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Abstract—The goal of feature selection is to identify the most in-
formative features for compact representation, whereas the goal of
active learning is to select the most informative instances for pre-
diction. Previous studies separately address these two problems,
despite of the fact that selecting features and instances are dual
operations over a data matrix. In this paper, we consider the novel
problem of simultaneously selecting the most informative features
and instances and develop a solution from the perspective of op-
timum experimental design. That is, by using the selected features
as the new representation and the selected instances as training
data, the variance of the parameter estimate of a learning func-
tion can be minimized. Specifically, we propose a novel approach,
which is called Unified criterion for Feature and Instance selection
(UFI), to simultaneously identify the most informative features and
instances that minimize the trace of the parameter covariance ma-
trix. A greedy algorithm is introduced to efficiently solve the op-
timization problem. Experimental results on two benchmark data
sets demonstrate the effectiveness of our proposed method.

Index Terms—Active learning, experimental design, feature se-
lection, instance selection.

I. INTRODUCTION

I N MANY image processing applications, such as visual
recognition and image retrieval, there is usually large

amounts of data with high dimensionality. High-dimensional
data sets not only consume more storage and computa-
tion resources but also degrade the performance of learning
algorithms, which is typically referred to as the curse of di-
mensionality [1]. Feature selection addresses this issue by
selecting a subset of features to reduce the dimensionality.
Various studies have shown that a large amount of features
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can be removed without performance deterioration [2]–[9]. In
particular, feature selection has been successfully applied to
SAR image classification [10], object categorization [11], and
codeword selection [12], [13].

A dual problem of feature selection is active learning, which
selects the most informative instances for prediction. In statis-
tics, the problem of selecting instances to label is typically re-
ferred to as experimental design [14]. Active learning is well
motivated in many modern machine learning problems, where
unlabeled data are abundant but labels are expensive. Instead
of being a passive recipient of data to be processed, the active
learner queries the labels of the most informative data instances
and use them as its training data [15]. We expect that the ac-
tive learner can achieve high accuracy with as few labeled in-
stances as possible [16], which is verified by the recent studies
in content-based image retrieval [17]–[19] and in face recogni-
tion [20], [21]. Existing active learning algorithms can be cate-
gorized as either label independent or label dependent [22]. We
focus on the former one in this pape, and use instance selection
to emphasize this difference.

In general, data are represented by a matrix where one di-
mension denotes feature and the other denotes instance. Thus,
feature selection and instance selection are essential dual op-
erations over the data matrix. As a result, simultaneously per-
forming feature selection and instance selection can potentially
make use of the duality between feature space and instance
space. Notice that the same idea has been adopted in coclus-
tering, where features and instances are simultaneously clus-
tered [23]. From a practical viewpoint, it is also necessary to
consider these two operations simultaneously. Since our data
usually contain noise, if we separately perform the two opera-
tions, outliers may affect feature selection, and irrelevant fea-
tures may mislead instance selection. For example, maximum
variance is a feature selection method that prefers features with
large variance. It is sensitive to noise since the calculation of
variance can be significantly affected by outliers.

In this paper, we consider the novel problem of simultane-
ously selecting the most informative features and instances from
the data. Inspired from the techniques of optimum experimental
design (OED) [14], the most informative features and instances
are defined to be those minimizing the size of the parameter co-
variance matrix of a learning function. In statistics, there are
many different optimality criteria to measure the size of the co-
variance matrix. Here, we adopt the A-optimality [14]. Specifi-
cally, we propose a novel approach called Unified criterion for
Feature and Instance selection (UFI), which minimizes the trace
of the parameter covariance matrix. The UFI is unsupervised;
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therefore, it can be used as a tool for data preprocessing. If the
instances are fixed, the UFI reduces to an unsupervised feature
selection algorithm, and if the features are fixed, the UFI reduces
to A-optimal design (AOD) [14].

The rest of this paper is organized as follows. In Section II, we
give a brief review of feature selection and OED. Our proposed
UFI is introduced in Section III. In Section IV, we describe an
efficient sequential method to solve the optimization problem.
Experiments are presented in Section V. Finally, we provide
some concluding remarks in Section VI.

II. RELATED WORK

In this section, we give a brief review of the feature selection
and OED techniques.

A. Feature Selection

In the last decades, feature selection has been extensively
studied in both supervised and unsupervised settings.

Supervised feature selection techniques determine feature
relevance by the correlation between feature and class. Fisher
score, information gain [24], and relief [25] are several classical
supervised methods. These methods select features without
involving the learning algorithm that will ultimately be em-
ployed, and are usually referred to as filter methods. On the
other hand, the wrapper and embedded methods require one
predetermined learning algorithm and use its performance as
the selection criterion [8]. The wrapper methods [26] utilize
the learning algorithm as a black box to score feature subset
according to their predictive power. For example, the perfor-
mance of a support vector machine (SVM) is used to select the
most relevant features in [27]. The embedded methods perform
feature selection in the process of training and have received
much attention in recent years. The most famous embedded
methods include the least absolute shrinkage and selection op-
erator [28], least angle regression [29], and -norm regularized
SVMs [30], [31].

Due to the lack of labels, unsupervised feature selection is
much harder. The unsupervised filter methods usually select
features that best preserve the geometrical structure of the data
space [6], [7], [32]. The typical algorithms in this category
include maximum variance, unsupervised feature selection for
PCA [32], and the Laplacian score (LapScore) [7]. Maximum
variance selects features with the largest variances and unsu-
pervised feature selection for PCA selects a subset of features
that can best reconstruct other features. Different from these
two methods, LapScore [7] selects features that best reflect the
underlying manifold structure. For unsupervised wrapper and
embedded methods, clustering is a commonly used learning
algorithm to measure the quality of features [3], [33]–[37].
For example, [3] measures the cluster coherence by
analyzing the spectral properties of the affinity matrix. The
feature selection process is based on the optimization over a
least-squares objective function.

B. OED

Active learning aims to find the most informative instances
such that if they are labeled and used as training data, we can
most precisely predict the labels of the other instances. The

research literature on active learning is vast [16], [17], [19],
[38]–[45]. In statistics, the problem of selecting instances to
label is referred to as experimental design. The instance is
referred to as experiment, and its label is referred to as mea-
surement. The study of OED [14] is concerned with the design
of experiments, which can minimize the variance of a parame-
terized model.

OED [14], [46], [47] considers the problem of learning a
linear function from experiment–measurement
pairs , . Assume that ,
where are independent Gaussian random variables with zero
mean and constant variance . The most popular estimation
method is least squares, in which we minimize the residual sum
of squares (RSS):

RSS (1)

Let and . The optimal solu-
tion is given by

(2)

It can be proved that is an unbiased estimation of with the
following covariance matrix [1]:

Cov (3)

The goal of OED is to choose instances from the can-
didate set to minimize the size of the parameter covariance ma-
trix, which in turn minimizes the confidence region for the es-
timated parameter in some sense. Three of the most popular
design criteria are D-optimal design (DOD), AOD, and E-op-
timal design. DOD minimizes the determinant of Cov and
thus minimizes the volume of the confidence region. AOD min-
imizes the trace of Cov and thus minimizes the dimensions
of the enclosing box around the confidence region. E-optimal
design minimizes the largest eigenvalue of Cov and thus
minimizes the size of the major axis of the confidence region
[48].

Another closely related work is active feature selection [49],
which combines feature selection and instance selection in a se-
quential way. The difference is that in this paper, the two prob-
lems are simultaneously considered. We aim to develop a unified
framework within which feature selection and instance selection
can be simultaneously performed, in the hope that the learning
performance can be further improved.

III. UFI

In this section, we introduce the UFI. We begin with a formal
statement of the problem and the notations.

A. Problem

Let be a data matrix, whose columns correspond
to data instances and rows to features. Our goal is to simultane-
ously find most informative features and most informative
instances such that, with the selected features as the new rep-
resentation and the selected instances as the training data, the
prediction error of a linear function can be minimized.
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We use to denote the th column (instance) and to
denote the th row (feature) in . Let be the indexes
of the selected instances, and be the indexes of the se-
lected features. Let denote the
data matrix containing only the selected features. Similarly, we
denote the th column of as , which gives the new repre-
sentation of the th instance. Let
denote the data matrix containing only the selected instances
with new representations. Clearly, is a submatrix of

, and is a submatrix of .

B. Criterion

The central idea of our approach is to simultaneously select
those features and instances that can minimize the size of the
parameter covariance matrix and, in turn, minimize the predic-
tion error.

With the selected features as the new representation, we
consider the problem of learning a linear function as follows:

(4)

using and their labels as the
training data. In addition, we assume that the observations
are independent and have constant variance . The model
parameter can be estimated via regularized least squares
(RLS) (ridge regression) as follows:

(5)

where is the regularization parameter and denotes the
vector norm. The optimal solution of the earlier minimization
problem is

(6)

where is the identity matrix and . Since
Cov , the covariance matrix of becomes

Cov
(7)

Because the regularization parameter is usually set to be very
small, we can use the following approximation:

Cov (8)

In statistics, there are different design criteria to measure the
size of the covariance matrix, leading to different algorithms. In
this paper, we adopt the A-optimality that minimizes the trace
of the covariance matrix. However, other design criteria, such
as D-optimality and E-optimality, can also be applied in our
framework. The definition of our unified criterion is formally
stated in the following.

Definition: The UFI is defined as follows:

Tr

s.t. is a submatrix of (9)

IV. OPTIMIZATION

The optimization problem of the UFI is difficult due to its
combinatorial nature. In this section, we develop a greedy al-
gorithm to solve it. The optimization strategy is outlined as
follows.

• Initially, we assume that all the features and instances are
selected.

• Our sequential optimization approach iteratively removes
the least informative features and instances until we obtain

features and instances.
The detailed algorithmic procedure is presented in Algorithm

1. In our sequential optimization approach, parameter is re-
quired to specify the number of iterations. At each iteration, we
remove features and instances, which
are the least informative.

Let denote the data matrix at the current iteration,
which contains features and instances. We first show how
to remove least informative features from . Let be the
resulting matrix that can be obtained by solving the
following optimization problem:

Tr

s.t. contains rows of (10)

Following the Woodbury–Morrison formula [50], we have

Using the fact that Tr Tr , the objective function
of (10) can be rewritten as

Tr Tr

Tr

Thus, minimizing Tr is equivalent to minimizing
Tr . In the following, we discuss how to find the
optimal by sequentially removing rows of . Initially, we let

. Let denote the th row of ; thus, we have

The index of the first row to be deleted is given by

Tr (11)

The most expensive calculation in (11) is the matrix inverse
, which need to be computed for each

. We use the Woodbury–Morrison formula to avoid directly in-
verting a matrix. Let ; we have

Tr Tr

Tr



2382 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

Since Tr is a constant for all , problem (11) reduces to

(12)

Once the least informative feature, i.e., , is obtained, we up-
date matrix by removing the row vector , and the matrix

is updated according to the following formula:

(13)

We repeat this process until rows (i.e., features) have been
removed from matrix .

After obtaining , we need to remove columns from ,
which correspond to the least informative instances, finally
leading to a submatrix denoted by .
The parameter covariance matrix corresponding to the
features and instances is . Using the
A-optimality criterion, the optimal can be found by solving
the following optimization problem:

Tr

s.t. contains columns of (14)

As before, is initially set to be . Since ,
the index of the first least informative instance is given by

Tr (15)

As shown, (15) is essentially the same as (11); therefore, we
can apply the same computational method to find the optimal

. Define . Then, we have

Tr Tr

As a result, the problem (15) reduces to

(16)

Once the least informative instance is selected, we update by
removing the th column vector. In addition, the matrix is
updated as follows:

(17)

This process is repeated until columns (i.e., instances) have
been removed.

Algorithm 1 The sequential algorithm for UFI

Input: The data matrix , the number of features to be
selected , the number of instances to be selected , the ridge
regularizer , the number of iterations

Output: The submatrix , which contains the most informative
features and instances

1:

2:

3:

4: for to do

5: DelRow

6: DelColumn

7:

8: end for

9:

10:

11: return

12: procedure DelRow do

13:

14:

15: for to do

16:

17: remove the -th row of

18:

19: end for

20: return

21: end procedure

22: procedure DelColumn do

23:

24:

25: for to do

26:

27: remove the -th column of

28:

29: end for

30: return

31: end procedure
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Fig. 1. Comparisons with baselines that perform feature selection and active learning independently on the ORL face data set. (a) 300 features selected and
classified by RLS. (b) 500 features selected and classified by RLS. (c) 700 features selected and classified by RLS. (d) 300 features selected and classified by the
SVM. (e) 500 features selected and classified by SVM. (f) 700 features selected and classified by the SVM.

TABLE I
DESCRIPTION OF THE DATA SETS

V. EXPERIMENTS

A. Experimental Settings

In this section, we perform classification experiments to
demonstrate the effectiveness of the UFI. We select two bench-
mark data sets for our evaluation: 1) The ORL face data set,
which has been a benchmark in face recognition [51], [52];1

and 2) The COIL data set used in the semisupervised learning
book [53].2 Table I gives the statistics of the data sets used in
our experiment.

For each data set, UFI is applied to simultaneously select the
most informative features and instances. Then, the whole data
set is represented by the selected features. We use the selected
instances and their labels to train a classifier, which is used to
predict the labels of the unselected instances. The classification
accuracy is used to measure the performance. To handle multi-
class classification problem, we adopt the one-versus-all (OVA)
scheme. If the training data contain classes, the OVA scheme
trains binary classifiers, and each binary classifier separates
one class (positive) from all the other classes (negative). To clas-
sify a new testing instance, these classifiers are all applied, and
the class label is determined by the classifier whose output value

1http://www.zjucadcg.cn/dengcai/Data/data.html
2www.kyb.tuebingen.mpg.de/ssl-book/

is the largest. Since our algorithm is based on experimental de-
sign, RLS is used to train a linear classifier in our experiments.
We also report the classification results obtained by using the
classical SVM [54], [55] as the classifier.

For comparison, we design 12 baselines that are combina-
tions of state-of-the-art feature selection and active learning al-
gorithms. The feature selection algorithms that we used are the
LapScore [7] and [3]. The active learning algo-
rithms are AOD and DOD.3 In the first type of baselines, we
independently apply the feature selection and active learning al-
gorithms to select the most informative features and instances,
which results in four baselines. We denote this type of baselines
in the form of A B. In the second type of baselines, we per-
form feature selection and active learning in a sequential way,
which leads to the other eight baselines. We denote this type of
baselines in the form of , which means algorithm A is
performed before algorithm B.

B. Classification Results

Comparison With Baselines That Select Features and In-
stances Independently: Figs. 1 and 2 show the classification
results on the ORL and COIL data sets, respectively.

On the ORL data set, we apply UFI, LapScore AOD, Lap-
Score DOD, AOD, and DOD to select

features and instances.
The classification results obtained by using RLS as the classi-
fier are shown in Fig. 1(a)–(c), whereas the classification results
achieved by the SVM are shown in Fig. 1(d)–(f). As shown, our

3We developed two forward stepwise selection methods for solving the opti-
mization problems of AOD and DOD.



2384 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

Fig. 2. Comparisons with baselines that perform feature selection and active learning independently on the COIL data set. (a) 60 features selected and classified
by RLS. (b) 140 features selected and classified by RLS. (c) 220 features selected and classified by RLS. (d) 60 features selected and classified by the SVM. (e) 140
features selected and classified by the SVM. (f) 220 features selected and classified by the SVM.

Fig. 3. Comparisons with baselines that select features first on the ORL face data set. (a) 300 features selected and classified by RLS. (b) 500 features selected
and classified by RLS. (c) 700 features selected and classified by RLS. (d) 300 features selected and classified by the SVM. (e) 500 features selected and classified
by the SVM. (f) 700 features selected and classified by the SVM.

proposed UFI significantly outperforms the other four baselines
in all the cases.

Consider the case in Fig. 1(a), where all the algorithms se-
lect 300 features. The performance of the UFI with 60 instances
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Fig. 4. Comparisons with baselines that select instances first on the ORL face data set. (a) 300 features selected and classified by RLS. (b) 500 features selected
and classified by RLS. (c) 700 features selected and classified by RLS. (d) 300 feature selected and classified by the SVM. (e) 500 features selected and classified
by the SVM. (f) 700 features selected and classified by SVM.

selected is better than or comparable with that of the four base-
lines with 140 instances selected. Thus, for the purpose of active
learning, the labeling cost can be significantly reduced by using
the UFI. On the other hand, let us compare different algorithms
by focusing on the case that all of them select the same number
of instances, e.g.,100. In Fig. 1(a), we can see that the classi-
fication accuracy of the UFI with 100 instances and 300 fea-
tures selected is about 0.55. In Fig. 1(b), we can see that the best
baseline requires 500 features to achieve similar performance.
Therefore, our method is more capable of identifying the most
informative features.

On the COIL data set, we apply UFI, LapScore AOD, Lap-
Score DOD, AOD, and DOD to select

features and instances. As
indicated in Fig. 2, UFI performs the best in most cases. In
Fig. 2(a) and (d), we can see that when only a small number
of features is selected, the performance of all the algorithms is
not stable. In addition, the advantage of UFI is limited. How-
ever, as the number of features increases, the advantage of UFI
becomes more and more obvious.

Comparison With Baselines That Select Features and In-
stances Sequentially: In Figs. 3 and 4, we compare the UFI
with the second type of baselines on the ORL data set. From
the two figures, it is clear that the UFI has big advantages over
the second type of baselines. Comparing Fig. 1, 3, and 4, we
can see that there is no significant difference between the two
types of baselines. For brevity, we omit the results on the COIL
data set since similar behaviors are observed on this data set.

Summary: We summarize some important points in the
following.

• In general, the classification accuracy keeps on increasing
as the number of training examples increases. In some
cases, the performance may decrease when more training
data are added. This fluctuation is mainly because the
testing set changes as more data are used for training since
we evaluate the classification accuracy on the unselected
points.

• The classification accuracy does not necessary increases
when more features are selected, which can be shown in
Fig. 1(e) and (f). This observation again verifies that a large
amount of features can be removed without hurting the
performance.

• The overall classification accuracy achieved by the SVM is
slightly better than that achieved by RLS. Thus, although
our UFI is built on RLS, it works well with other types of
classifiers.

• In all the experiments, the UFI exhibits an obvious im-
provement over all the baselines. Thus, considering simul-
taneously feature and instance selection indeed improves
the learning performance.

C. The Features

Note that when all the instances are selected, the UFI becomes
a novel feature selection algorithm. It would be interesting to see
what features are selected by different algorithms. Since fea-
tures on faces are easy to visualize, we take the ORL face data
set as an example. In Fig. 5, we show the selected pixels on the
faces using UFI, , and LapScore. The unselected pixels are
removed from those faces. The first, second, third, fourth, and
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Fig. 5. Pixels selected by different algorithms on the ORL face data set. The first, second, third, fourth, and fifth lines in each subfigure correspond to the results
of 100, 300, 500, 700, and 900 pixels selected by each algorithm. (a) UFI. (b) � � �. (c) LapScore.

Fig. 6. Empirical studies of the greed algorithm on the two data sets. Here, we plot the value of the objective function and the condition number of the data matrix
versus the number of iterations. (a) ORL data set. (b) COIL data set.

fifth lines in each subfigure correspond to the results of 100, 300,
500, 700, and 900 pixels selected by each algorithm.

As shown, the pixels selected by the UFI distribute more
evenly on the whole face. In addition, the UFI tends to preserve
the pixels in the area of two eyes, nose, mouth, and face con-
tour. On the other hand, Both and LapScore first remove
the pixels in the area of two eyes, nose, and mouth. Clearly,
the features selected by UFI are more consistent with human
perception.

D. Analysis of the Optimization Algorithm

In the following, we conduct some empirical studies to an-
alyze the greedy algorithm developed in Section IV. We apply
the UFI to select 10% features and 10% instances on the two
data sets. The regularization parameter is set to , and
the number of iterations is set to 20.

In Fig. 6, we present how the value of the objective function
Tr and the condition number of the data matrix
change as the iterative algorithm proceeds. First, we can see that
the objective function decreases rapidly as the number of itera-
tions increases. Second, we observe that the condition number
of the data matrix also monotonically decreases. Thus, our
algorithm tends to make the data matrix well conditioned,

which is an important reason why the classifier trained on the
data matrix generated by the UFI has better performance.

VI. CONCLUSION

We have considered the novel problem of simultaneously
selecting the most informative features and instances. Based
on OED, we introduce a novel unified criterion for both fea-
ture selection and instance selection. By using the selected
instances and features as the training data, the trace of the
parameter covariance matrix and, in turn, the prediction error
can be minimized. Our empirical tests on two standard data sets
have demonstrated that we can benefit from simultaneously
considering these two problems.

Since we develop our algorithm under the framework of
OED, it is unsupervised. However, in practice, prior knowledge
such as class labels [17] or pairwise constraints [56] may be
available. In the future, we will investigate how to apply UFI
under supervised or semisupervised setting.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning, ser. Springer Series in Statistics. New York:
Springer-Verlag, 2009.



ZHANG et al.: UNIFIED FEATURE AND INSTANCE SELECTION FRAMEWORK USING OED 2387

[2] Z. Xu, R. Jin, J. Ye, M. R. Lyu, and I. King, “Non-monotonic fea-
ture selection,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp.
1145–1152.

[3] L. Wolf and A. Shashua, “Feature selection for unsupervised and su-
pervised inference: The emergence of sparsity in a weight-based ap-
proach,” J. Mach. Learn. Res., vol. 6, pp. 1855–1887, Dec. 2005.

[4] P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, no. 3, pp. 301–312, Mar. 2002.

[5] A. Destrero, C. De Mol, F. Odone, and A. Verri, “A sparsity-enforcing
method for learning face features,” IEEE Trans. Image Process., vol.
18, no. 1, pp. 188–201, Jan. 2009.

[6] Z. Zhao and H. Liu, “Spectral feature selection for supervised and un-
supervised learning,” in Proc. 24th Int. Conf. Mach. Learn., 2007, pp.
1151–1157.

[7] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
Adv. Neural Inf. Process. Syst., vol. 18, pp. 507–514, 2006.

[8] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[9] J. Zhao, K. Lu, and X. He, “Locality sensitive semi-supervised feature
selection,” Neurocomputing, vol. 71, no. 10–12, pp. 1842–1849, Jun.
2008.

[10] A. Jain and D. Zongker, “Feature selection: evaluation, application, and
small sample performance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 19, no. 2, pp. 153–158, Feb. 1997.

[11] D. Liu, G. Hua, P. A. Viola, and T. Chen, “Integrated feature selection
and higher-order spatial feature extraction for object categorization,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

[12] P. K. Mallapragada, R. Jin, and A. K. Jain, “Online visual vocabulary
pruning using pairwise constraints,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2010, pp. 3073–3080.

[13] L. Zhang, C. Chen, J. Bu, Z. Chen, S. Tan, and X. He, “Discriminative
codeword selection for image representation,” in Proc. 18th ACM Int.
Conf. Multimedia, 2010, pp. 173–182.

[14] A. Atkinson, A. Donev, and R. Tobias, Optimum Experimental De-
signs, with SAS. New York: Oxford Univ. Press, 2007.

[15] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” J. Artif. Intell. Res., vol. 4, no. 1, pp. 129–145, Jan.
1996.

[16] B. Settles, Active learning literature survey Univ. Wisconsin–Madison,
Dept. Comput. Sci., Madison, WI, Tech. Rep. 1648, 2009.

[17] S. Tong and E. Chang, “Support vector machine active learning for
image retrieval,” in Proc. 9th ACM Int. Conf. Multimedia, 2001, pp.
107–118.

[18] L. Zhang, C. Chen, W. Chen, J. Bu, D. Cai, and X. He, “Convex exper-
imental design using manifold structure for image retrieval,” in Proc.
17th ACM Int. Conf. Multimedia, 2009, pp. 45–54.

[19] X. Tian, D. Tao, X.-S. Hua, and X. Wu, “Active reranking for web
image search,” IEEE Trans. Image Process., vol. 19, no. 3, pp. 805–820,
Mar. 2010.

[20] A. Kapoor, G. Hua, A. Akbarzadeh, and S. Baker, “Which faces to tag:
Adding prior constraints into active learning,” in Proc. 12th IEEE Int.
Conf. Comput. Vis., 2009, pp. 1058–1065.

[21] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang, “Active
learning based on locally linear reconstruction,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 10, pp. 2026–2038, Oct. 2011.

[22] K. Yu, S. Zhu, W. Xu, and Y. Gong, “Non-greedy active learning for
text categorization using convex transductive experimental design,” in
Proc. 31st Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval,
2008, pp. 635–642.

[23] I. S. Dhillon, “Co-clustering documents and words using bipartite spec-
tral graph partitioning,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2001, pp. 269–274.

[24] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Proc. 14th Int. Conf. Mach. Learn., 1997, pp.
412–420.

[25] K. Kira and L. A. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” in Proc. 10th Nat. Conf. Artif. Intell.,
1992, pp. 129–134.

[26] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, no. 1/2, pp. 273–324, Dec. 1997.

[27] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V.
Vapnik, “Feature selection for SVMs,” Adv. Neural Inf. Process. Syst.,
vol. 13, pp. 668–674, 2001.

[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Roy. Statist. Soc., Ser. B, Methodological, vol. 58, no. 1, pp. 267–288,
1996.

[29] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Ann. Statist., vol. 32, no. 2, pp. 407–451, Apr. 2004.

[30] G. Fung and O. L. Mangasarian, “Data selection for support vector ma-
chine classifiers,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2000, pp. 64–70.

[31] T. Helleputte and P. Dupont, “Partially supervised feature selection
with regularized linear models,” in Proc. 26th Annu. Int. Conf. Mach.
Learn., 2009, pp. 409–416.

[32] C. Boutsidis, M. W. Mahoney, and P. Drineas, “Unsupervised fea-
ture selection for principal components analysis,” in Proc. 14th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008,
pp. 61–69.

[33] C. Boutsidis, M. Mahoney, and P. Drineas, “Unsupervised feature se-
lection for the �-means clustering problem,” in Proc. Adv. Neural Inf.
Process. Syst., 2009, vol. 22, pp. 153–161.

[34] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised
learning,” J. Mach. Learn. Res., vol. 5, pp. 845–889, Dec. 2004.

[35] M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, “Simultaneous
feature selection and clustering using mixture models,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154–1166, Sep.
2004.

[36] V. Roth and T. Lange, “Feature selection in clustering problems,” in
Proc. Adv. Neural Inf. Process. Syst., 2004, vol. 16, pp. 473–480.

[37] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proc. 16th ACM SIGKDD, 2010, pp. 333–342.

[38] F. R. Bach, B. Schölkopf, J. Platt, and T. Hoffman, Eds., “Active
learning for misspecified generalized linear models,” in Proc. Adv.
Neural Inf. Process. Syst., 2007, vol. 19, pp. 65–72.

[39] P. Gosselin and M. Cord, “Active learning methods for interactive
image retrieval,” IEEE Trans. Image Process., vol. 17, no. 7, pp.
1200–1211, Jul. 2008.

[40] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning
and semi-supervised learning using gaussian fields and harmonic func-
tions,” in Proc. ICML—Workshop on Continuum Labeled to Unlabeled
Data in Machine Learning and Data Mining, 2003, pp. 58–65.

[41] N. Roy and A. McCallum, “Toward optimal active learning through
sampling estimation of error reduction,” in Proc. 18th Int. Conf. Ma-
chine Learn., 2001, pp. 441–448.

[42] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in
Proc. 5th Annu. Workshop Comput. Learn. Theory, 1992, pp. 287–294.

[43] Y. Guo and R. Greiner, “Optimistic active learning using mutual infor-
mation,” in Proc. 20th Int. Joint Conf. Artif. Intell., Hyderabad, India,
2007, pp. 823–829.

[44] X. He, W. Min, D. Cai, and K. Zhou, “Laplacian optimal design for
image retrieval,” in Proc. 30th Annu. Int. ACM SIGIR Conf. Res. De-
velop. Inf. Retrieval, 2007, pp. 119–126.

[45] X. He, “Laplacian regularized D-optimal design for active learning and
its application to image retrieval,” IEEE Trans. Image Process., vol. 19,
no. 1, pp. 254–263, Jan. 2010.

[46] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[47] K. Yu, J. Bi, and V. Tresp, “Active learning via transductive exper-
imental design,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp.
1081–1088.

[48] S. P. Asprey and S. Macchietto, “Designing robust optimal dynamic ex-
periments,” J. Process Control, vol. 12, no. 4, pp. 545–556, Jun. 2002.

[49] H. Liu, H. Motoda, and L. Yu, “A selective sampling approach to active
feature selection,” Artif. Intell., vol. 159, no. 1/2, pp. 49–74, Nov. 2004.

[50] G. Strang, Introduction to Linear Algebra, 3rd ed. Wellesley, MA:
Wellesley-Cambridge Press, 2003.

[51] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition
using Laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
27, no. 3, pp. 328–340, Mar. 2005.

[52] D. Cai, X. He, and J. Han, Using graph model for face analysis Dept.
Comput. Sci., UIUC, Champaign, IL, Tech. Rep. UIUCDCS-R-2005-
2636, 2005.

[53] , O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning. Cambridge, MA: MIT Press, 2006.

[54] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp.
121–167, Jun. 1998.

[55] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector
Machines 2001 [Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/
libsvm.

[56] T. Yang, R. Jin, and A. K. Jain, “Learning from noisy side informa-
tion by generalized maximum entropy model,” in Proc. 27th Int. Conf.
Mach. Learn., 2010, pp. 1199–1206.



2388 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

Lijun Zhang (S’10) received the B.S. degree
in computer science from Zhejiang University,
Hangzhou, China, in 2007. He is currently working
toward the Ph.D. degree in computer science with
Zheijiang University.

His research interests include machine learning,
information retrieval, and data mining.

Chun Chen (M’06) received the B.S. degree in math-
ematics from Xiamen University, Xiamen, China, in
1981, and the M.S. and Ph.D. degrees in computer
science from Zhejiang University, Hangzhou, China,
in 1984 and 1990, respectively.

He is a Professor with the College of Computer
Science, Zhejiang University. His research interests
include information retrieval, data mining, com-
puter vision, computer graphics, and embedded
technology.

Jiajun Bu (M’06) received the B.S. and Ph.D. de-
grees in computer science from Zhejiang University,
Hangzhou, China, in 1995 and 2000, respectively.

He is a Professor with the College of Computer
Science, Zhejiang University. His research interests
include embedded system, data mining, information
retrieval, and mobile database.

Xiaofei He (SM’10) received the B.S. degree
in computer science from Zhejiang University,
Hangzhou, China, in 2000 and the Ph.D. degree in
computer science from the University of Chicago,
Chicago, in 2005.

He is a Professor with the State Key Laboratory of
CAD&CG, Zhejiang University, Hangzhou, China.
Prior to joining the Zhejiang University in 2007, he
was a Research Scientist with Yahoo! Research Labs,
Burbank, CA. His research interests include machine
learning, information retrieval, and computer vision.


