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Abstract. Collaborative filtering (CF) plays a crucial role in the devel-
opment of recommendations. Most CF research focuses on implicit feed-
back due to its accessibility, but deriving user preferences from such
feedback is challenging given the inherent noise in interactions. Exist-
ing works primarily employ unobserved interactions as negative sam-
ples, leading to a critical noisy-label problem. In this study, we pro-
pose SCLRec (Soft Contrastive Learning for Recommendations), a novel
method to alleviate the noise issue in implicit recommendations. To this
end, we first construct a similarity matrix based on user and item embed-
dings along with item popularity information. Subsequently, to leverage
information from nearby samples, we employ entropy optimal transport
to obtain the matching matrix from the similarity matrix. The match-
ing matrix provides additional supervisory signals that uncover match-
ing relationships of unobserved user-item interactions, thereby mitigating
the noise issue. Finally, we treat the matching matrix as soft targets, and
use them to train the model via contrastive learning loss. Thus, we term
it soft contrastive learning, which combines the denoising capability of
soft targets with the representational strength of contrastive learning to
enhance implicit recommendations. Extensive experiments on three pub-
lic datasets demonstrate that SCLRec achieves consistent performance
improvements compared to state-of-the-art CF methods.

Keywords: Contrastive Learning · Implicit Recommendations ·
Collaborative Filtering

1 Introduction

In the era of information explosion, recommender system has become a cru-
cial tool for enhancing user engagement and satisfaction by providing person-
alized suggestions for products [16], videos [6], among others. Collaborative
filtering (CF) has been widely adopted in personalized recommendation sys-
tems [3,20,22], with the key idea that similar users tend to share similar prefer-
ences. Typically, CF models mainly rely on historical interactions to predict user
interests for candidate items [26]. Most CF research [13,20] focuses on implicit
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feedback which only contains user-item interactions (e.g., clicks, browsing his-
tory) because it encompasses a large volume of data and captures abundant
collaborative information in a simple manner [27,28].

A persistent challenge for implicit recommendations is how to formulate the
loss function based on implicit feedback [3]. In general, there are three popu-
lar types of loss functions in recommendation systems: pointwise loss [18], pair-
wise loss [20], and listwise loss [3]. Specifically, the contrastive learning loss [17],
as a novel type of listwise loss, has been introduced to the implicit feedback
recommendations due to its excellent representational capabilities [26,31]. Con-
trastive learning (CL) aims to learn feature representations by minimizing the
distance between similar (matched) sample pairs and maximizing the distance
between dissimilar (unmatched) pairs. Existing methods [26,31] assume that user-
item pairs within observed interactions are matched, while user-item pairs within
unobserved interactions are considered unmatched in implicit feedback. However,
such hard labeling mechanism, which strictly classifies user-item pairs as either
matched or unmatched, fails to account for the inherent ambiguity present in miss-
ing feedback within implicit datasets. Specifically, unobserved interactions might
not indicate disinterest, but simply that the items have not been exposed to the
user. Thus directly fitting implicit feedback without addressing the noise issue
cannot yield optimal user representations, leading to performance degradation.

Inspired by the recent advancements in CL for noisy-label problems [4], we
introduce a novel contrastive learning loss to mitigate the noise issue in implicit
feedback recommendations. Our approach comprises three phases: First, we esti-
mate a similarity matrix that captures the likeness between users and items in
a batch based on their embeddings and item popularity information. Next, to
utilize information from nearby samples, we leverage entropy-regularized opti-
mal transport to obtain the matching matrix which reflects the matching degree
for user-item interactions from the similarity matrix. In deviation from previous
methods [26,31], our approach assigns non-zero matching values, i.e., soft tar-
gets, to unobserved user-item interactions. The soft targets provide additional
supervisory signals to guide the learning of the recommendation system, uncov-
ering unobserved user-item matching relationships and effectively alleviating the
noise issue. Finally, we optimize the model using these soft targets via the con-
trastive learning loss, which we thus term as soft contrastive learning loss. We
conduct extensive experiments on three real-world datasets and observe consis-
tent performance improvements when optimizing a matrix factorization model
using our proposed soft contrastive loss.

The main contributions of this work can be summarized as follows:

– To the best of our knowledge, SCLRec is the first work that introduces soft
contrastive learning into the recommendation domain.

– SCLRec assigns soft targets to unmatched user-item pairs, providing addi-
tional supervisory signals to identify latent user-item correspondences in
unobserved interactions and effectively alleviate the noise problem.

– Experiments on three public datasets show that SCLRec achieves better per-
formance than the state-of-the-art methods.
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2 Related Work

Collaborative Filtering. CF plays a crucial role in recommender systems [22].
Most CF research focuses on implicit feedback, with a prominent approach being
Bayesian Personalized Ranking (BPR) [20]. BPR uniformly samples unobserved
interactions as negative samples, leading to a critical noisy-label problem. Exist-
ing denoising techniques [24,27,28,30] can be divided into two categories: sample
selection methods and sample re-weighting methods. Sample selection methods
choose clean and information-rich samples to train the model and enhance its
performance. IR [28] represents a typical sample selection approach that itera-
tively creates pseudo-labels based on the disparity between labels and predictions
to exclude noisy samples. However, sample selection methods, while effective in
gathering cleaner data, rely on the sampling distribution, potentially resulting
in biased gradient estimation and degrading recommendation performance. Con-
versely, sample re-weighting methods differentiate between clean and noisy inter-
actions based on the model’s learning process (e.g., loss values and predictions).
T-CE [27] adopts a sample re-weighting strategy, dynamically assigning lower
weights to samples exhibiting high loss values under the premise that noisy sam-
ples suffer larger losses. Yet, although these methods achieve promising results,
they run the risk of neglecting hard clean samples and lack of adaptivity and
universality [10].

Contrastive Learning. CL is a representative self-supervised learning (SSL)
method, which measures the dependency of input variables by calculating their
mutual information [1]. A prominent methodology in contrastive learning is the
InfoNCE loss [17], which has been extensively applied in the fields of computer
vision [2,4,19] and natural language processing [9]. The InfoNCE loss aims to
minimize the distance between positive sample pairs while maximizing the dis-
tance between negative pairs, thereby facilitating effective representation learn-
ing. With the growing popularity of SSL, there have been efforts [14,26,31] to
incorporate contrastive loss into recommendation systems. CLRec [31] employs
the InfoNCE loss to address the exposure bias in CF and enhance deep candidate
generation (DCG) in terms of fairness within large-scale recommendation scenar-
ios. DirectAU [26] explores the desired alignment and uniformity properties of
CF from the perspectives of contrastive representation learning. It works to push
positive pairs closer to each other and make random pairs scatter across the unit
hypersphere. However, these attempts have neglected the inherent noise issue in
implicit recommendations. In contrast, we assign soft targets to unmatched user-
item pairs, providing additional supervisory signals to alleviate the noise issue.

3 Methodology

In this section, we first introduce some notations related to collaborative filtering
and InfoNCE loss [17]. Then we demonstrate the architecture and optimization
process of our proposed SCLRec model.
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Fig. 1. Overview of the proposed SCLRec, which can mainly be divided into three
parts: (a) similarity matrix computation, (b) entropy optimal transportation, and (c)
soft contrastive learning.

3.1 Notations

Collaborative Filtering. Let X represent the set of users and Y denote the
set of items. Given the observed user-item interactions R = {(x, y) | x has
interacted with y}, the goal of CF methods is to estimate a score s(x, y) ∈ R for
each unobserved interaction. The score indicates the likelihood that user x will
interact with item y, and items with the highest scores for each user will be rec-
ommended. In general, most CF methods [12,20] employ an encoder network f(·)
that maps each user and item into a low-dimensional embedding. The embeddings
are further l2-normalized to the unit hypersphere, represented as ˜f(x), ˜f(y) ∈ R

d,
where d is the dimension of the latent space. We denote ˜f(x) as u and ˜f(y) as v,
then the user embeddings within the batch are denoted as U and the item embed-
dings are represented by V . Finally, the predicted score is defined as the similarity
between the user and item representation (e.g., dot product, s(x, y) = uTv).

InfoNCE Loss. CLRec [31] trains the user and item encoders with contrastive
learning to pull the matched user-item pairs closer and push the unmatched
user-item pairs farther. This is achieved by minimizing the InfoNCE loss [17],
which is defined as

LInfoNCE = − 1
N

N
∑

i=1

N
∑

j=1

Iij log
exp((u�

i vj)/τ)
∑N

k=1 exp((u�
i vk)/τ)

, (1)

where (u�
i vj) is the cosine similarity between two �2-normalized embedding

vectors. τ represents a temperature parameter, while N denotes the batch size,
i.e., the number of user-item pairs. Iij is the element of an identity matrix I with
Iii = 1,∀i and Iij = 0,∀i �= j. Note that ui and vj are on the unit hypersphere.
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3.2 The SCLRec Framework

As mentioned above, there have been efforts [26,31] to incorporate contrastive
learning loss into recommendations. However, these efforts have overlooked the
inherent noise issue in implicit recommendations. Inspired by recent break-
throughs in CL for the noisy-label issue [4], we propose SCLRec, a novel method
to alleviate the noise problem in implicit recommendations.

An overview of SCLRec is illustrated in Fig. 1, specifically, we first use the
encoder to generate user and item embeddings. Then we construct a similar-
ity matrix for unmatched users and items based on those embeddings and item
popularity information. Subsequently, to utilize information from nearby sam-
ples, we employ entropy optimal transport to obtain the matching matrix for
unmatched user-item pairs. After incorporating information from the matched
pairs, we obtain the final matching matrix which serves as soft targets to pro-
vide additional signals for enhancing the recommendations. Finally, we adopt
a modified contrastive learning loss as optimization objective, transforming the
one-hot hard target I from Eq. (1) into a soft target M . Hence, it is denoted as
the soft contrastive learning loss. In summary, our method primarily consists of
three parts: similarity matrix computation, entropy optimal transportation and
soft contrastive learning, detailed in the following sections.

Similarity Matrix Computation. Naturally, we consider harnessing embed-
ding information to calculate similarity. To obtain reliable embeddings, we incor-
porate the Exponential Moving Average (EMA) method [23] to stabilize the
encoder. This involves constructing a teacher encoder with the same model struc-
ture as the original encoder but with parameter updates following the EMA prin-
ciple, i.e., θ̃ ← mθ̃+(1−m)θ, where θ and θ̃ represent the weights of the original
encoder and the teacher encoder, respectively, and m is momentum parameter
set to 0.9. The user and item embeddings are generated by this teacher encoder.
Then we utilize these embeddings and item popularity information to compute
the similarity matrix as

S′ = γuUTU + γvV
TV + γp1T softmax(p) + UTV − ηI. (2)

For users, the term UTU computes cosine similarity between user embed-
dings. Intuitively, it assumes that similar users might favor items liked by their
counterparts. For items, V TV can be used to measure item similarity. Note that
user and item embeddings could be regarded as representations of latent fac-
tor vectors across the dimensions of user preferences and item attributes, thus
their similarities are inherently additive. Also, previous research [3] suggests
that the popularity-based negative sampler usually exceeds the random neg-
ative sampler in implicit recommendations. Inspired by this, we utilize item
popularity for computing the similarity. We obtain the item popularity dis-
tribution with p = [p1, p2, · · · , pN ], where pi denotes the frequency of item
i for all users. Generally, more popular items are viewed as positive samples
since they’re more likely to be recommended. We then arrive at the formula
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1T softmax(p), using softmax(·) for normalizing the distribution. Specifically,
[softmax(p)]i = exp(pi)/

∑

j exp(pj), converting the vector elements into a
probability distribution. For user-item relationships, UTV captures the affin-
ity between user and item embeddings [21]. Additionally, the term −ηI with
η → ∞ ensures diagonal elements of S′ are infinitely small. We calculate the
similarity matrix in Eq. (2) by linearly weighting all the aforementioned terms.

Entropy Optimal Transportation. Next, we focus on generating the match-
ing matrix from the similarity matrix S′. A näıve approach might be to directly
use the similarity values as matching degrees. However, this is an oversimplified
perspective because the similarity matrix is heuristically designed and might
deviate from the actual scenario. Drawing inspiration from the application of
optimal transport in noisy label scenarios [4,8], we utilize information from
nearby samples to estimate accurate matching values. Specifically, the matching
matrix is obtained by solving the following problem:

M ′∗ = arg max
M ′

〈M ′, S′〉F + λH(M ′). (3)

Here, 〈M ′, S′〉F represents the Frobenius inner product of the matching matrix
M ′ and the similarity matrix S′, and it aims to establish a direct relation-
ship between the similarity degree and the matching strength in user-item
pairs. Specifically, a higher similarity degree yields a greater matching score.
H(M ′) = −∑

ij M ′
ij log M ′

ij serves as an entropy regularization term to enhance
robustness. Moreover, the solution to Eq. (3) has a closed-form formulation:

M ′∗ = Diag(r) exp(S′/λ)Diag(c), (4)

where vectors r and c can be computed using the iterative Sinkhorn-Knopp
algorithm [7]. Additionally, the algorithm ensures that the sum of each row and
column in M ′∗ equals 1. As depicted in Eq. (4), the term exp(S′/λ) highlights
the significance of entropy regularization. Similar to the temperature parameter
in CL, increasing λ will make the distribution of M ′∗ more dispersed, while
decreasing it will yield the opposite effect.

Soft Contrastive Learning. After generating the matching matrix M ′∗ for
unmatched user-item pairs, we can then obtain the overall matching matrix
M , which serves as the soft target. To incorporate the matching information of
matched user-item pairs, we define M as a linear combination of the identity
matrix I and M ′∗:

M = αI + (1 − α)M ′∗. (5)

We define it for two reasons: First, α ∈ [0, 1] can represent the prior matching
probability (degree) between user ui and item vi. Second, the formula can ensure
that the sum of each user’s matching probability (degree) with all items within
a batch remains 1, and likewise for each item with all users. Consequently, in the
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InfoNCE loss, the one-hot hard target I can be substituted with the soft target
M , resulting in a soft contrastive learning loss:

LSCL = − 1
N

N
∑

i=1

N
∑

j=1

(αIij + (1 − α) M ′∗
ij) log

exp((u�
i vj)/τ)

∑N
k=1 exp((u�

i vk)/τ)
. (6)

The formulation assigns soft targets to unmatched user-item pairs, providing
additional supervision signals to better guide the learning process of recommen-
dation systems.

4 Experiments

In this section, we evaluate our proposed model through comprehensive exper-
iments and compare its results with current leading models on three public
datasets. Our experiments are guided by the following research questions (RQs):

– RQ1: Does SCLRec outperform existing baselines in recommendation per-
formance?

– RQ2: How do hyperparameters and components within SCLRec affect its
performance?

– RQ3: Can SCLRec achieve denoising objectives effectively?

4.1 Experimental Settings

Datasets. We use three real-world datasets as outlined in Table 1: MovieLens-
10M [11]: A well-known dataset containing movie ratings. Gowalla [5]: A
dataset recording user check-in data from the Gowalla platform. TmallBuy [25]:
An e-commerce dataset containing user purchase records on the Tmall platform.
To construct implicit feedback, each entry is marked as 0/1 indicating whether
the user rates the item. During preprocessing, we further ensure every user and
item has at least 5 associated interactions.

Baselines. We compare the performance of SCLRec with various state-of-the-
art CF methods:

General Methods: (1) BPRMF [20]: a typical approach optimizing matrix
factorization via pairwise ranking loss; (2) BUIR [15]: a CF method that learns
user and item embeddings only from positive interactions; (3) LightGCN [12]:
a simplified graph convolution technique for CF.

CL-based Methods: (1) CLRec [31]: a method that uses the InfoNCE loss to
mitigate the issue of exposure bias in CF; (2) DirectAU [26]: an approach that
optimizes the properties of alignment and uniformity, inspired by contrastive
representation learning.
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Table 1. Statistics of datasets.

Dataset #user (|X |) #item (|Y|) #inter. (|R|) avg. inter. per user density

MovieLens 69.9k 10.2k 9998.9k 143.1 1.42%

Gowalla 29.9k 41.0k 1027.4k 34.4 0.08%

TmallBuy 413.1k 221.9k 4985.6k 12.1 0.02%

Denoising Methods: (1) IR [28]: a sample selection method iteratively relabels
ambiguous samples to address noisy interactions; (2) T-CE [27]: a sample re-
weighting method that employs the Truncated BCE loss to assign zero weights
to examples with high losses beyond a dynamic threshold.

Evaluation Protocols. We partition the datasets into training, validation,
and testing sets with an 8:1:1 ratio. The evaluation metrics are Recall@N and
Normalized Discounted Cumulative Gain (NDCG)@N for N = 10, 20, 50.

Implementation Details. We use Adam as the default optimizer and early
stop is adopted if NDCG@20 on the validation dataset continues to drop for 10
epochs. We set the embedding size to 64 and the learning rate to 10−3 for all the
methods. The training batch size is set to 1024 and the weight decay is tuned
among [0, 10−8, 10−6]. The default encoder in SCLRec is a simple embedding
table that maps user/item IDs to embeddings.

4.2 Overall Performance (RQ1)

The overall recommendation performance of SCLRec and various baselines are
presented in Table 2. From the results, we can draw several key findings: First,
we observe consistent performance improvements when comparing the pro-
posed SCLRec with recent baselines on the MovieLens, Gowalla, and TmallBuy
datasets. Furthermore, our results show that the T-CE method outperforms most
CL-based and general methods on the MovieLens and TmallBuy datasets, and
the IR method excels on the Gowalla dataset in a similar manner. These find-
ings demonstrate that denoising methods perform better than most other meth-
ods, particularly in sparse datasets that are susceptible to noise. This can be
attributed to the inherent noise in implicit feedback, making effective denoising
techniques especially beneficial. In addition, our results indicate that the best
baseline is significantly influenced by the specific characteristics of individual
datasets. For example, T-CE performs notably on the MovieLens and Tmallbuy
datasets, while IR is more suited for user check-in data like Gowalla. However,
only SCLRec, which combines contrastive learning representations with soft tar-
get denoising ability, consistently delivers superior results across all datasets.
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Table 2. Top-K recommendation performance on three datasets. The best results are
in boldface, and the best baselines are underlined.

Setting Baseline Methods Ours

Dataset Metric BPRMF BUIR LightGCN CLRec DirectAU IR T-CE SCLRec

MovieLens-10M Recall@10 0.1734 0.1885 0.1946 0.2071 0.2023 0.2112 0.2108 0.2160∗

Recall@20 0.2606 0.2725 0.2856 0.2901 0.2937 0.2985 0.3026 0.3148∗

Recall@50 0.4081 0.4073 0.4352 0.4370 0.4379 0.4401 0.4413 0.4669∗

NDCG@10 0.2061 0.2322 0.2427 0.2402 0.2392 0.2408 0.2417 0.2453∗

NDCG@20 0.2256 0.2467 0.2590 0.2595 0.2585 0.2587 0.2598 0.2616∗

NDCG@50 0.2685 0.2831 0.3003 0.3019 0.2982 0.3016 0.3021 0.3071∗

Gowalla Recall@10 0.0866 0.0798 0.1289 0.1215 0.1394 0.1388 0.1382 0.1420∗

Recall@20 0.1263 0.1164 0.1871 0.1755 0.2014 0.2008 0.2011 0.2078∗

Recall@50 0.2040 0.1917 0.2934 0.2813 0.3127 0.3140 0.3134 0.3230∗

NDCG@10 0.0622 0.0570 0.0930 0.0868 0.0991 0.0980 0.0989 0.1008∗

NDCG@20 0.0736 0.0676 0.1097 0.1022 0.1170 0.1196 0.1184 0.1215∗

NDCG@50 0.0926 0.0858 0.1356 0.1281 0.1442 0.1448 0.1437 0.1489∗

TmallBuy Recall@10 0.0366 0.0385 0.0455 0.0695 0.0696 0.0709 0.0701 0.0730∗

Recall@20 0.0470 0.0571 0.0620 0.0958 0.0952 0.0953 0.0970 0.1011∗

Recall@50 0.0668 0.0917 0.0937 0.1390 0.1368 0.1372 0.1388 0.1476∗

NDCG@10 0.0268 0.0220 0.0299 0.0416 0.0422 0.0418 0.0428 0.0440∗

NDCG@20 0.0296 0.0269 0.0342 0.0486 0.0490 0.0485 0.0497 0.0514∗

NDCG@50 0.0337 0.0341 0.0409 0.0577 0.0577 0.0562 0.0579 0.0612∗

4.3 Ablation Study (RQ2)

As shown in Table 3, we analyze the impact of various hyperparameters and
components on the performance of SCLRec. Evaluations are conducted using
the Recall@50 and NDCG@50 metrics on the MovieLens test dataset.

Confidence in the Implicit Datasets: As outlined in Sect. 3.2, we define α as
the matching probability between the corresponding user and item in observed
interactions. This indicates the confidence or the noise level of matched pairs.
Through testing values of 0.80, 0.90, and 0.99 for α, we find that both low
confidence (0.80) and over-confidence (0.99) compromise performance.

Coefficients of the Similarity Matrix: The computation of the similarity
matrix involves user similarity, item similarity, and item popularity. In order
to verify their role, we set their coefficients γu, γv, γp to zero respectively. Our
results show that all components contribute positively. Notably, item popularity
appears to be more crucial than the others, as omitting it results in a more
pronounced decline in performance.

Implications of Optimal Transport: A key aspect of SCLRec is its use of
entropy optimal transport to obtain the matching matrix based on the similarity
matrix. The question arises: is entropy optimal transport truly necessary? We
verify the requirement by setting the number of Sinkhorn iterations to 0 and 6.
The experiments indicate that using 0 iterations results in lower performance,
thus highlighting the effectiveness of entropy optimal transport in mitigating
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Table 3. Ablation study. SCLRec evaluated on MovieLens test set.

α γu γv γp EMA λ #iter Recall@50 NDCG@50

SCLRec 0.9 1.0 1.0 0.1 ✓ 0.1 6 0.4669 0.3071

0.80 1.0 1.0 0.1 ✓ 0.1 6 0.4283 (↓ 8.3%) 0.2848 (↓ 7.3%)
α

0.99 1.0 1.0 0.1 ✓ 0.1 6 0.4368 (↓ 6.4%) 0.3014 (↓ 1.9%)

0.9 0.0 1.0 0.1 ✓ 0.1 6 0.4496 (↓ 3.7%) 0.2945 (↓ 4.1%)

0.9 1.0 0.0 0.1 ✓ 0.1 6 0.4487 (↓ 3.9%) 0.2927 (↓ 4.7%)
similarity

matrix
0.9 1.0 1.0 0.0 ✓ 0.1 6 0.4380 (↓ 5.2%) 0.2921 (↓ 4.9%)

Sinkhorn

0.9 1.0 1.0 0.1 ✓ 0.05 6 0.4586 (↓ 1.8%) 0.2985 (↓ 2.8%)

0.9 1.0 1.0 0.1 ✓ 0.2 6 0.4424 (↓ 5.2%) 0.2923 (↓ 4.8%)

0.9 1.0 1.0 0.1 ✓ 0.1 0 0.4440 (↓ 4.9%) 0.2908 (↓ 5.3%)

data noise. We also investigate the impact of entropy regularization, dictated by
λ in Eq. (4), and find that overly ”hard” (0.05) or ”soft” (0.2) target distribution
both harm performance.

4.4 Robustness to Interaction Noises (RQ3)

To evaluate SCLRec’s robustness to interaction noise, following the experimental
settings of recent work [29], we incorporate specified ratios of unobserved interac-
tions (i.e., 5%, 10%, 15%, and 20%) into the training set and test on an untouched
test set. The results on MovieLens and Gowalla datasets are shown in Fig. 2.
From the results, we can draw several key findings: Obviously, as the amount of
added noise increases, the performance of all models declines. This is because CF
models rely on user-item interactions for enhanced representations. Besides, on
both datasets, SCLRec exhibits less performance degradation compared to other
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Fig. 2. Model performance w.r.t. noise ratio. The bar represents Recall@10, and the
line shows the percentage of performance degradation.
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models. Interestingly, the performance gap increases as noise levels rise on the
MovieLens dataset. These observations indicate that our method, leveraging
entropy optimal transport to determine soft user-item matches in contrastive
loss, is effective in mitigating interaction noise. Moreover, it is worth noting that
SCLRec shows stronger robustness on Movielens, which is consistent with Movie-
Lens having denser interactions than Gowalla according to Table 1.

5 Conclusion

In this study, we introduce a novel soft contrastive learning method that improves
implicit feedback recommendations. Specifically, we utilize entropy optimal
transport to find soft user-item matches as labels for contrastive learning. Our
proposed method provides additional supervisory signals to better guide the
learning process of the recommendations. Furthermore, extensive experiments
on three public evaluation datasets demonstrate that SCLRec achieves better
performance compared to state-of-the-art CF methods.
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