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A Theoretical Analysis

In this supplementary material, we provide proof of Theorems 1 and 2.

A.1 Supporting Results
The following results are used throughout our analysis.

Lemma 1. (Proposition 3 of [1]). Let sequence {B:} be generated by ADA-RP.
We have
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Lemma 2. Let X; = E X x; and AT denote the pseudo-inverse of A, then
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Lemma 2 can be proved in the same way as Lemma 10 of [1].

Theorem 3. (Theorem 2.8 of [11]). Let 0 < €,6 < 1 and S = ﬁR € Rkxn
where the entries R; ; of R are independent standard normal random variables.
Then if k = @(%2(1/6)), then for any fized n x d matriz A, with probability
1 — 6, simultaneously for all x € RY,

(1 - o)llAx[3 < [SAx3 < (1 + €)]|Ax|l5.
Based on the above theorem, we derive the following corollary.

Corollary 1. Let 0 < €,0 < 1 and each entry of ry € R™ is a Gaussian random
variable drawn from N'(0,1//T) independently. Then, if T = Q(%ﬁwé)), with
probability 1 — 6, simultaneously for allt =1,....,T,

(1 - E)C:Ct = S:St = (1 + E)C:Ct.



Theorem 4. (Theorem 10 of [20]). Let R be a Gaussian random matriz of
size p x n. Let C = diag(c1,...,¢p) and S = diag(s1,...,sp) be p x p diagonal
matrices, where ¢; # 0 and ¢ + s? =1 for all i. Let M = C? + LSRRTS and
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where the constant ¢ is at least 1/32, and q is the rank of S.

Based on the above theorem, we derive the following corollary.

Corollary 2. Let ¢ > 1/32, a > 0, 02 = N(C[Cy), 7t = Y, o P, =

7 a+o’2. ’

max 7 and 0%, = max o2 . Let Kt = aly + C Cy, Kt = aly + S S¢, and
k<t< 1<t<T
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dT, then with probability at least

(1 — E)Id <L = (1 + E)Id.

A.2 Proof of Theorem 1

Let X; denote S/ S;. First, we consider bounding the first term in the upper
bound of Lemma 1. With probability 1 — §, we have
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where the first inequality is due to Corollary 1.
Thus, we can get
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where the inequality is due to Corollary 1.
Then, we consider the upper bound of Zthl 171 (Bo)]
1 — 6, we have
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where the inequality is due to Corollary 1. According to Lemma 2, we have
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We complete the proof by substituting (3), (4), and (5) into Lemma 1.

A.3 Proof of Theorem 2

Inspired by the proof of Theorem 1, we can derive Theorem 2 by respectively
bounding each term in the upper bound of Lemma 1. Before that, we need to
derive the lower and upper bounds of (S;S;)'/? based on Corollary 2.



Let the SVD of C; be C] = ULV where U € R¥X4 5 € R¥*4 'V ¢ Rt¥4,
According to Corollary 2, with probability at least 1 — §, simultaneously for all
t=1,..,T,
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Then simultaneously for all t =1, ..., T, we have
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(S/S)'/? = (S S)"/* + Vealy — Vealy
= ((S781) + ealy) '* — Veal, (7)
= V1—eX)? — ealy.

Then we consider bounding the first term in the upper bound of Lemma 1.
Let X; denote S, S;. Simultaneously for all t = 1, ..., T, we have
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where the first inequality is due to (6), (7) and the last inequality has been
proved in the proof of Theorem 1.
Thus, we can get
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Before considering the upper bound of ZtT:l II£1(Bo)]

2%*, we need to derive the

upper bound of H; '
Let the SVD of S be S| = ULV where U € R4 ¥ € RiX4 V ¢ Rt¥4,
We also have, for all t =1,...,T,

Hy = olg+ (S S:)"/? = U(ola + (£5)/*)UT
- U(aId n (EZ))l/QUT (aly + STS )1/2

due to o > v/a > /Ai(S]Sy) + a — V/Ni(S]Sy) foralli =1,---,d.
Then according to Corollary 2, with probability at least 1 —J, simultaneously
forallt=1,...,T,
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Thus, we can get
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According to Lemma 2, we have
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We complete the proof by substituting (8), (9), and (10) into Lemma 1.
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A.4 Proof of Corollary 1

Let C; = ULV be the singular value decomposition of C;. Notice that U &
R>" BVT € R™¥4. According to Theorem 3, we have if 7 = @(%2(1/5)), then
simultaneously Vx € R", with probability 1 — 4,

(1= llUx[3 < [ReUx|3 < (1+ €)]|Ux|I3

Let y € R? be arbitrary vector, then C;y = ULV Ty = Ux where x = XV 'y €
R".
Then we have

TSTSty yTCTRTRtCty = |RUx||2 < (14 6)||Ux||2 = (1 4+ )y TC:Cty
and
y 'S Sty =y C/R/ RiCry = |ReUx[3 > (1 — ¢)[|Ux[5 = (1 — e)y ' C/ Cyy.

Then, we have (1—€)C/ C; < S S; < (14¢€)C, C; with probability 1—§, provided

T = Q(%ﬁl/é)). Using the union bound, we have if 7 = Q(’“Jrk’f#/é)), with

probability 1 — ¢, simultaneously for all t =1,...,T,

(1—-€e)C/Cy <8/S < (1+6)C/Cy.

A.5 Proof of Corollary 2

Let the SVD of C/ be C; = UXV " where U € R¥*4 3 € R¥*4 V € R4, Then
we have K; = U(aly + XX T)UT and

it = I{_l/QI(tI{_l/2 1/2(051d + CTR;FRtCt) —1/2
= U(ald(ald +35)7 4 (al, + 22)7V2RVIR, R VE(ady + ng)—l/z)UT

= U(aId(aId +3%) 7 4 (al, + XX)7V2ERR TS (aly + zzT)—l/z)UT

where R = VTR] € R¥7 is a Gaussian random matrix due to that V is an
orthogonal matrix and R, is a Gaussian random matrix.
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Let ¢? = < +a<7?i and s? = aitaf Then according to Theorem 4, with probability

at least 1 — 4,

(1—elg =L < (1+e)y
Foo?
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ce2(ato))
union bound, we complete the proof.

provided 7 > log % where the constant c is at least 1/32. Using the



