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Topic modeling is a powerful tool for discovering the underlying or hidden structure in text corpora.
Typical algorithms for topic modeling include probabilistic latent semantic analysis (PLSA) and latent
Dirichlet allocation (LDA). Despite their different inspirations, both approaches are instances of
generative model, whereas the discriminative structure of the documents is ignored. In this paper,
we propose locally discriminative topic model (LDTM), a novel topic modeling approach which considers
both generative and discriminative structures of the data space. Different from PLSA and LDA in which
the topic distribution of a document is dependent on all the other documents, LDTM takes a local
perspective that the topic distribution of each document is strongly dependent on its neighbors. By
modeling the local relationships of documents within each neighborhood via a local linear model, we
learn topic distributions that vary smoothly along the geodesics of the data manifold, and can better
capture the discriminative structure in the data. The experimental results on text clustering and web

page categorization demonstrate the effectiveness of our proposed approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing growth of digital data on the web, the
automatic tools for exploratory data analysis are in great demand
in various fields, including data mining, machine learning, pattern
recognition and information retrieval. As one of the representa-
tive exploratory data analysis tools, probabilistic topic modeling
[1] has received considerable attentions in recent years [2-9].
Topic modeling approaches can provide concise topical descrip-
tions of document corpora that are semantically interpretable by
human [10]. At the same time, they can also preserve the under-
lying statistical relationships that are helpful for document
indexing, organization and common discriminative tasks such as
clustering and classification [11].

Two of the most popular topic modeling algorithms are probabil-
istic latent semantic analysis (PLSA) [12] and latent Dirichlet alloca-
tion (LDA) [11]. Both methods are generative models that model
each document as a mixture over a fixed set of underlying topics,
where each topic is characterized as a distribution over words.
Specifically, each word w in d is assumed to be generated from a
distribution over words specific to a latent topic z, where z is
sampled from a distribution corresponding to d with a probability
P(z|d). The topic probabilities can be indirectly inferred by maximiz-
ing the log-likelihood of the data to be generated. One limitation of
these two approaches is that they fail to consider the intrinsic
geometrical structure of the data space [13].
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In contrast to generative approaches, discriminative approaches
represent another distinct paradigm of statistical learning [14]. In
a discriminative view, P(z|d) can be interpreted as the probabil-
ities with which d can be clustered into each topical class z. We
thus can view the inference of the class posteriors P(z|d) as a
multi-label classification problem which can be solved by learn-
ing a mapping function from the word features of documents.
This viewpoint is conceptually different from that of the gen-
erative model [12], where P(z|d) is served as weights of topic
mixture. It is worthwhile to notice that each of the two paradigms
(generative or discriminative) has its own strengths and weak-
nesses. Recently, in the field of machine learning, there has been
renewed research interest in combining these two paradigms into
a hybrid framework to gain both merits [15-17].

In this paper, we propose a novel probabilistic topic modeling
algorithm, named locally discriminative topic modeling (LDTM), to
discover the semantic structure of document corpora. Our approach
combines the merits of both generative and discriminative approaches.
Specifically, LDTM uses local learning [18-21] to infer the topic
relation between a document and its neighbors via linear regressions
from the original word features. Different from PLSA and LDA which
are global methods where the topic distribution of each document is
dependent on all the other documents, our approach takes a local
perspective, where the topic distribution of each document is only
dependent on its neighbors. Specifically, at each local neighborhood,
we aim to fit a locally linear model and these local models are unified
as a locally discriminative regularizer. By incorporating this regularizer
into the maximum likelihood objective function of basic PLSA, LDTM
finds topic distributions of the documents which respect both
generative and discriminative structures in the data.


www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.04.029
mailto:jkzhu@cse.cuhk.edu.hk
mailto:jkzhu@zju.edu.cn
dx.doi.org/10.1016/j.patcog.2011.04.029

618 H. Wu et al. / Pattern Recognition 45 (2012) 617-625

It is worthwhile to notice that LDTM in spirit is closely related
to locally consistent topic modeling (LTM) [22,13]. In particular,
LTM puts the smoothness constraint on the topic distributions
using the Laplacian or manifold regularizer [23] to emphasize the
pairwise similarities. It defines a cost function in the form
of the summation of D(P(z|d;)||P(z|d;))W;; over all document pairs,
where D(-Il-) denotes the distance between two topic distributions
according to some distance metric such as KL-divergence,
and Wj; is the edge weight of d; and d; in the nearest neighbor
graph. The performance of LTM, therefore, largely relies on the
weight assignment. Different from LTM, LDTM has its distinct
features:

1. LDTM learns the graph Laplacian automatically using a local
learning approach to model the topic relation between a
document and its neighbors. This attains the robustness of
model by avoiding the explicit assignment of the edge weights
in the graph, to which the model (e.g., LTM) is very sensitive.

2. LDTM provides a complementary discriminative learning
scheme to infer the topic distributions via a learning machine,
i.e., regressions, in hope of boosting the generative scheme for
topic modeling. This is beyond the focus of LTM. Moreover,
LDTM is flexible to incorporate any other generative
scheme (e.g., LDA) or discriminative learning scheme (e.g.,
SVM) as an alternative.

2. Background

Two of the most popular probabilistic topic modeling
approaches are probabilistic latent semantic analysis (PLSA) [12]
and latent Dirichlet allocation (LDA) [11]. Both of these two
models assume documents are generated by the activation of a
fixed set of latent topics, where each topic are modeled as a
distribution over words.

Specifically, PLSA, which is also known as aspect model, is indeed
a latent variable model for general co-occurrence data which
associates with an unobserved topical class variable ze Z=
{z1,...,z¢} with each observation, i.e. with each occurrence of a
word we W = {wy, ..., Wy} in a document d e D= {dq, ...,dy}. As a
generative model, PLSA simulates the data generation process by
defining a joint probability model:

P(d,w) = P(d)P(w|d),

P(w|d) =) ~ P(w[2)P(z|d). 1)
zeZ

The parameters are estimated by maximizing the log-likelihood of

the whole collection to be generated:

£=>" " ndwlogPdw)x > > n(dwlog)  Pwz)P(z|d),

deDweW deDweW zeZ
)

where n(d,w) denotes the number of times w occurred in d. The
standard EM algorithm [24] is applied to estimate the parameters
{P(W|Z)’P(Z|d)}w,z,d-

Note that PLSA estimates the topic distributions P(z|d) inde-
pendently for different d, therefore the number of parameters,
which is KM+KN, grows linearly with the number of training
documents N. This indicates that PLSA is susceptible to overfitting
[11]. To overcome this problem, latent Dirichlet allocation (LDA)
[11] treats the topic distribution as a K-dimensional Dirichlet
random variable. Thus the KM+K parameters in a K-topic LDA
model do not grow with the size of the training corpus and LDA
does not suffer from the same overfitting issue as PLSA.

3. Locally discriminative topic modeling

Recent studies [25,26] have shown that naturally occurring
data, such as texts and images, cannot possibly “fill up” the
ambient Euclidean space, rather it must concentrate around
lower-dimensional manifold structures which plays an essential
role in developing various kinds of algorithms including dimen-
sionality reduction, supervised learning and semi-supervised
learning algorithms [27,23,28,29]. To model this manifold struc-
ture, recent work on topic modeling [22,13] proposed to incorpo-
rate the so-called manifold regularizer [23] in the maximum
likelihood estimation.

The manifold regularizer emphasizes the pairwise similarities
of the data and defines the cost function based on the weight
matrix of a nearest neighbor graph. However, these approaches
are very sensitive to the weighting scheme. In this section, we will
introduce how to learn a locally discriminative regularizer auto-
matically with local learning approaches for topic modeling.

3.1. Locally discriminative regularizer

The goal of PLSA is to estimate the parameters {P(wW|z),P(z|d)}y .4
The topic distribution P(z|d) gives an explicit representation of a
document in aspects. A discriminative interpretation of P(z|d) would
be the probabilities with which a specific document d is clustered into
each topical class z. Hence, the inference of the class posteriors P(z|d)
provides much power for common discriminative tasks such as
document clustering and classification. In the following, we try to
approximate a learning function to estimate the topic distributions
from word features.

We can express P(z|d) as

Pizid)= Y Pz/w)P(w|d). 3
weW

Here the conditional probability P(z|d) is obtained by a convex

combination of document-specific word probabilities P(w|d),

whereas the unique words are characterized by a mixture of

topical class z with weights P(zjw), which is unobserved and

should be learned.

Let X = [P(wq|d), ...,P(wy|d)]" be the vector representation of the
document d in the word space, where P(w|d) can be empirically
computed as P(w|d) = n(d,w)/Y_,,n(d,w). In the rest of the paper, we
will use x and d interchangeably. Let a = [P(z|w1), . ..,P(zlwy)]", then
Eq. (3) can be rewritten as follows:

P(z|d) =a"x. 4)

Lety =[P(z1|d), ...,P(zk|d)]" be the representation vector of the topic
distribution of d, thus we have

y=A'x, 5)

where A:[al,,..,aK]eRMXK is the transformation matrix. Let

X =[X1,...,.xy] € RM¥N be the data matrix of all documents {d;,...,
dy} in the original word space and Y =[y;,...,yy] € R“*N be the
representation matrix of all documents in the space of latent topics,
we can arrive at

Y=A"X, (6)

which illustrates the linear relation between topic distributions Y and
word features X.

It is important to note that this linear relation is a global one,
which does not take into account the local geometric structure of
the document space. To characterize the local geometric struc-
ture, we adopt the local learning idea [18] to model this relation.
The basic idea of local learning is assuming that the topic
distribution of a document should only be dependent on its
neighbors. The local learning partitioning the word space of
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documents into a set of local neighborhoods, and appropriately
models a mapping function to approximate the topic distributions
within each neighborhood.

Given a document d;, let N'(d;) denote the set of its neighbors
including itself, with the size n; = |A/(d;)|. In this paper, we assume
ny=ny = -.- =ny=k for simplicity. To construct the neighbor-
hood for each d;, we find the k-nearest neighbors according to
cosine similarity which is defined as

T
X Xy

COS(X;,Xj ) = ———
(i Xi) = g T

(7)
for two arbitrary document vectors X; and X;.

Let Z; denote the set containing the indices of all the docu-
ments in the neighborhood N(d)), that is Z; = {jld; e N(d;)}. Let
X; = [x]] € R™*™ for jeZ; be the local data matrix of N(d;). Let
Yi=[yjle RE*" for jeZ; be the local representation matrix of
N(d)) in the latent topic space.

Following the idea of local learning [18], we try to fit a local
model f;(X;) :AiTXi+biIZ| for each N(d;) to best approximate Y;.
Note that the subscript i for f; means that it is trained within the
neighborhood A/ (d;). In this model, A; e RM*K is the transforma-
tion matrix specific to A'(d;), 15, is the n;-dimensional vector of all
ones and b; e RX is the intercept. For simplicity, we append a new
element “1” to each x. Thus, the intercept b; can be absorbed into
A; and we have f;(X;) =AiTXi. Fitting this model can be mathema-
tically formulated as

1 T
Iglbli]n—iHY,-—Ai XillZ+ pllA; 12, 8)

where |l - Il is the Frobenius norm for matrices, and the penalty
term plA;lI2 with g > 0 is introduced to avoid overfitting [30]. This
linear model finds a mapping from the word space X; to the topic
space Y; locally.

Taking the first-order partial derivative of Eq. (8) with respec-
tive to A; and requiring it to be zero, we get the optimal solution
for A;:

Af = XiX] +nmpl) XY, )
where I is an identity matrix. Substituting A; in Eq. (8) with Eq.
(9), we get the following minimization problem:
n}innl 1Y (A=XT (X XT +n;ul) =1 X;)12

i i

+ XX+ XYT 12, (10)
Following some simple algebraic steps, Eq. (10) can be reduced to

n}in Tr(Y;AY]), 11
where Tr(-) denotes the trace operator and A; is given by
1 _
A= E(l—x,T(x,-x,.T+n,-,u) X)). (12)
1

By applying the Woodbury-Morrison formula [31], the above
equation can be simplified as

A= puXIX+nul 1. (13)

For each N (d;), we can find the best local model by optimizing
Eq. (11). By summing the costs of all local models, we get

N
min Tr(Y;AYT). 14
(i Y; YiAY]) (14)
It is clear Y; is a sub-matrix of Y, we can construct a selection
matrix S; such that Y;=YS;. S; is constructed as follows:
Si=[ejle RN for jeZ; where e; is the j-th unit vector whose
j-th element is one and all other elements are zero. Substituting Y;

in Eq. (14) with YS;, we have
rr%{in Tr(YAYD), (15)

where A is computed as

N
A= > (SASD. (16)
i=1
By taking into account the local geometric structure, the optimal
Y, which are the topic distributions {P(z|d)}, 4, should minimize

R =Tr(YAYD). a7

We call Tr(YAY") the locally discriminative regularizer. By incorporat-
ing this regularizer into traditional topic modeling approaches, we
can obtain probabilistic topic distributions which are concentrated
around the data manifold.

3.2. Locally discriminative topic modeling

Incorporating the locally discriminative regularizer into the
generative scheme of PLSA, we obtain our locally discriminative
topic modeling (LDTM) approach. Following [13], we define the log-
likelihood of LDTM as a linear combination of Egs. (2) and (17):

max L—IR, (18)

where A>0 is the regularization parameter and @ = {P(w|z2),
P(z|d)},y 2.4 is the set of parameters to be estimated.

In Eq. (18), £ represents how likely the collection of docu-
ments are generated via the generative scheme. By maximizing £,
we seek a set of parameters {P(w|2)},,, and {P(z|d)}, 4 which fit the
data best. R measures the smoothness of the topic distributions
on the local manifold structure of data. By maximizing —AR, we
find {P(z|d)},4 that best fits the local geometrical structure of
document space.

The standard procedure for maximum likelihood estimation in
latent variable models is the expectation maximization (EM)
algorithm [24]. The EM algorithm starts with some initial guess
of the parameters, @g, then generate successive estimates, @, for
t=1,2,...until convergence by repeatedly alternating the follow-
ing two steps: (i) an expectation (E) step where posterior
probabilities are computed for the latent variables, based on the
current estimates of the parameters, (ii) a maximization (M) step,
where parameters are updated based on maximizing the so-called
expected complete data log-likelihood which depends on the
posterior probabilities computed in the E-step. In the following,
we describe the two steps in our algorithm for parameter
estimation at each t-th iteration for t=1,2,....

E-step: Compute the posterior probabilities for the latent
variables:

P(W|2),_1P(z|d);_4
>y e sPWIZ)e 1 PZ|d)eq
M-step: Maximize the expected complete data log-likelihood:
H(O)= Q(O)-AR
=Y > ndw)) Pzd,w)log[P(W|2)P(z|d)—iR. (20)

deDweW zeZ

P(z|d,w), = 19)

Since the regularizer R does not involves P(w|z), we have the
closed form re-estimation equation for P(w|z), which is the same
as that of PLSA [32]:

> de p(dwW)P(z|d, W),
ZW’ € WZd € Dn(d'w/)P(Zld’W/)t
For P(z|d), we cannot obtain a closed form re-estimation equation

since finding the global optimum of Eq. (20) is hard [22].
Therefore, instead of applying the traditional EM, we use the

21

P(w|z), =
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generalized EM (GEM) algorithm [33]. In each M-step, GEM only
finds a “better” @ that increases H(®). To achieve this, in t-th
iteration, we first apply Eq. (21) and the following equation:

_ DwendwW)P(z|d,w),

P(z|d); = n@d , (22)

which is also the same as in PLSA, in order to obtain @ which
maximizes Q(®). Obviously, it is not guaranteed that
H(O?) > H(O,_1). Then we apply the Newton-Raphson method
[34] to decrease R iteratively from H(@?) to successive H(Of"), for
m=1, 2,..., in hope of finding ©]" which satisfies H(O") > H(O;_1).
Given a function f{x), we adopt the updating formula of Newton-
Raphson in the general form:

m m—1 f/(X)

X' =Xx"" —ym,

(23)
where x™ is the new estimate of parameters based on the previous
estimate x™~ 1. It is easy to verify R > 0, thus R will decrease at each
updating step of the Newton-Raphson method. By taking the first
and second derivatives of R with respect to P(z|d;), we obtain the
specific Newton-Raphson updating equation as follows:

~ > 1 yP@dy

Pz|dy){" = P(z|dy)}*" = ,
n

(24)
where J; is the (ij)-th element of A, and 0 <y < 1 is the step size. It is
clear that )", _-P(z|d)* =1 always holds, and a relative small value
of y ensures P(z|d)>0. Once we obtain a O which satisfies
H(OF) = H(O,_1), we stop iterating Eq. (24). This completes the
M-step.

The E-step and M-step are alternated repeatedly until conver-
gence is reached. We summarized the procedure of our LDTM in
Algorithm 1.

Algorithm 1. Generalized EM for LDTM

Input:
e {P(w|d)} for all w and d
o the parameters K, k, /, 7, and convergence condition
threshold ¢

Output:
e O = {P(w|2),P(z|d)} for all w,z and d
Procedure:
1: compute the matrix A by Eq. (16)
2: (initialize ®¢: P(w|2)y = 1/M, P(z|d); = 1/K for all w, zand d
3: t<0
4: repeat
5: t—t+1
6: E-step: compute P(z|w,d) by Eq. (19) for all w, z and d
7: M-step:
8: compute P(w|z), by Eq. (21) for all w and z

9: compute P(z|d); by Eq. (22) for all z and d
10:  p(z|d)? — P(z|d), for all z and d

11: m<O0

12: repeat

13: m«m+1

14: compute P(z|d){" by Eq. (24) for all z and d

15:  until H(O]) > H(Oy)
16: until [H(O)-H(O;_1)] <&
17: return O,

3.3. Computational complexity

In this subsection, we provide a computational cost analysis of
LDTM in comparison to PLSA. We present operation counts

measured by flam [35], which is a compound operation consisting
of one addition and one multiplication. The document vector X is
usually sparse, and we use S to denote the sparseness of X, i.e., the
average number of non-zero features per document. The major
computational cost in LDTM include two parts:

1. Computation of the matrix A given by Eq. (16). This part first
requires k-nearest neighbors construction for all the N docu-
ments, which costs about O(SN? + kN?) flam. O(SN?) is used to
calculate the pairwise cosine similarity given by Eq. (7) and
O(kN?) is used to sort the pairwise similarity for finding
k-nearest neighbors for all documents. Secondly, given n;=k,
around O(k*S+k3) flam is required to compute each A; given
by Eq. (12) which mainly involves one matrix-matrix product
using O(kS) flam and one matrix inversion using O(k®) flam.
Since every k x k matrix A; contributes each element only once
to form the matrix A given by Eq. (16), there is at most kN
non-zero elements in A. Hence, to obtain the final A as in Eq.
(16), the matrix-matrix products need trivial O(k?) flam since
S; has only k non-zero elements and the summation need
O(k’N) flam. Therefore, this part in total requires around
O(SN? +kN? + k2SN +k3N) flam. We also need kN memory to
store the sparse matrix A.

2. Parameter estimation using generalized EM algorithm. In each
iteration, KSN posterior probabilities P(z|d,w) have to be
computed in the E-step as in Eq. (19) since there are SN
distinct observation pairs (d,w), each of which has K posterior
probabilities. We can easily verify that the E-step requires
O(KSN) flam for all P(z|d,w). In M-step, each P(z|d,w) contri-
butes to exactly one re-estimation both in Egs. (21) and (22).
Therefore, these two equations cost O(KSN) flam. The work
load of each Newton-Raphson updating is around O(k?KN)
flam since each row of A has approximately k*> non-zero
elements. If each M-step repeats an average of m iterations
at Newton-Raphson updating, then the cost is O(mk?KN) flam.
Assuming that LDTM converges after t iterations of the EM,
this part costs O(tKSN +tmk*KN) in total. We also have to use
SN+SKN+MK+KN memory to store P(w|d), P(z|d,w), P(w|z)
and P(z|d).

In conclusion, LDTM costs O[(S+Kk)N? +(k2S+k3 +tKS+
tmk*K)N] in total to find the optimum of the parameters. Since
k is usually set as a small value such as 5 or 10 (see our
experiments in Section 4), it is clear k < S and k3 < tmk®K in usual
cases. We thus can rewrite the computational cost of LDTM as
O[SN? + (k?S+tKS+tmk?’K)N]. We also require about (k2+S+
SK+K)N+MK memory to store all non-zero elements of the
matrix A and all parameters. For PLSA, it requires O(tKSN) flam
if the EM algorithm converges after t iterations and need
(S+SK+K)N+MK memory to store all the parameters. Table 1
summarizes our complexity analysis of LDTM, together with
PLSA.

4. Experiments

In this section, we first present the task of document modeling
to evaluate how well our LDTM algorithm gives topical repre-
sentations of documents. We then investigate discriminative
tasks, i.e., text clustering and web page classification to evaluate
how much discriminative power LDTM can provide, in order to
compare with PLSA [12], LDA [11] and LTM [13] in an objective
and quantitative way.

Throughout the experiments, we fix u =1,y =0.1, and empiri-
cally set the number of nearest neighbors k=5 and the value of
the regularization parameter 4= 1000.
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Table 1
Computational cost of LDTM and PLSA.

Algorithm Operations (flam) Memory
LDTM O[SN? + (K2S+ tKS+ tmk* K)N] (k2 +S+SK +K)N +MK
PLSA O(tKSN) (S+SK+K)N+MK

N: the number of documents.

M: the number of distinct words.

S: the average number of non-zero features per document.

K: the number of latent topics.

k: the number of nearest neighbors.

m: the average number of iterations in Newton-Raphson updating.
t: the number of iterations in EM.

4.1. Document modeling

Let us briefly discuss an illustrative example of hidden topic
modeling using our LDTM approach. We use a subset of the TREC
AP corpus! consisting of 2246 news articles with 10,473 distinct
words. For this dataset, a 100-topic LDTM model is trained using
GEM algorithm described in Algorithm 1.

We select an example article which is about tax payment of
farmers and illustrate the top words from the most probable
topics generating the document in Fig. 1 (top). Each color codes a
latent topic (Tax, Time, Farm or Office) that we named using a
representative word. As we have hoped, each listed topic-specific
word distribution can capture the semantics of the corresponding
topic to some extent. In the article text in Fig. 1 (bottom), each
word is coded as the same color as a topic if it is both among the
top 100 words of the topic and have the largest P(w|z) over the
four listed topics. With such illustration, one can easily identify
how the different topics are mixing in this article.

4.2. Text clustering

Clustering is one of the key tasks of text organization in the
unsupervised setting. The topic modeling methods reduce the
word feature of documents into lower-dimensional topic distri-
butions. Each hidden topic can be regarded as a cluster. The
estimated topic distribution P(z|d) can be used to infer which
cluster a document d belongs to. We conduct this experiment on
two datasets, the 20 Newsgroups corpus® and Yahoo! News
K-series.> The 20 Newsgroups contains 18,846 documents with
26,214 distinct words. The data are organized into 20 different
newsgroups (clusters), each of which corresponds to a distinct
topic. These clusters have varying sizes from 628 to 999. Yahoo!
News K-series has 2340 documents from 20 different categories,
with 8104 distinct words in total. The sizes of these categories in
this dataset are highly skewed, ranging from 9 to 494. The
skewness imposes challenges to the clustering task. The statistics
of the two datasets we investigate is summarized in Table 2.

We evaluate the clustering performance of our locally dis-
criminative topic model (LDTM) by comparing against all the
following methods:

K-means clustering algorithm based on word feature (Word);
probabilistic latent semantic analysis (PLSA) [12];

latent Dirichlet allocation (LDA) [11];

locally consistent topic model (LTM) [13];

spectral clustering based on normalized cut (NCut) [36,37];
nonnegative matrix factorization based clustering (NMF) [38].

! http://www.cs.princeton.edu/ ~blei/ida-c/
2 http://people.csail.mit.edu/jrennie/20Newsgroups/
3 http://www-users.cs.umn.edu/ ~ boley/ftp/PDDPdata/

“Tax” “Time” “Farm” “Office”
tax last cents office
money week futures  department
income month lower general
paid days farmers  investigation
pay april cent attorney
trust weeks higher justice
fund came tons government
taxes june corn meese
payments months drought law
estate monday  bushel assistant
land earlier grain allegations
amount three wheat case
federal failed prices washington
property dec crop staff
returns march  chicago officials

Farmers who received some government information late have been given

additional time to file their 1987 federal income-tax returns. The Internal
Revenue Service said Monday it was granting special relief to farmers who
did not receive Agriculture Department documents by the Feb. 15 scheduled
date. Those documents are Form 1099-G, which reflects certain government

payments, and Form 1099-A, on which acquisitions or abandonments of se-
cured property are reported. Farmers generally are not subject to penalties

for underpayments if they file their returns by March 1. The IRS concluded
that farmers who failed to receive required information from the Agriculture
Department by Feb. 15 might be unable to meet the March 1 deadline.

The IRS said farmers affected by the delay should attach to their tax return
a Form 2210F on which they have written their name and Social Security
number and, on the bottom right, the words “farm waiver.” With the ex-
tension, farmers will have to file returns and pay any tax owed by April 15,
the deadline for most taxpayers.

Fig. 1. An illustrative example article from the AP corpus for document modeling.
Each color codes a different latent topic. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Statistics of the datasets for clustering.

Data set # Samples # Features # Clusters # Size per cluster
20 Newsgroups 18,846 26,214 20 628-999
Yahoo! News K-series 2340 8104 20 9-494

The standard clustering metric accuracy (AC) is used to measure the
clustering performance [38]. Given a data point x;, let r; and s; be the
cluster label and the label provided by the data set, respectively. The
AC is defined as follows:

AC = Z?: 1 5(Si'map(ri)) ,

. (25)

where n is the total number of samples and Jd(x,y) is the delta
function that equals one if x=y and equals zero otherwise, and
map(r;) is the permutation mapping function that maps each cluster
label r; to the equivalent label from the data set. The best mapping
can be found by using the Kuhn-Munkres algorithm [39].

Tables 3 and 4 show the clustering accuracy on 20 Newsgroups
and Yahoo! News K-series, respectively. The evaluations were
conducted with the cluster numbers ranging from two to ten. For
each given cluster number p (from 2 to 10), 20 test runs were
conducted on different randomly chosen clusters and the average
performance as well as the standard deviation are reported. As we
can see, the PLSA, LDA models fail to achieve good performance
since they do not consider the geometric structure of the data
space. Among the four topic modeling algorithms (i.e., PLSA, LDA,
LTM and LDTM), our LDTM consistently outperforms its compe-
titors. This indicates LDTM is more capable of giving semantic
representations of documents and provide more discriminating
power. LDTM also demonstrates its advantage over other cluster-
ing methods NCut and NMF.


http://www.cs.princeton.edu/~blei/ida-c/
http://www.cs.princeton.edu/~blei/ida-c/
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http://www-users.cs.umn.edu/~boley/ftp/PDDPdata/
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Table 3
Clustering accuracy (mean + std-dev%) on 20 Newsgroups.

p Word PLSA LDA LTM LDTM NCut NMF

2 80.5 +14.2 79.1 +12.7 94.0 +5.1 959+25 96.7 +2.8 953 +2.0 94.7 +2.7
3 63.6 +12.6 73.5+14.0 87.9+9.6 90.4+8.9 914+9.2 87.9+12.9 85.8+11.0
4 539+73 69.2+11.7 85.5+7.8 88.5+64 90.6 + 5.7 87.6 +6.6 83.1+74
5 513 +5.6 69.3 +9.1 81.9+8.2 85.6 +8.7 884+74 86.0+6.8 843 +8.4
6 459+5.8 67.8+8.9 80.2+8.3 814+73 86.7 + 6.9 82.4+8.1 80.6+7.9
7 43.6+4.0 68.6 +5.5 774+7.7 79.5+84 83.0+73 80.7 +8.2 788 +7.7
8 423+2.6 64.5+6.2 73.0+8.3 773+94 80.6 +7.3 75.0+6.3 763 +6.4
9 419+41 66.9 + 8.4 73.1+5.0 733 +44 794 +5.1 71.9+6.3 73.0+6.7
10 375439 65.1+7.1 67.9+8.0 703 +8.3 746 +7.8 683 +8.2 68.2+7.2
Avg. 51.1 69.3 80.1 82.4 85.7 81.7 80.5

Table 4
Clustering accuracy (mean + std-dev%) on Yahoo! News K-series.

p Word PLSA LDA LTM LDTM NCut NMF

2 68.7 £14.4 58.0 +4.8 68.8 +14.3 81.5+15.7 84.1 +16.0 78.5+11.8 71.0+16.0
3 57.7+15.0 50.5+10.2 59.3+13.0 69.0 +14.5 73.8 + 14.1 67.1+11.9 67.2 +14.1
4 552 +11.6 426+7.7 64.5 +13.6 67.4+14.3 739+12.6 56.5+12.6 69.6 + 16.1
5 55.9+10.0 36.1+5.5 63.0+12.4 594+11.8 66.0 +15.6 55.8+85 63.8+12.8
6 50.5+6.9 33.8+6.0 51.74+95 62.6 +13.2 65.7 +12.5 54.6 £9.0 54.8 +10.5
7 49.0 +8.2 303 +4.2 523476 59.2 +14.5 61.4 +14.0 49.5+7.6 53.24+9.1
8 48.2+5.9 283 +3.1 51.9+8.7 579+12.0 62.8 +11.2 49.0+6.8 549 +6.4
9 43.6 +4.7 275+3.2 47.8+4.9 56.9 +10.9 59.9+11.0 49.0 +4.6 49.6 +5.4
10 43.6+4.8 25.8+3.3 493 + 6.6 53.2+9.0 56.5 +10.4 48.0+6.3 50.2+6.0
Avg. 52.5 37.0 56.5 63.0 67.1 56.4 59.4
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Fig. 2. The performance of LDTM vs. / and k on 20 Newsgroups.

We also study the influence of different choices for the
regularization parameter /4 and the neighborhood size k in LDTM.
Fig. 2 shows the curves for 20 Newsgroups, where accuracy values
are averaged over all given numbers of sampled clusters. It is
illustrated that LDTM achieves good performance as A varies from
500 to 10,000. The performance is stable with respect to k when k
is relative small (such as between 5 and 15), and the performance
drops as k continues to increase. This confirms the assumption
that the local learning method with a small neighborhood size
rather than the global learning (where k= +o0), is capable to
capture the geometric structure of the data in each distinct
cluster.

4.3. Web categorization on WebKB

A challenging aspect of the document classification problem is
the choice of features. Treating individual words as features yields

a rich but very large feature set. One way to reduce this feature
set is to use topic modeling approaches for dimensionality
reduction. For example, PLSA reduces the document to a fixed
set of real-valued features P(z|d). It is of interest to see how much
discriminating information we may lose in reducing the docu-
ment description to these parameters [11].

In this experiment, we investigate the web page categorization
task on the WebKB dataset.* We address a subset consisting of
pages from the four universities: Cornell, Texas, Washington and
Wisconsin. After removing empty web pages, html tags and words
that occur fewer than five documents, we obtain 4128 documents
with 9933 instinct words in total. These pages were manually
classified into the following categories: student, faculty, staff,

4 http://www-2.cs.cmu.edu/ ~webkb/
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department, course, project and other. The statistics are listed in
Table 5.

We address two tasks: (i) predicting which university pages
belongs to; (ii) predicting the category label of the pages. For task
(ii), we only address a subset consisting of the four populous

Table 5
The statistics of the subset of WebKB.

School Student Faculty Staff Dept. Course Project Other Total
Cornell 128 34 21 1 44 20 612 860
Texas 147 46 3 1 38 20 566 821
Washington 126 31 10 1 77 21 931 1197
Wisconsin 155 42 12 1 85 25 930 1250
Total 556 153 46 4 244 86 3039 4128
Table 6
Classification error rate (mean + std-dev%) on WebKB for task (i).
# Train Word PLSA LDA LT™M LDTM
5 66.9 +5.6 59.1 £3.9 57.8 +5.1 54.0+6.3 539+78
10 57.0+5.2 52.0+25 48.4+3.0 42.1+3.2 39.5+4.5
15 534+43 49.5+2.5 46.1 +£2.2 40.5+2.9 37.0+35
20 49.8 +4.3 47.1+2.1 434422 37.0+2.0 33.8+2.0
25 47.2+4.2 454 +2.1 419+2.1 353+23 31.6+22
30 45.5+4.7 440+1.8 404 +2.0 33.7+23 30.1+2.6
35 433425 42.7+2.0 39.1+19 324+1.7 289+2.0
40 432+33 41.7+2.1 385+19 315+1.8 284+1.7
45 41.6+3.0 40.6 + 1.5 37.2+1.6 30.7+1.3 275+14
50 41.0+3.1 40.0+1.6 363+1.1 29.1+1.5 26.1+13
Avg. 48.0 46.2 429 36.6 33.7
Table 7
Classification error rate (mean + std-dev%) on WebKB for task (ii).
# Train Word PLSA LDA LTM LDTM
4 521+116 412+95 369485 36.1+83 329+72
8 404 +8.2 338+49 308+37 28.7+45 28.5+43
12 363 +5.6 31.8+29 28.5+3.2 27.6+2.5 25.7+2.7
16 33.6+5.5 315+33 283+32 273425 248 +2.1
20 31.1+4.2 304+33 27.6+25 264+2.2 244+26
24 299+4.1 288 +2.7 269+1.7 263+24 23.8+2.0
28 29.2+35 289+1.8 265+24 256 +£2.3 235+2.0
32 27.6+33 27.7+1.9 25.7+1.9 247 +1.8 225+1.7
36 258+0.2 274 +1.8 259+20 243+19 22.6+1.6
40 245+2.7 26.8+1.9 255+19 237+1.7 22.1+1.5
Avg. 33.1 30.8 283 271 25.1
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entity-representing categories: student, faculty, course, project,
which has more balanced categories of data samples and contains
1039 documents in total. Note here we are only interested in how
much we can obtain from textual content of documents and no
link structure is considered. In both tasks, we first apply the topic
models for dimensionality reduction on the original word fea-
tures. Then support vector machine (SVM) trained on the result-
ing low-dimensional features is used for page classification. SVM
trained on the original word features is served as the baseline.

Tables 6 and 7 show the classification results for the two tasks,
respectively. Given a value of training size per university or
category, we randomly select the training data and this process
is repeated 50 times. The average performance with standard
deviations is recorded. As we can see, all the topic modeling
methods, i.e., PLSA, LDA, LTM, and LDTM, achieve better perfor-
mance than using the word features when the numbers of
training samples are small. Among the four compared topic
modeling approaches, LDTM is obviously the best. Especially,
LDTM yields substantial and consistent improvements of perfor-
mance over pure generative topic modeling approaches (i.e., PLSA
and LDA), which shows the effectiveness of our discriminative
learning scheme.

A key problem for all the topic modeling approaches is how to
estimate the number of hidden topics. Fig. 3 shows how the
performance of the four topic models varies with different
numbers of topics. In task (i), the performance of all the topic
models increases as the number of topics increases. In task (ii),
LDTM, LTM and LDA are less sensitive to the topic number in
comparison to PLSA. The performance of PLSA degrades with
larger numbers of topics, which may suggest the overfitting issue
of PLSA [11].

5. Conclusions and future work

We have introduced a novel probabilistic topic modeling
approach for semantic analysis of documents, called locally
discriminative topic model (LDTM), which takes into account
both generative and discriminative structures. Specifically, LDTM
uses local learning to explore the intrinsic geometric structure in
the data. As a result, LDTM can provide more discriminating
power than traditional topic modeling approaches, e.g., PLSA and
LDA. Comparing to LTM [13], LDTM automatically learns a locally
discriminative regularizer which avoids hand-crafting weight
setting. Experimental results on TREC AP, WebKB, Yahoo! K-series
and 20 Newsgroups data sets have demonstrated that our algo-
rithm can better capture the hidden topics of the documents and
therefore enhance the learning performance.

b
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Fig. 3. The classification performance of the four topic models vs. number of topics: (a) task (i) and (b) task (ii) on WebKB.
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For our approach, constructing the document neighborhood is
not limited to exploring the intrinsic word features of documents.
For example, we can use alternatives such as authorship, citation
and hyperlink information of documents, which is common in
real-world data and attracts much renewed interests in recent
years [40,5,8,9]. We will investigate this in the future work.
Moreover, extending the linear local learning to nonlinear Kernel
functions for topic modeling is another interesting direction.
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