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Abstract. Online continual learning (OCL) is the setting where deep
neural network (DNN) incrementally learns new tasks with online data
streams. The major problem in OCL is catastrophic forgetting, that
DNN forgets the acquired knowledge on previous tasks quickly. Recently
emerged studies tackle a more realistic problem that the data follows an
imbalanced class distribution in OCL by storing particular exemplars.
However, preserving exemplars causes memory burden and privacy issues.
In this paper, we propose a non-exemplar based method—Adaptive Fea-
ture Generation (AdaFG) for OCL from imbalanced data, which tackles
the class imbalance and catastrophic forgetting problems simultaneously.
Specifically, we argue that one common reason for these problems is the
decision boundaries of minority or old classes with few or no samples are
affected by majority classes. Therefore, we first maintain a representative
prototype for each class in the feature space, which dynamically changes
with the streaming data to approximate the class mean feature. Then,
we generate new features adaptively for old and minority classes based
on their prototypes and train the DNN’s classifier to adjust the decision
boundaries. Experiments on three popular datasets demonstrate AdaFG’s
effectiveness in consolidating previous knowledge and addressing the class
imbalance problem without preserving exemplars.

Keywords: Online continual learning · Imbalanced learning · Data
augmentation

1 Introduction

In the last decade, Deep Neural Network (DNN) has achieved human-level or
even better performance in many individual tasks [8,20,26]. When applying the
DNN to practice, a typical paradigm is training the DNN sufficiently on a pre-
pared dataset, then fixing the model parameters to deploy on various devices.
However, the well-trained model can only tackle a specific task, lacking the capac-
ity of continually learning from data when the environment changes, e.g., new
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Fig. 1. Online continual learning from imbalanced data. Each batch is sampled from
an imbalanced distribution.

classes not seen in the prepared dataset occur. Motivated by human’s lifelong-
learning ability [25], continual learning has been proposed to incrementally learn
new tasks without access to previous data while maintaining the acquired knowl-
edge on old tasks at the same time [15].

In this paper, we consider classification tasks and focus on the online con-
tinual learning (OCL) setting where the task data are coming in an online man-
ner [18]. Different from the offline continual learning (Off-CL) [21] setting where
the entire data of the new task are accessible and can be processed numerous
times, we can only obtain a tiny batch of data at a time in OCL, which resembles
the way humans learn more closely [3]. The major problem in OCL is catastrophic
forgetting [19], i.e., DNN forgets previous knowledge quickly when learning a new
task. Existing methods in OCL can be divided into two categories: exemplar
based methods, which keep previous knowledge by storing observed samples
(i.e., exemplars), and non-exemplar based methods that remember important
parameters. However, most studies implicitly assume that the data follows a
balanced distribution in each task [12,16,22,30], ignoring many realistic scenar-
ios of imbalanced distributions, e.g., fraud detection and spam classification.

In this paper, we tackle the problem of online continual learning from imbal-
anced data (OCL-Imb) that each batch is sampled from an imbalanced distribu-
tion, as shown in Fig. 1. Besides catastrophic forgetting, we also need to solve the
class imbalance problem in OCL-Imb, i.e., minority classes that have few samples
in the new task are hard to learn [10]. Recently emerged studies address these
problems in OCL-Imb by storing particular exemplars, e.g., Class-Balancing
Reservoir Sampling [5] and Partitioning Reservoir Sampling [11]. However, these
exemplar based methods bring memory burden for resource-constrained devices
and cause privacy issues that arouse wide attention nowadays. Inspired by the
non-exemplar based method protoAug [31] in Off-CL, we propose Adaptive Fea-
ture Generation (AdaFG) to address the class imbalance and catastrophic for-
getting problems in OCL-Imb without preserving any exemplars. Specifically,
we argue that one common reason of these problems is the decision bound-
aries for minority or old classes with few or no samples are affected by majority
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classes that dominate the learning process. To solve this problem, we maintain a
representative prototype in the feature space for each class, which dynamically
changes with the streaming data to approximate the class mean feature on all
seen samples. The prototype contains rich information and can be used to gen-
erate new features by adding gaussian noises [31]. AdaFG generates features for
old and minority classes based on their prototypes, which are used to train the
DNN’s classifier along with the new coming data. The generated feature shows
to be very helpful to alleviate the bias and adjust the decision boundaries. More-
over, since the distribution of observed samples dynamically changes, we adopt
an adaptive strategy that controls the number of generated features according
to the dynamic distribution to balance the learning process better.

To verify the effectiveness of the proposed AdaFG, we construct imbalanced
tasks on three popular datasets (i.e., CIFAR-100 [13], Food-101 [2] and Mini-
ImageNet [27]), and compare it with the state-of-the-art exemplar and non-
exemplar based methods. Our empirical results show that AdaFG outperforms
previous methods by large margins.

2 Related Works

In this section, we briefly review the related works of the OCL-Imb problem.

2.1 Online Continual Learning (OCL)

The existing OCL methods can be divided into two categories: exemplar based
and non-exemplar based methods. Exemplar based methods use a memory buffer
to store exemplars selected from previous tasks, which are retrieved to train the
model along with the new coming data. Experience Replay [23] takes a naive app-
roach that updates the memory with reservoir sampling and randomly retrieves
the exemplars. Various memory updating and retrieving strategies are proposed
to improve the performance, such as diversifying the gradients of the exemplars
in the memory update [1] and leveraging Shapley Value adversarially in the
memory retrieval [24]. As for the OCL-Imb problem, recent works design bal-
anced schemes to make the memory updating and retrieving processes friendly to
minority classes, e.g., Class-Balancing Reservoir Sampling [5] and Partitioning
Reservoir Sampling [11]. Exemplar based methods try to maintain previously
acquired knowledge by exploiting the information of exemplars as more as pos-
sible, but they may bring memory burden and cause privacy issues in many
resource-restricted and data-sensitive applications.

Non-exemplar based methods usually use various regularization terms to
consolidate the acquired knowledge on previous tasks. As representative meth-
ods, EWC [12] uses Fisher information matrix to estimate the importance of
model parameters and penalizes the drastic changes of important parameters,
and LwF [16] adopts knowledge distillation terms to prevent the feature drift
of old classes. In addition to designing regularization terms, protoaug [31], a
pioneering work in the field of Off-CL, maintains prototypes for old classes in
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the feature space and generates prototype-based features to keep and expand
the decision boundaries of old classes. The class-representative prototype shows
to be very effective in keeping previous knowledge. Moreover, Lange and Tuyte-
laars [14] propose to use the prototype for nearest neighbor classification in
OCL-Imb. However, this method needs to store exemplars to update the pro-
totype with online data streams. In this paper, we extend the prototype-based
method with no exemplars preserved to tackle the catastrophic forgetting prob-
lem in OCL-Imb.

2.2 Online Imbalanced Learning

Different from OCL that incrementally learns new tasks, online imbalanced
learning focuses on learning a single task, and the streaming data is sampled
from an imbalanced distribution. Due to the lack of samples, minority classes are
highly under-represented and harder to learn compared with majority classes [7].
Many re-sampling strategies are proposed to solve this problem. For instance,
Wang and Pineau [28] introduce online bagging techniques for online binary clas-
sification by randomly oversampling and undersampling samples of minority and
majority classes, respectively. Furthermore, Wang et al. [29] extend online bag-
ging techniques to tackle the multi-class imbalance problem. Besides re-sampling
samples, data augmentation strategies are used to address the class imbalance
problem. For instance, Generative Adversarial Networks [6] produce virtual sam-
ples by approximating the distribution of minority classes, and SMOTE [4] gen-
erates new samples for minority classes around the neighbor of original data.
In this paper, we tackle the class imbalance problem in OCL-Imb also from the
perspective of data augmentation.

3 Method

In this section, we first introduce the OCL-Imb setting and analyze the major
problems in OCL-Imb, then illustrate the framework and details of our proposed
method AdaFG.

3.1 Problem Analysis

Firstly, we consider the OCL setting. When learning the t-th task Tt, the model
receives a tiny batch of samples of size b at a time, which is denoted as Bi

t for
the i-th step. The entire data of Tt are Dt = {B0

t ,B1
t , · · · ,Bτ

t }, where τ is the
number of the totally received batches. When it comes to the OCL-Imb problem,
Tt is not a balanced task and Bi

t are sampled from an imbalanced distribution
Dt, which is unknown in advance. As for the DNN model, we divide it into two
parts: the feature extractor G and unified classifier F . The goal is to minimize
the statistical risk incurred by all seen tasks, which is formulated as:

min
t∑

n=1

E(x,y)∈Dn
[� (Ft (Gt (x;φt) ; θt) , y)] , (1)
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Fig. 2. The framework of Adaptive Feature Generation (AdaFG).

where φt and θt are the parameters of Gt and Ft after learning Tt, Gt (x;φt)
extracts the feature of a sample (x, y), Ft (Gt (x;φt) ; θt) gets the outputs of the
classifier, and � is the loss function. Note that the data Dn of previous tasks
Tn(n < t) are not accessible, and we can only receive b samples of Tt at a time.
The statistical risk of Tt can be approximated by the empirical risk [15]

1
τ

τ∑

i=1

∑

(x,y)∈Bi
t

�
(Ft

(Gt(x;φi
t); θ

i
t

)
, y

)
, (2)

where φi
t and θi

t are parameters after the model trained on the i-th batch Bi
t.

There are two major problems in OCL-Imb. One is catastrophic forgetting,
which is caused by the drastic changes of decision boundaries for old classes when
learning new classes in Tt [31]. Moreover, the learning process mainly focuses on
majority classes, which contribute most to the changes of decision boundaries.
The other is class imbalance that the decision boundaries are close to minority
classes, because the optimization process of minimizing Eq. (2) is dominated by
majority classes. The catastrophic forgetting and class imbalance problems are
correlated, and one common reason of them is the decision boundaries for both
old and minority classes are affected by the majority classes.

3.2 Adaptive Feature Generation (AdaFG)

In this subsection, we propose Adaptive Feature Generation (AdaFG) to adjust
the decision boundaries by generating new features for old and minority classes,
which are used to train the DNN’s classifier.

Firstly, we handle the class imbalance problem by generating different num-
bers of features for classes in the current task Tt. For the k-th class in Tt (denoted
as ct,k), we maintain a prototype μi

t,k, which is a feature approximating the class
mean on all observed samples and dynamically changes with the incoming batch
Bi

t (illustrated in Sect. 3.3). The new feature is generated based on μi
t,k:

gi
t,k = μi

t,k + e · r, (3)
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where e is a Gaussian noise with the same dimension as μi
t,k, and r is a predefined

value (e.g., 0.1). The generated feature can be seen as a certain disturbance of
the prototype, which is used to train the classifier Ft to consolidate the just
learned knowledge and expand the decision boundaries [31]. When receiving a
new batch Bi

t, the number of observed samples of ct,k is denoted as si
t,k. Since the

distribution of si
t,k (k = 1, 2, · · · , Ct, Ct is the number of classes in Tt) changes

with incoming batches, we adopt an adaptive strategy to control the number of
generated features for each class:

ai
t,k =

[
N1 ·

(
1 − si

t,k

si
max

)]
, (4)

where si
max is the maximum number of si

t,k (k = 1, 2, · · · , Ct), N1 is a predefined
positive value (e.g., 10), and [a] returns the integer closest to a. ai

t,k is close to
N1 if si

t,k � si
max and close to 0 if si

t,k ≈ si
max. In this way, minority classes have

superiority in the number of generated features, making the decision boundaries
far from minority classes, thus improving their performance.

Furthermore, we tackle the catastrophic forgetting problem by generating
features for old classes in a similar way as Eq. (3) to keep previous decision
boundaries. For the k-th class in the old task Tn (n < t), the maintained proto-
type is μn,t and the new feature is generated as:

gn,k = μn,k + e · r. (5)

To generate features in a balanced way, we randomly select an old class to
generate one feature by Eq. (5) and repeat N2 times when receiving a new
batch. To reduce the computation, N2 is set to be a constant (e.g., 10) instead
of a variable proportional to the number of seen classes.

The framework of AdaFG is illustrated in Fig. 2. When training on a new
batch sampled from an imbalanced distribution, we update the number of
observed samples for each class and the prototypes by current features. Then, we
generate new features for old and minority classes in the ways mentioned above,
which are used for training the classifier Ft to adjust the decision boundaries.

3.3 Online Prototype Update

For each class, the class mean in the feature space contains rich information and
can be used for data augmentation [17]. Recent work [31] in Off-CL generates
features for old classes to alleviate forgetting based on the maintained class
mean features, which are computed until the feature extractor Gt is sufficiently
trained on Tt. However, since only the current batch Bi

t are accessible and feature
extractor parameters change over time in OCL-Imb, the class mean feature on
all observed samples can’t be computed directly. To overcome this problem, we
adopt a moving average strategy to update the maintained prototype online
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to approximate the true class mean feature. When receiving Bi
t, the previously

maintained prototype for ct,k is μi−1
t,k and will be updated by:

μi
t,k = (1 − αi

t,k) · μi−1
t,k + αi

t,k · μ̃i
t,k,

μ̃i
t,k =

1
|Xi

t,k|
∑

x∈Xi
t,k

Gt(x;φi−1
t ) , (6)

where Xi
t,k are samples of ct,k in Bi

t, |Xi
t,k| is the size of Xi

t,k, and φi−1
t is the

parameters of Gt after training on last batch. αi
t,k is a factor controlling the

prototype update, which can be adopted as:

αi
t,k =

|Xi
t,k|

∑i
j=1 |Xj

t,k| .

The prototype μi
t,k will not be updated if |Xi

t,k| is 0. After learning the last batch
Xτ

t,k, the obtained prototype μτ
t,k (also denoted as μt,k) will be maintained for

continually learning later tasks. In Sect. 4.3, we conduct experiments to demon-
strate that the prototype updated by Eq. (6) is a good approximation to the
true class mean on previously observed samples.

3.4 Training Process

When learning from the streaming data of a new task Tt, the training process
can be divided into two parts. The first part is training on the new coming batch
Bi

t. For a new sample (x, y) in Bi
t, the outputs of the current and last model are

ξt and ξt−1, respectively. Typically, we adopt the cross-entropy loss Lce(ξt, y)
for classification and use the well-known knowledge distillation loss Lkd(ξt, ξt−1)
[16,22,30] to mitigate forgetting by making outputs of the current model close
to those of the last model, which are defined as:

Lce(ξt, y) = −
C∑

c=1

yc log(σ(ξt)c),

Lkd(ξt, ξt−1) = −
C∑

c=1

σ(ξt−1)c log(σ(ξt)c),

(7)

where C is the number of classes seen so far, y ∈ R
C is a label vector, and σ(·)

is a softmax function. The overall loss of learning from the new data can be
defined as previous works [22,30]:

Lnew =
1
t
Lce(ξt, y) +

(
1 − 1

t

)
Lkd(ξt, ξt−1). (8)

With the growth of tasks, the proportion of Lkd increases to remember more
and more knowledge.
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The second part is training the classifier on the generated features by AdaFG.
For the generated data (go, yo) and (gm, ym) of old and minority classes, we adopt
Lfgt and Limb to train the classifier Ft:

Lfgt = Lce(Ft(go; θi−1
t ), yo),

Limb = Lce(Ft(gm; θi−1
t ), ym) + Lkd(Ft(gm; θi

t),Ft−1(gm; θt−1)).
(9)

Lfgt and Limb focus on mitigating forgetting and learning minority classes,
respectively. Notice that in the first batch of each new task, the prototypes
of new classes are not available, and only Lfgt is calculated.

The total loss is comprised of the above terms:

L = Lnew + ηLfgt + γLimb, (10)

where η and γ are coefficients that control the impact of corresponding terms.

4 Experiments

In this section, we compare AdaFG with several state-of-the-art methods and
analyze the results to validate our approach. Furthermore, we visualize the gen-
erated features to verify the effectiveness of the maintained prototype in AdaFG.

4.1 Setup

Datasets. CIFAR-100, Food-101 and Mini-ImageNet are used in our exper-
iments, which are both balanced datasets. CIFAR-100 contains 50k training
images and 10k test images in 100 classes. Food-101 contains 75k training images
and 25k test images in 100 classes. Mini-ImageNet contains 60k images in 100
classes, and we split them into 50k training images and 10k test images.

OCL-Imb Settings. Similar to previous works [9,31], we divide the whole
classes into two parts: base classes (20 classes for CIFAR-100 and Mini-ImageNet,
and 21 classes for Food-101) and rest classes (80 classes). The base classes
are used to train a base feature extractor offline, which is beneficial for the
DNN model to cope with the streaming data. The rest classes are divided

(a) N = 2 (b) N = 5 (c) N = 10

Fig. 3. Accuracy for each incremental task on CIFAR-100 when N = 2, 5, and 10.
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(a) N = 2 (b) N = 5 (c) N = 10

Fig. 4. Accuracy for each incremental task on Food-101 when N = 2, 5, and 10.

(a) N = 2 (b) N = 5 (c) N = 10

Fig. 5. Accuracy for each incremental task on Mini-ImageNet when N = 2, 5, and 10.

into N tasks, and N can be 2, 5, or 10, which means each task contains 40,
16, and 8 classes, respectively. Following Chrysakis and Moens [5], we select
a random percentage p of instances in the original dataset for each rest class
to construct imbalanced streams. p is randomly selected from a retention set
{1, 10−r, 10−2r, 10−3r, 10−4r}. In this paper, we use r = 0.25 for all experi-
ments, i.e., the maximum imbalance between two classes is 10. When learning
the sequential tasks, the number of samples received at a time is set to 10 (i.e.,
b = 10), and each sample can only be processed once.

Evaluation. After learning a new task, the performance is evaluated on test
images of the observed rest classes by computing the average accuracy. We use
two popular criteria to measure the ability to incrementally learn new tasks
[22,30]. One is the last accuracy, which is the performance after learning the last
task. The other is the average incremental accuracy, which computes the mean
value of the performance over all incremental tasks. For each task division N ,
we construct 15 different imbalanced streams by setting 15 random seeds and
report the average result. Additionally, we show the results of the accuracy for
each incremental task in Fig. 3, 4 and 5.

Experimental Details. We use ResNet-18 [8] for all experiments. To train a
base feature extractor, we use the SGD optimizer with the batch size of 32, and
the initial learning rate is 0.1. For CIFAR-100, the learning rate is divided by
10 after 30, 60, and 90 epochs (100 epochs in total). For Food-101 and Mini-
ImageNet, it is divided by 10 after 100, 150, and 180 epochs (200 epochs in
total). When learning the sequential N tasks online, we adopt the SGD optimizer
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with the learning rate of 0.1. The hyper-parameters used in AdaFG are set to:
N1 = N2 = 10, η = γ = 1.0, and r = 0.1.

Table 1. Last accuracy (Last) and average incremental accuracy (Aver) on CIFAR-100.

CIFAR-100 N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 21.9 ± 1.2 32.9 ± 1.4 12.0 ± 0.8 26.9 ± 0.7 2.0 ± 3.3 19.9 ± 0.4

LwF 30.2 ± 1.8 37.0 ± 2.0 23.6 ± 1.3 37.0 ± 1.6 17.6 ± 1.1 32.2 ± 1.4

EWC 20.2 ± 1.0 29.3 ± 1.6 16.7 ± 1.4 27.6 ± 1.5 13.4 ± 2.0 28.3 ± 1.7

AdaFG 36.1 ± 1.1 43.5 ± 1.4 31.5 ± 1.2 44.1 ± 0.8 23.4 ± 1.8 39.3 ± 1.0

CBRS-50 25.8 ± 0.9 34.7 ± 1.4 17.3 ± 0.7 32.5 ± 0.9 9.8 ± 3.6 30.3 ± 1.2

CBRS-100 28.5 ± 1.0 36.0 ± 1.5 20.8 ± 0.9 36.0 ± 0.8 13.6 ± 3.5 35.3 ± 0.8

CBRS-200 30.9 ± 1.0 37.2 ± 1.5 25.1 ± 0.6 39.4 ± 0.6 19.1 ± 3.1 39.9 ± 1.0

Table 2. Last accuracy (Last) and average incremental accuracy (Aver) on Food-101.

Food-101 N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 21.5 ± 2.0 32.4 ± 2.5 11.7 ± 0.9 25.7 ± 1.0 5.2 ± 1.7 19.7 ± 0.7

LwF 34.4 ± 2.5 38.8 ± 2.9 25.1 ± 1.3 37.2 ± 1.6 18.1 ± 1.2 32.0 ± 2.0

EWC 24.8 ± 1.9 34.9 ± 2.0 21.0 ± 1.9 33.6 ± 1.5 16.3 ± 1.5 32.5 ± 1.9

AdaFG 40.8 ± 1.6 45.3 ± 2.4 30.8 ± 1.9 43.0 ± 2.0 20.6 ± 1.8 36.0 ± 1.9

CBRS-50 29.3 ± 1.2 36.3 ± 2.0 16.7 ± 1.1 32.2 ± 0.9 11.4 ± 0.7 28.3 ± 0.9

CBRS-100 32.0 ± 1.4 37.9 ± 2.2 20.0 ± 1.4 35.4 ± 1.2 15.2 ± 1.3 32.6 ± 0.9

CBRS-200 35.3 ± 1.8 39.5 ± 2.5 25.3 ± 1.3 39.9 ± 0.9 20.2 ± 1.1 38.7 ± 0.7

Compared Methods. We compare our proposed method AdaFG with several
state-of-the-art non-exemplar and exemplar based methods:

– FT: (non-exemplar) A naive but important method that fine-tunes the model
on the receiving data without any approach for avoiding forgetting.

– LwF [16]: (non-exemplar) Learning without Forgetting trains the model with
the classification loss Lce and knowledge distillation loss Lkd.

– EWC [12]: (non-exemplar) Elastic Weight Consolidation uses a regulariza-
tion term to constrain the updates of important parameters.

– CBRS [5]: (exemplar) Class-Balanced Reservoir Sampling uses a memory
buffer to solve the OCL-Imb problem by storing particular samples. The buffer
size is set to 50, 100 and 200 in our experiments.

4.2 Results

The results are reported in Tables 1, 2 and 3. For different task divisions (N =
2, 5 or 10), FT gets poor results, e.g., only 2.0% last accuracy on CIFAR-100
when N = 10. Since the importance of model parameters is hard to estimate,
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Table 3. Last accuracy (Last) and average incremental accuracy (Aver) on Mini-
ImageNet.

Mini-ImageNet N = 2 N = 5 N = 10

Last Aver Last Aver Last Aver

FT 19.8 ± 0.9 26.9 ± 1.4 9.9 ± 0.8 21.7 ± 0.7 2.3 ± 2.7 16.2 ± 0.8

LwF 26.2 ± 1.3 30.1 ± 1.8 20.8 ± 1.5 29.4 ± 1.5 15.1 ± 1.3 26.0 ± 1.6

EWC 15.9 ± 1.0 18.5 ± 1.4 12.4 ± 1.2 15.3 ± 2.0 8.9 ± 1.4 12.5 ± 2.1

AdaFG 28.8 ± 1.2 33.8 ± 1.4 25.2 ± 1.2 33.8 ± 1.2 17.3 ± 2.3 30.9 ± 1.1

CBRS-50 22.3 ± 0.6 28.0 ± 1.4 12.3 ± 0.5 24.4 ± 0.6 6.5 ± 2.9 21.0 ± 0.6

CBRS-100 23.3 ± 0.8 28.6 ± 1.5 14.3 ± 1.0 26.5 ± 0.8 8.7 ± 2.9 23.8 ± 0.9

CBRS-200 24.8 ± 0.7 29.4 ± 1.6 17.2 ± 0.9 28.8 ± 0.9 11.4 ± 2.3 27.6 ± 0.7

the results of EWC are not good compared with the distillation-based method
LwF. In contrast, AdaFG achieves superior performance over all compared non-
exemplar based methods whether on CIFAR-100, Food-101 or Mini-ImageNet.
This is because these methods don’t consider the class imbalance problem when
designing the algorithms, thus shows unsatisfactory performance in the OCL-
Imb setting. On Mini-ImageNet, AdaFG outperforms LwF by 3.7%, 4.4%, and
4.9% on the average incremental accuracy when N = 2, 5, and 10, respectively.
On Food-101, the gaps are 6.5%, 6.2%, and 4.0%. As for CIFAR-100, the gaps are
increased to 6.5%, 7.1%, and 7.1%. The performance of AdaFG on CIFAR-100
is much better than that on Mini-ImageNet, because the data in Mini-ImageNet
are more complex (84 × 84 pixels v.s. 32 × 32 pixels) and the representation
learning of the DNN model becomes more difficult.

As for the exemplar-based method, CBRS heavily depends on the mem-
ory size, and the performance gain of increasing the size is quite obvious. For
instance, CBRS achieves 9.3% improvements on the last accuracy on CIFAR-100
(N = 10) when enlarging the memory size from 50 to 200. Compared with CBRS,
AdaFG achieves comparable or even better results even if the memory size is
200. Specifically, AdaFG outperforms CBRS by large margins on Mini-ImageNet,
e.g., 8.0% improvements on the last accuracy when N = 5, demonstrating the
effectiveness of AdaFG to cope with complex data.

Performance of the Largest and Smallest Classes. After learning a new
task, we compute the average accuracy of the largest and smallest observed
classes (i.e., p = 1.0 and 0.1). As shown in Fig. 6, compared with other methods,
AdaFG achieves comparable results on the largest classes but surpasses others
greatly on the smallest classes, which shows that AdaFG can improve the learn-
ing of minority classes effectively at a slight expense of performance degradation
on majority classes.

Ablation Study. We analyze the impact of hyper-parameter r that controls the
scope of the generated features in AdaFG, and the results of the average incremen-
tal accuracy on CIFAR-100 are shown in Fig. 7. When r > 0.4, the accuracy drops
rapidly with the increasing value of r. In this paper, we set r = 0.1 as it obtains
good performance when learning a long sequence of tasks (N = 10).
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Fig. 6. Performance of specific classes when continually learning 5 tasks on CIFAR-
100 (N = 5). (a) The mean accuracy of the observed largest classes (p = 1.0). (b) The
mean accuracy of the observed smallest classes (p = 0.1).

Fig. 7. Average incremental accuracy on CIFAR-100 w.r.t. r when N = 2, 5, and 10.

4.3 Visualization of Generated Features

Fig. 8. Real (light color) and generated
(dark color) features (Color figure online)

To verify the quality of generated fea-
tures by AdaFG, we visualize the gen-
erated features based on the prototypes
and the real features of classes with dif-
ferent percentages p by collecting all
seen samples. As shown in Fig. 8, the
generated features are in the core of
real features and can almost cover the
real features of minority classes (e.g.,
p = 0.10 and 0.18), which demonstrates
the prototype computed by Eq. (6) is
close to the true class mean feature.

5 Conclusion

In this paper, we tackle the realistic problem of online continual learning from
imbalanced data (OCL-Imb) and analyze the catastrophic forgetting and class
imbalance problems encountered in OCL-Imb. To address these problems, we
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propose a simple yet effective method AdaFG that gets rid of storing exem-
plars. AdaFG maintains a representative prototype for each class and gener-
ates new features based on the prototype to mitigate forgetting and improve
the performance of minority classes. Experiments on CIFAR-100, Food-101 and
Mini-ImageNet show that AdaFG achieves better performance than the state-
of-the-art methods.
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