An improved bound for the nyström method for
large eigengap, CoRR, 2012.
Ming Lin received his B.S. degree in the Department of
Automation from Tsinghua University, Beijing, China, in
2008. He is currently a 5th year Ph.D. in the Depart-
ment of Automation, Tsinghua University. His interests
include optimization and statistics.
Lijun Zhang received the B.S. and Ph.D. degrees in
Computer Science from Zhejiang University, China, in
2007 and 2012. Currently, he is working as a postdoc at
Engineering & Computer Science, Michigan State Uni-
versity. His research interests include machine learn-
ing, information retrieval, and data mining.
Rong Jin received the B.A. degree in Engineering from
Tianjin University, Tianjin, China, in 1993, the M.S.
degree in Physics from Beijing University, Beijing, China,
in 1996, and the M.S. and Ph.D. degrees in Computer
Science from Carnegie Mellon University, Pittsburgh, PA,
in 2000 and 2003, respectively. He is currently an
Associate Professor with the Department of Computer
Science and Engineering, Michigan State University, East
Lansing. He is working on the areas of statistical
machine learning and its application to information
retrieval. He has published more than 80 conference and
journal articles on related topics. Jin received the U.S.

National Science Foundation Career Award in 2006.
Shifeng Weng was born in 1978. He received his Ph.D.
in Pattern Recognition from Department of Automa-
tion, Tsinghua University, in 2005. He worked in
Shanghai Baosteel Research Institute and Motolora
China Lab from year 2005 to 2009. Currently, he is a
vice-professor in Zhejiang Wanli University.
Changshui Zhang received his B.S. degree in Mathe-
matics from the Peking University, Beijing, China, in
1986, and Ph.D. degree from the Department of Auto-
mation, Tsinghua University, Beijing, China, in 1992. He
is currently a Professor of the Department of Automa-
tion, Tsinghua University. He is an Associate Editor of the
journal Pattern Recognition. His interests include artifi-
cial intelligence, image processing, pattern recognition,
machine learning, evolutionary computation, etc.

http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref14
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref14
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref14
http://arXiv:1109.4603
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref17
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref17
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref17
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref17
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref18
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref18
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref18
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref19
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref19
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref19
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref20
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref20
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref20
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref21
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref21
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref22
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref22
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref22
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref24
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref24
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref24
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref24
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref25
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref25
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref25
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref26
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref26
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref26
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref28
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref28
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref28
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref28
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref29
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref29
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref29
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref29
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref31
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref31
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref32
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref32
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref32
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref33
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref33
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref33
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref34
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref34
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref34
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref38
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref38
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref38
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref39
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref39
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref39
http://arXiv:1004.2008
http://arXiv:1110.5305
http://arXiv:1111.2262
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref45
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref45
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref45
http://arXiv:1108.3154
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref48
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref48
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref48
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref50
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref50
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref50
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref51
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref51
http://refhub.elsevier.com/S0925-2312(15)01458-7/sbref51

	Online kernel learning with nearly constant support vectors
	Introduction
	Related work
	Kernel learning
	Nyström method

	Online kernel learning with nyström method
	Background and notation
	The Nyström method
	Online regularized kernel learning with Nyström method

	Experiments
	Convergence rate
	Classification accuracy
	Running time

	Conclusion
	Acknowledgments
	Proof of Theorem 1
	The kernel space functional projection and Nyström method
	References

