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A Theoretical Analysis

In this supplementary material, we provide proof of Theorems 1 and 2.

A.1 Supporting Results

The following results are used throughout our analysis.

Lemma 1. (Proposition 3 of [1]). Let sequence {βt} be generated by ADA-RP.
We have

R(T ) ≤1

η

T−1∑
t=1

[
BΨt+1(β∗,βt+1)−BΨt(β

∗,βt+1)
]

+
1

η
BΨ1(β∗,β1)

+
η

2

T∑
t=1

‖f ′t(βt)‖2Ψ∗
t
.

Lemma 2. Let Xt =
∑t
i=1 xix

>
i and A† denote the pseudo-inverse of A, then

T∑
t=1

〈
xt, (X

1/2
t )†xt

〉
≤ 2

T∑
t=1

〈
xt, (X

1/2
T )†xt

〉
= 2 tr(X

1/2
T ).

Lemma 2 can be proved in the same way as Lemma 10 of [1].

Theorem 3. (Theorem 2.3 of [11]). Let 0 < ε, δ < 1 and S = 1√
k

R ∈ Rk×n

where the entries Ri,j of R are independent standard normal random variables.

Then if k = Θ(d+log(1/δ)
ε2 ), then for any fixed n × d matrix A, with probability

1− δ, simultaneously for all x ∈ Rd,

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.

Based on the above theorem, we derive the following corollary.

Corollary 1. Let 0 < ε, δ < 1 and each entry of rt ∈ Rτ is a Gaussian random

variable drawn from N (0, 1/
√
τ) independently. Then, if τ = Ω( r+log(T/δ)

ε2 ), with
probability 1− δ, simultaneously for all t = 1, ..., T ,

(1− ε)C>t Ct � S>t St � (1 + ε)C>t Ct.



Theorem 4. (Theorem 10 of [20]). Let R be a Gaussian random matrix of
size p × n. Let C = diag(c1, . . . , cp) and S = diag(s1, . . . , sp) be p × p diagonal
matrices, where ci 6= 0 and c2i + s2i = 1 for all i. Let M = C2 + 1

nSRR>S and
r =

∑
i s

2
i .

Pr(λ1(M) ≥ 1 + t) ≤ q · exp

(
− cnt2

maxi(s2i )r

)
,

P r(λp(M) ≤ 1− t) ≤ q · exp

(
− cnt2

maxi(s2i )r

)
,

where the constant c is at least 1/32, and q is the rank of S.

Based on the above theorem, we derive the following corollary.

Corollary 2. Let c ≥ 1/32, α > 0, σ2
ti = λi(C

>
t Ct), r̃t =

∑
i

σ2
ti

α+σ2
ti

, r̃∗ =

max
k≤t≤T

r̃t and σ2
∗1 = max

1≤t≤T
σ2
t1. Let Kt = αId + C>t Ct, K̃t = αId + S>t St, and

Ĩt = K
−1/2
t K̃tK

−1/2
t . If τ ≥ r̃∗σ

2
∗1

cε2(α+σ2
∗1)

log 2dT
δ , then with probability at least

1− δ, simultaneously for all t = 1, · · · , T ,

(1− ε)Id � Ĩt � (1 + ε)Id.

A.2 Proof of Theorem 1

Let X̃t denote S>t St. First, we consider bounding the first term in the upper
bound of Lemma 1. With probability 1− δ, we have

BΨt+1
(β∗,βt+1)−BΨt

(β∗,βt+1)

=
1

2

〈
β∗ − βt+1, (X̃

1/2
t+1 − X̃

1/2
t )(β∗ − βt+1)

〉
≤1

2

〈
β∗ − βt+1,

√
1 + εX

1/2
t+1(β∗ − βt+1)

〉
− 1

2

〈
β∗ − βt+1,

√
1− εX1/2

t (β∗ − βt+1)
〉

≤1

2

〈
β∗ − βt+1, (X

1/2
t+1 −X

1/2
t )(β∗ − βt+1)

〉
+
ε

4

〈
β∗ − βt+1, (X

1/2
t+1 + X

1/2
t )(β∗ − βt+1)

〉
≤1

2
‖β∗ − βt+1‖22‖(X

1/2
t+1 −X

1/2
t )‖

+
ε

4

〈
β∗ − βt+1, (X

1/2
t+1 + X

1/2
t )(β∗ − βt+1)

〉
≤1

2
‖β∗ − βt+1‖22 tr(X

1/2
t+1 −X

1/2
t )

+
ε

4

〈
β∗ − βt+1, (X

1/2
t+1 + X

1/2
t )(β∗ − βt+1)

〉



where the first inequality is due to Corollary 1.
Thus, we can get

T−1∑
t=1

[
BΨt+1(β∗,βt+1)−BΨt(β

∗,βt+1)
]

≤1

2

T−1∑
t=1

‖β∗ − βt+1‖22 tr(X
1/2
t+1 −X

1/2
t )

+
ε

4

T−1∑
t=1

〈
β∗ − βt+1, (X

1/2
t+1 + X

1/2
t )(β∗ − βt+1)

〉
≤1

2
max
t≤T
‖β∗ − βt‖22 tr(X

1/2
T )− 1

2
‖β∗ − β1‖22 tr(X

1/2
1 )

+
ε

2
max
t≤T
‖β∗ − βt‖22

T∑
t=1

‖X1/2
t ‖ −

ε

4
‖β∗ − β1‖22 tr(X

1/2
1 ).

(3)

Note that β1 = 0, then

BΨ1
(β∗,β1) =

1

2

〈
β∗, (σId + X̃

1/2
1 )β∗

〉
≤1

2
σ‖β∗‖22 +

2 + ε

4
‖β∗‖22 tr(X

1/2
1 )

(4)

where the inequality is due to Corollary 1.
Then, we consider the upper bound of

∑T
t=1 ‖f ′t(βt)‖2Ψ∗

t
. With probability

1− δ, we have

1

2
‖f ′t(βt)‖2Ψ∗

t
=
〈
gt, (σId + X̃

1/2
t )−1gt

〉
≤ 1√

1− ε

〈
gt, (X

†
t)

1/2gt

〉
=
l′(β>t xt)

2

√
1− ε

〈
xt, (X

†
t)

1/2xt

〉
where the inequality is due to Corollary 1. According to Lemma 2, we have

T∑
t=1

‖f ′t(βt)‖2Ψ∗
t
≤

T∑
t=1

2l′(β>t xt)
2

√
1− ε

〈
xt, (X

†
t)

1/2xt

〉
≤max

t≤T
l′(β>t xt)

2 2√
1− ε

T∑
t=1

〈
xt, (X

†
t)

1/2xt

〉
≤ 4√

1− ε
max
t≤T

l′(β>t xt)
2 tr(X

1/2
T ).

(5)

We complete the proof by substituting (3), (4), and (5) into Lemma 1.

A.3 Proof of Theorem 2

Inspired by the proof of Theorem 1, we can derive Theorem 2 by respectively
bounding each term in the upper bound of Lemma 1. Before that, we need to
derive the lower and upper bounds of (S>t St)

1/2 based on Corollary 2.



Let the SVD of C>t be C>t = UΣV> where U ∈ Rd×d,Σ ∈ Rd×d,V ∈ Rt×d.
According to Corollary 2, with probability at least 1− δ, simultaneously for all
t = 1, ..., T ,

S>t St = K̃t − αId = K
1/2
t ĨtK

1/2
t − αId

� (1 + ε)Kt − αId = (1 + ε)C>t Ct + εαId

= U
(
(1 + ε)ΣΣ + εαId

)
U>

and

S>t St + εαId = K̃t − αId + εαId

= K
1/2
t ĨtK

1/2
t − αId + εαId

� (1− ε)Kt − αId + εαId

= (1− ε)C>t Ct.

Then simultaneously for all t = 1, ..., T , we have

(S>t St)
1/2 �

√
1 + εU(ΣΣ)1/2U> +

√
εαUIdU

> =
√

1 + εX
1/2
t +

√
εαId (6)

and

(S>t St)
1/2 = (S>t St)

1/2 +
√
εαId −

√
εαId

�
(
(S>t St) + εαId

)1/2 −√εαId

�
√

1− εX1/2
t −

√
εαId.

(7)

Then we consider bounding the first term in the upper bound of Lemma 1.
Let X̃t denote S>t St. Simultaneously for all t = 1, ..., T , we have

BΨt+1
(β∗,βt+1)−BΨt

(β∗,βt+1)

=
1

2

〈
β∗ − βt+1, (X̃

1/2
t+1 − X̃

1/2
t )(β∗ − βt+1)

〉
≤1

2

〈
β∗ − βt+1,

√
1 + εX

1/2
t+1(β∗ − βt+1)

〉
− 1

2

〈
β∗ − βt+1,

√
1− εX1/2

t )(β∗ − βt+1)
〉

+
1

2

〈
β∗ − βt+1, 2

√
εαId(β

∗ − βt+1)
〉

=
1

2

〈
β∗ − βt+1,

√
1 + εX

1/2
t+1(β∗ − βt+1)

〉
− 1

2

〈
β∗ − βt+1,

√
1− εX1/2

t )(β∗ − βt+1)
〉

+
√
εα‖(β∗ − βt+1)‖22

≤1

2
‖β∗ − βt+1‖22 tr(X

1/2
t+1 −X

1/2
t )

+
ε

4

〈
β∗ − βt+1, (X

1/2
t+1 + X

1/2
t )(β∗ − βt+1)

〉
+
√
εα‖(β∗ − βt+1)‖22



where the first inequality is due to (6), (7) and the last inequality has been
proved in the proof of Theorem 1.

Thus, we can get

T−1∑
t=1

[
BΨt+1

(β∗,βt+1)−BΨt
(β∗,βt+1)

]
≤1

2
max
t≤T
‖β∗ − βt‖22 tr(X

1/2
T )− 1

2
‖β∗ − β1‖22 tr(X

1/2
1 )

+
ε

2
max
t≤T
‖β∗ − βt‖22

T∑
t=1

‖X1/2
t ‖

− ε

4
‖β∗ − β1‖22 tr(X

1/2
1 )

+
√
εα(T − 1) max

t≤T
‖β∗ − βt‖22.

(8)

Note that β1 = 0, then

BΨ1
(β∗,β1) =

1

2

〈
β∗, (σId + X̃

1/2
1 )β∗

〉
≤1

2
σ‖β∗‖22 +

2 + ε

4
‖β∗‖22 tr(X

1/2
1 ) +

1

2

√
εα‖β∗‖22.

(9)

Before considering the upper bound of
∑T
t=1 ‖f ′t(βt)‖2Ψ∗

t
, we need to derive the

upper bound of H−1t .
Let the SVD of S>t be S>t = UΣV> where U ∈ Rd×d,Σ ∈ Rd×d,V ∈ Rt×d.

We also have, for all t = 1, ..., T ,

Ht = σId + (S>t St)
1/2 = U

(
σId + (ΣΣ)1/2

)
U>

� U
(
αId + (ΣΣ)

)1/2
U> = (αId + S>t St)

1/2

due to σ ≥
√
α ≥

√
λi(S>t St) + α−

√
λi(S>t St) for all i = 1, · · · , d.

Then according to Corollary 2, with probability at least 1−δ, simultaneously
for all t = 1, ..., T ,

H−1t �
(
(αId + S>t St)

1/2
)−1

=
(
(K

1/2
t ĨtK

1/2
t )−1

)1/2
� 1√

1− ε
(K−1t )1/2 =

1√
1− ε

(
(αId + Xt)

−1)1/2.
Thus, we can get

‖f ′t(βt)‖2Ψ∗
t

=2
〈
gt,H

−1
t gt

〉
≤ 2√

1− ε

〈
gt,
(
(αId + Xt)

−1)1/2gt〉
=

2l′(β>t xt)
2

√
1− ε

〈
xt, (X

†
t)

1/2xt

〉
.



According to Lemma 2, we have

T∑
t=1

‖f ′t(βt)‖2Ψ∗
t
≤ 2√

1− ε
max
t≤T

l′(β>t xt)
2
T∑
t=1

〈
xt, (X

†
t)

1/2xt

〉
≤ 4√

1− ε
max
t≤T

l′(β>t xt)
2 tr(X

1/2
T ).

(10)

We complete the proof by substituting (8), (9), and (10) into Lemma 1.

A.4 Proof of Corollary 1

Let Ct = UΣV> be the singular value decomposition of Ct. Notice that U ∈
Rt×r,ΣV> ∈ Rr×d. According to Theorem 3, we have if τ = Θ( r+log(1/δ)

ε2 ), then
simultaneously ∀x ∈ Rr, with probability 1− δ,

(1− ε)‖Ux‖22 ≤ ‖RtUx‖22 ≤ (1 + ε)‖Ux‖22

Let y ∈ Rd be arbitrary vector, then Cty = UΣV>y = Ux where x = ΣV>y ∈
Rr.
Then we have

y>S>t Sty = y>C>t R>t RtCty = ‖RtUx‖22 ≤ (1 + ε)‖Ux‖22 = (1 + ε)y>C>t Cty

and

y>S>t Sty = y>C>t R>t RtCty = ‖RtUx‖22 ≥ (1− ε)‖Ux‖22 = (1− ε)y>C>t Cty.

Then, we have (1−ε)C>t Ct � S>t St � (1+ε)C>t Ct with probability 1−δ, provided

τ = Ω( r+log(1/δ)
ε2 ). Using the union bound, we have if τ = Ω( r+log(T/δ)

ε2 ), with
probability 1− δ, simultaneously for all t = 1, ..., T ,

(1− ε)C>t Ct � S>t St � (1 + ε)C>t Ct.

A.5 Proof of Corollary 2

Let the SVD of C>t be C>t = UΣV> where U ∈ Rd×d,Σ ∈ Rd×d,V ∈ Rt×d. Then
we have Kt = U(αId + ΣΣ>)U> and

Ĩt = K
−1/2
t K̃tK

−1/2
t = K

−1/2
t (αId + C>t R>t RtCt)K

−1/2
t

= U
(
αId(αId + ΣΣ)−1 + (αIp + ΣΣ)−1/2ΣV>R>t RtVΣ(αId + ΣΣ>)−1/2

)
U>

= U
(
αId(αId + ΣΣ)−1 + (αIp + ΣΣ)−1/2ΣRR>Σ(αId + ΣΣ>)−1/2

)
U>

where R = V>R>t ∈ Rd×τ is a Gaussian random matrix due to that V is an
orthogonal matrix and R>t is a Gaussian random matrix.



Let c2i = α
α+σ2

ti
and s2i =

σ2
ti

α+σ2
ti

. Then according to Theorem 4, with probability

at least 1− δ,

(1− ε)Id � Ĩt � (1 + ε)Id

provided τ ≥ r̃tσ
2
t1

cε2(α+σ2
t1)

log 2d
δ where the constant c is at least 1/32. Using the

union bound, we complete the proof.


