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Appendix A Proof of Lemmas 1 and 3

Because the weighting method used in Algorithm 2 can be reduced to the modified AdaNormalHedgeg shown in Algorithm 1 by
keeping all experts active, Theorems 1 and 2 can also be reduced to Lemmas 1 and 3, respectively. Following the proof of Theorems 1
and 2, for any ¢ € [N], it is easy to verify that
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where ¢(]I]) = 31n w Because of x € AN multiplying both sides of (A1) by x(i) and summing over N, we have
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Similarly, multiplying both sides of (A2) by x(¢) and summing over N, we have
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where the second inequality is due to Jensens inequality.

Appendix B Proof of Lemmas 2 and 4

The regret bound of SOGD over the interval I has been analyzed by Orabona and Pal [33] for online linear optimization and further
refined by Zhang et al. [31] for online convex optimization with smooth loss functions. However, we need to bound the regret over
any subinterval [q, s] C I, which requires additional analysis. For the sake of completeness, we include the detailed proof.

For brevity, let f(erl = xtI — nfvft (xtI) and assume I = [t1, t2]. Because f; is convex function, for any x € X, we have
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For any [q,s] C I = [t1, t2], summing the inequalities of iterations during [q, s], we have
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where the second inequality is due to Assumption 2. To bound Zi:tl 0l |V fe(x!)||2, we introduce the following lemma.

Lemma 8. (Lemma 3.5 of Auer et al. [6]) Let a1, -+ ,ar and § be non-negative real numbers. Then
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where 0/\/6 =0.
According to the definition of 77{ shown in Algorithm 3 and Lemma 8, we have
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Substituting (B4) and a = D/+/2 into (B2), we have
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When Assumption 3 is satisfied, we have ||V f¢(x)||2 < G for any x € X and ¢. Combining with s —t; +1 < |I], it is easy to obtain
(15) in Lemma 2 from (B5).
To further utilize the smoothness shown in Assumption 4, we introduce the self-bounding property of smooth functions.

Lemma 9. (Lemma 3.1 of Srebro et al. [39]) For an H-smooth and nonnegative function f: X — R,
[Vf(x)|l2 < \/4H f(x),Vx € X. (B6)
According to Lemma 9, Assumptions 1 and 4, we have
V£33 < 4H f(x),Vx € X. (B7)

Combining (B5) and (B7), we have
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To replace Zf:tl fe(xD) with Zf,:tl ft(x), we use the following lemma.
Lemma 10. (Lemma 19 of Shalev-Shwartz [7]) Let z,b,c € R4. Then,
z—c< by =z —c< b +bve (B9)
Note that (B8) holds for any [g,s] C I = [t1, ¢2], which implies
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Applying Lemma 10 into the above inequality, we have
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Then, if thtl It (x{) thtl fi(x) = 0, from the above inequality, it is easy to obtain
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In the case ZZ;tll fe(xhy — E‘tl;tll fe(x) < 0, from (B8), we have
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Applying Lemma 10 again, we have
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Combining (B12) and (B15) and Zf:tl fe(x) = 3251 Iien fi(x), we complete the proof for (24) in Lemma 4.
Appendix C Proof of Lemma 7
Lemma 7 is derived from the proof of Lemma 2 of Luo and Schapire [41], and we include its proof for completeness.
Let h(s,c) = %ﬁz/c) = 25 oxp (%) Taking the derivative of F(s), we have
F'(s) =h(s+1,¢) + h(s — 1,¢) — 2h(s,c’) (C1)

where ¢ = 3a, ¢’ = 3(a—1). Then, applying Taylor expansion to h(s+1,c) and h(s — 1, ¢) around s, and h(s, c¢’) around ¢, we have
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To further analyze F’(s), we introduce the following two lemmas.
Lemma 11. (Lemma 3 of Luo and Schapire [41]) Let h(s,c) = 2% exp (%) The partial derivatives of h(s, c) satisfy
9% h(s,c) 52 k " g2l
oo w7 ) LY e G
" (c3)
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where ay ; and By, ; are recursively defined as
g1,y = akj—1+ (k+7+ Do j (ca)

Br+1,5 = 4Br,j—1 + (85 + 6)Brk,; + (27 + 3)(25 + 2)Br,j+1
with initial values agp,0 = fo,0 = 2.
, ke,
Lemma 12. (Lemma 4 of Luo and Schapire [41]) Let a,; and Bi,; be defined as in (C4). Then gkk’)J! < (d)k# holds for
allk > 0and j € {0, - ,k} when d > 3.
Substituting (C3) into (C2), we have

, 2\ oo ko 2541 Br.i 3)*ay,
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Note that exp (52/0) > 0 and ¢ = 3a > 0. Then, applying Lemma 12 with d = 3, we complete the proof.
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Appendix D Proof of Corollary 1

Because 71 < |I| < 72, we have gflogmil-1 ~ o < 1] € 72 < 2Meg 721 Therefore, we can find a j € {[log 17, [logm1 ] +
1,---,[log 2]} such that 2771 < |I] < 27.
Then, because of |I| < 27 there must be an integer k£ > 0 such that
k29 +1<qg<s<(k+2)-27 (D1)
where [k - 27 4+ 1, (k + 2) - 2] can be divided as two consecutive intervals

L=[k-274+1,(k+1)-2and I = [(k+1)-27 +1,(k+2) - 27]. (D2)

Due to j € {[log 1], [logT1]+1, -, [logT2]}, wehave I1 € T and Iz € Z. If [¢,s] C I,,,v € {1, 2}, according to (12) in Theorem 1
and (13) in Lemma 1, for any x € X, we have

Z fe(xe) — th(x)
t=q t=q
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e
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If ¢ € I and s € I3, similarly, due to (12) in Theorem 1 and (13) in Lemma 1, for any x € X, we have
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The proof is completed with |I1| = |I2] < 2|I].

Appendix E Proof of Corollary 2
We complete the proof by replacing (13) used in the proof of Corollary 1 with (15) in Lemma 2.

Appendix F Proof of Corollary 3

It is easy to verify 2M81111=1 < 1| L 2Mes 1T, For brevity, let j = [log |[I]], k = I_QT_JlJ and ¢/ = k-27 +1. We have

k-2l 41<qg< (k+1)-27 (F1)

where the first inequality is due to k < qQ;jl and the second inequality is due to k +1 = [-L] >

27 which implies ¢ €
[k-27 +1,(k+1)-27]. Combining with s — g+ 1 = |I| < 27, we further have

.
277

k22 41<qg<s<(k+2)-27 (F2)

which implies s € [k - 20 41, (k+1)- 29l or s € [(k+1)-27 4+ 1, (k + 2) - 27]. For brevity, let I; = [k-27 +1,(k 4+ 1) - 2/] and
I, =[(k+1)-27 +1,(k+2)-27]. Moreover, because of |I| € [r1, T2], we have

j = [log|I|] € {[log71],[logmi]+1,---,[log72]} (F3)

which implies that I; € Z and I, € Z.
For s € I, where v € {1,2}, according to (20) in Lemma 3, for any x € A", we have

Zﬂ[tezv] (ft(X?) - ft(x)) <28(| 1) + QJ 2¢(|1,1) Zﬂ[télv]ft(x)
=1 =1 (F4)
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If s € I, according to (19) in Theorem 2 and (20) in Lemma 3, for any x € AN we have
Z fe(xe) — Z Je(x)
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where the second inequality is due to (F4) and the last equality is due to |I;| = 2’ and the definitions of a(I) and b(I). Similarly,
if s € I, for any x € AN, we have

STRx) =D fex) = > (felxe) = £ )+ D (felxe) — fr(x))
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where the last inequality is due to Cauchy-Schwarz inequality.

Appendix G Proof of Corollary 4

Let j = [log|I|], k = qu;jlj,q/ =k-20 41,1 =[k-27+1,(k+1)-29) and Iy = [(k+ 1) - 29 + 1, (k + 2) - 27]. From the proof of
Corollary 3, we have I1,I> € Z,q € I; and s € I1 U I5. For s € I,, where v € {1, 2}, according to (24) in Lemma 4, for any x € X,
we have
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If s € I1, according to (19) in Theorem 2 and (24) in Lemma 4, for any x € X, we have
s s s s I s I s
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Then, combining the above inequality with (G1), we have
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where the last two inequalities are due to the definitions of b(I) and a@([).
Similarly, if s € I2, for any x € X', we have

SR =D ) = D (i) = HE) A+ D (fulx) = £1(3))
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where the last inequality is due to Cauchy-Schwarz inequality.

(G4)



	Proof of Lemmas 1 and 3
	Proof of Lemmas 2 and 4
	Proof of Lemma 7
	Proof of Corollary 1
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Corollary 4

