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Random Projections for Classification:
A Recovery Approach

Lijun Zhang, Member, IEEE, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, and Shenghuo Zhu

Abstract— Random projection has been widely used in
data classification. It maps high-dimensional data into a
low-dimensional subspace in order to reduce the computational
cost in solving the related optimization problem. While previous
studies are focused on analyzing the classification performance in
the low-dimensional space, in this paper, we consider the recovery
problem, i.e., how to accurately recover the optimal solution
to the original high-dimensional optimization problem based
on the solution learned after random projection. We present a
simple algorithm, termed dual random projection, which uses
the dual solution of the low-dimensional optimization problem
to recover the optimal solution to the original problem. Our the-
oretical analysis shows that with a high probability, the proposed
algorithm is able to accurately recover the optimal solution to
the original problem, provided that the data matrix is (approx-
imately) low-rank and/or optimal solution is (approximately)
sparse. We further show that the proposed algorithm can be
applied iteratively to reducing the recovery error exponentially.

Index Terms— Random projection, primal solution, dual
solution, low-rank, sparse.

I. INTRODUCTION

RANDOM projection is a simple yet powerful dimen-
sionality reduction technique that projects the origi-

nal high-dimensional data onto a low-dimensional subspace
using a random matrix [2], [3]. It has been successfully
applied to many machine learning tasks, including classifi-
cation [4]–[7], regression [8], clustering [9], [10], manifold
learning [11], [12], and information retrieval [13].

In this work, we focus on random projection for
classification. While previous studies were devoted to
analyzing the classification performance after random
projection [14]–[17], we examine the effect of random pro-
jection from a very different aspect. In particular, we are
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interested in accurately recovering the optimal solution to the
original high-dimensional optimization problem using random
projection. This is particularly useful for feature selection [18],
where important features are often selected based on their
weights in the linear prediction model learned from the
training data. In order to ensure that similar features are
selected, the prediction model based on random projection
needs to be close to the model obtained by solving the original
optimization problem directly. We emphasize that this paper
is focused on exploring random projection for the recovery of
the optimal solution that minimizes the empirical risk, and the
analysis of its generalization error will be left as future work.

The proposed Dual Random Projection for recovering the
optimal solution consists of two steps. In the first step,
similar to previous studies, we apply random projection
to reducing the dimensionality of data, and then solve a
low-dimensional optimization problem in the projected space.
The key innovation of the proposed algorithm comes from the
second step, in which we compute the dual solution of the
low-dimensional optimization problem from its primal
solution, and use it to recover the optimal solution to the
original high-dimensional optimization problem. Our analy-
sis reveals that under the assumption that the data matrix
is (approximately) low-rank and/or the optimal solution is
(approximately) sparse, with a high probability, we are able
to recover the optimal solution with a small error.

One nice property of our algorithm is that it is equipped
with a relative, instead of an additive, bound for the recovery
error. As a result, the recovery error can be reduced expo-
nentially when applying the proposed algorithm iteratively.
In other words, to recover the optimal solution with a relative
error α ≤ 1, the number of iterations required is O(log 1/α).

The rest of the paper is arranged as follows. In Section II,
we describe the problem of recovering optimal solution by
random projection, the theme of this work. Section III intro-
duces the dual random projection approach for recovering
the optimal solution. We show the main theoretical results
for the proposed algorithm in Section IV. Section V presents
the proofs of the theorems stated in Section IV. An iterative
extension of dual random projection is discussed in Section VI.
In Section VII, we analyze the numerical complexities of our
algorithms and report the experimental results. Section VIII
concludes with future directions of this work.

II. THE PROBLEM OF RECOVERING OPTIMAL SOLUTION

BY RANDOM PROJECTION

Let (xi , yi ), i = 1, . . . , n be a set of training examples,
where xi ∈ R

d is a vector of d dimensions and yi ∈ {−1,+1}
is the binary class assignment for xi . Let X = [x1, . . . , xn]
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and y = [y1, . . . , yn]� include the input patterns and class
assignments of all training examples. Typically, a linear clas-
sifier w ∈ R

d is learned by solving the following regularized
optimization problem:

min
w∈Rd

λ

2
‖w‖2 + 1

n

n∑

i=1

�(yi x�
i w) (1)

where ‖ · ‖ stands for the �2 norm of vectors, and �(z) is a
differentiable convex loss function. In this study, we assume
�(·) is a γ -smooth loss function, i.e.,

|�′(z) − �′(z′)| ≤ γ |z − z′|.
By writing �(·) in its convex conjugate form, i.e.,

�(z) = max
α∈�

αz − �∗(α),

where �∗(·) is the convex conjugate of �(·) and � is the domain
of the dual variable, we have the dual optimization problem:

max
α∈�n

−
n∑

i=1

�∗(αi ) − 1

2λn
(α ◦ y)�X� X (α ◦ y) (2)

where α ◦ y stands for the element-wise product between
two vectors (i.e., the Hadamard product) and α =
[α1, . . . , αn]�. In the rest of the paper, we will denote by
w∗ ∈ R

d the optimal primal solution to (1), and by α∗ ∈ R
n

the optimal dual solution to (2). The following proposition
connects w∗ and α∗.

Proposition 1: We have

w∗ = − 1

λn
X (α∗ ◦ y),

[α∗]i = �′(yi x�
i w∗

)
, i = 1, . . . , n.

The proof of Proposition 1 is provided in the Appendix A.
When the dimensionality d is high and the number of

training examples n is large, solving either the primal problem
in (1) or the dual problem in (2) can be computationally
expensive. To reduce the computational cost, one common
approach is to significantly reduce the dimensionality by
random projection [4]. Let A ∈ R

d×m be a Gaussian random
matrix, where each entry Ai, j is independently drawn from a
Gaussian distribution N (0, 1/m) and m is significantly smaller
than d . Using the random matrix A, we generate a new data
representation for input data points by

x̂i = A�xi , i = 1, . . . , n

and solve the following low-dimensional optimization
problem:

min
z∈Rm

λ

2
‖z‖2 + 1

n

n∑

i=1

�(yi z�x̂i ). (3)

The corresponding dual problem is

max
α∈�n

−
n∑

i=1

�∗(αi ) − 1

2λn
(α ◦ y)�X� AA�X (α ◦ y). (4)

Intuitively, the choice of the Gaussian matrix A is justi-
fied by the fact that E[̂x�

i x̂ j ] = x�
i E

[
AA�] x j = x�

i x j ,

i.e., the expectation of the dot-product between any two exam-
ples in the projected space is equal to the dot-product in the
original space. Let z∗ ∈ R

m denote the optimal primal solution
to the low-dimensional problem (3), and α̂∗ ∈ R

n denote the
optimal dual solution to (4). Similar to Proposition 1, we have
the following relationship between z∗ and α̂∗:

z∗ = − 1

λn
A�X (̂α∗ ◦ y),

[̂α∗]i = �′(yi x̂�
i z∗

)
, i = 1, . . . , n. (5)

Given the optimal solution z∗ ∈ R
m , the data point x ∈ R

d

is classified by x� Az∗, which is equivalent to defining a new
solution ŵ ∈ R

d as

ŵ = Az∗, (6)

which we refer to as the naive solution. The classification per-
formance of ŵ has been examined by many studies [14]–[17].
The general conclusion is that when most of the original data
are linearly separable with a large margin, the classification
error for ŵ will be small.

Although these studies show that ŵ can achieve a small
classification error under appropriate assumptions, it is unclear
whether ŵ is a good approximation to the optimal solution w∗.
To answer this question, we need the [18, Proposition 4.7].

Proposition 2 (Distance of a Random Subspace to a Fixed
Point [19]): Let E ∈ Gd,m be a random subspace (codim
E = d − m). Let x be an unit vector, which is arbitrary but
fixed. Then

Pr

(
dist(x, E) ≤ ε

√
d − m

d

)
≤ (cε)d−m for any ε > 0,

where c is an universal constant.
Because ŵ lies in a random subspace spanned by the column

vectors in A, according to Proposition 2, we have, with a
probability at least 1 − 2−d+m ,

‖ŵ − w∗‖ ≥ 1

2c

√
d − m

d
‖w∗‖,

implying that ŵ is a BAD approximation to the optimal
solution w∗. In fact, Proposition 2 indicates that with a high
probability, any solution lies in the random subspace spanned
by the column vectors in A will be a bad approximation to w∗.
This observation leads to an interesting question: is it possible
to accurately recover the optimal solution w∗ based on z∗, the
optimal solution to the low-dimensional optimization problem?

Related Work Many studies are devoted to the theoretical
analysis of random projection ([5] and references therein).
An important property of random projection is that according
to the Johnson and Lindenstrauss lemma [20]–[22], it is able
to preserve the pairwise distance for a set of n data points
provided the number of random projections k is sufficiently
large (i.e., k = �(ε−2 log n), where ε is the error in approxi-
mating pairwise distance). Besides distance, random projection
is also shown to preserve inner product [23], volumes and
distance to affine spaces [24], under appropriate conditions.
In the context of classification, it is natural to ask whether the
classification margin can be preserved after random projection.
For a distribution P that is linearly separable by margin γ ,
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Balcan et al. show that with a probability at least 1− δ, a ran-
dom projection of P down to R

k , where k = �( 1
γ 2 log 1

εδ ), is
linearly separable with an error at most ε at margin γ /2 [15].
A similar result is shown for finite samples [16]. Besides the
additive error bounds shown in [15] and [16], Paul et al. show
that the classification margin is preserved within a relative
error bound after random projection [17]. Unlike the previ-
ous works of random projection for classification that focus
on examining the preservation of classification margin and
the generalization error, we focus on recovering the optimal
solution after random projection.

III. DUAL RANDOM PROJECTION

To motivate our algorithm, let us revisit the optimal primal
solution w∗ to (1), which is given in Proposition 1, i.e.,

w∗ = − 1

λn
X (α∗ ◦ y), (7)

where α∗ is the optimal solution to the dual problem (2).
Using random projections, we have the dual problem given
in (4). Comparing (4) with the dual problem in (2), the only
difference is that the matrix X� X in (2) is replaced with
X� AA�X in (4). Recall that E[AA�] = I . Thus, when
the number of random projections m is sufficiently large,
X� AA�X will be close to X� X and we would expect α̂∗ to
be close to α∗. As a result, we can use α̂∗ to approximate α∗
in (7), which yields a recovered prediction model given by:

w̃ = − 1

λn
X (̂α∗ ◦ y) = −

n∑

i=1

1

λn
yi [̂α∗]i xi . (8)

Note that the key difference between the recovered solu-
tion w̃ and the naive solution ŵ is that ŵ = Az∗ maps the opti-
mal primal solution z∗ ∈ R

m to the original space R
d via the

random matrix A, while w̃ ∝ X (̂α∗◦y) is computed directly in
the original space R

d using the approximate dual solution α̂∗.
As a result, the naive solution ŵ lies in the subspace spanned
by the column vectors in the random matrix A (denoted by A),
while the recovered solution w̃ lies in the subspace that also
contains the optimal solution w∗, i,e., the subspace spanned
by columns of X (denoted by X ). It is the mismatch between
spaces A and X that leads to the large approximation error
for ŵ.

Since according to Proposition 1 we can construct the dual
solution α̂∗ from the primal solution z∗, we do not have
to solve the dual problem in (4) to obtain α̂∗. Instead, we
can solve the low-dimensional optimization problem in (3) to
obtain z∗ and construct α̂∗ from z∗. Table I shows the details of
the proposed dual random projection method. Note that dual
variables have been widely used in the analysis of convex
optimization [25], [26] and online learning [27], the main
difference is that here dual variables are used in conjunction
with random projection for recovering the optimal solution.

IV. MAIN RESULTS

In this section, we will bound the recovery error ‖w∗ − w̃‖
of dual random projection in two different scenarios, where
each scenario specifies assumptions about the data matrix X

TABLE I

A DUAL RANDOM PROJECTION APPROACH

and the optimal solution w∗. In the first scenario, we assume
that (i) the data matrix X is approximately low-rank, and
(ii) the optimal solution w∗ can be well approximated by
a linear combination of the top eigenvectors of X . In the
second scenario, we consider the case when (i) w∗ can be
approximated by a sparse vector with a support set S, and
(ii) X� X can be well approximated by X�

S XS , where XS
includes the rows of X in S.

A. Bounding ‖w∗ − w̃‖ When X Is Approximately Low-Rank

We first consider the case when X is low-rank, and then
extend the result to the case when X is of full rank but can
be well approximated by a low-rank matrix.

We denote by r the rank of matrix X . The following theorem
shows that the recovery error is small provided that (i) X is
low-rank (i.e., r � min(d, n)), and (ii) the number of random
projections is sufficiently large.

Theorem 1: Let w∗ be the optimal solution to (1) and w̃ be
the solution recovered by dual random projection. Suppose

m ≥ 2(r + 1) log
2r

δ
.

Then, with a probability at least 1 − δ, we have

‖w̃ − w∗‖ ≤ ε

1 − ε
‖w∗‖,

where

ε = 2

√
2(r + 1)

m
log

2r

δ
.

As indicated by Theorem 1, the recovery error ‖w̃ − w∗‖
is bounded by Õ

(√
r
m

)
‖w∗‖ provided m ≥ Õ(r log r),

indicating a small recovery error when r � d .
Next, we proceed to analyze the case when X is of full rank

but can be well approximated by a low-rank matrix. Let the
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singular value decomposition (SVD) of X be

X =
d∑

i=1

λi ui v�
i ,

where {λ1, . . . , λd } are singular values in descending order,
ui ∈ R

d and vi ∈ R
n are the left and right singular vectors

associated with singular value λi . To capture that X can be
well approximated by a matrix of rank r , we assume that λr+1,
the r + 1-th eigenvalue of X , is small. In addition, we
assume that w∗, the optimal solution, can be well approx-
imated by a linear combination of the first r left singular
vectors of X . More specifically, let Ur̄ = [ur+1, . . . , ud ] ∈
R

d×(d−r) includes the smallest d−r left singular vectors of X .
We assume

∥∥∥U �̄
r w∗

∥∥∥ ≤ ρ‖w∗‖ (9)

holds for some constant ρ � 1. Note that when the rank of
X is r , we will have ρ = 0, a special case of the condition
given in (9). We emphasize that the condition in (9) is critical
to our analysis. This is because, the main power of random
projection is to capture the top eigenspace of X , and any
random projection based method will fail if most of w∗ lies
outsides the subspace spanned by the top eigenvectors of X .

Theorem 2: Suppose

m ≥ max

(
32(r + 1), 4 log

2m

δ
,

784γ dλ2
r+1

9λn

)
log

d

δ
, (10)

d ≥ max

(
r + 1 + m

2
, r + 2 log

2m

δ

)
. (11)

Then, with a probability at least 1 − 4δ, we have

‖w̃ − w∗‖ ≤ 2

√√√√2

(
1

1 − ε
+ γ λ2

r+1

λn

)

·
√√√√
(

ε2 + τ 2ρ2

1 − ε
+ γ λ2

r+1(τ
2 + υ2ρ2)

λn

)
‖w∗‖,

where ρ is given in (9), ε, τ , and υ are given as

ε = 2

√
2(r + 1)

m
log

2r

δ
, τ = 7

3

√
2(d − r)

m
log

d

δ
,

υ = 4(d − r + 1)

m
log

2(d − r)

δ
.

To simplify the result in Theorem 2, we consider the the
case when the r + 1-th singular value of X is small. Since
the average eigenvalue of X X� is O(n/d), it is reasonable
to assume λr+1 ≤ O(

√
n/d) when λr+1 is considered to be

small. The following corollary provides a simplified version
of Theorem 2 when X can be well approximated by a matrix
of rank r .

Corollary 3: Assume λr+1 ≤ O
(√

λn
γ d

)
, m ≥ Õ(r log d),

and d obeys the condition in (11). With a high probability,
we have

‖w̃ − w∗‖ ≤ Õ

(√
r

m
+ ρ

√
d

m

)
‖w∗‖.

Furthermore, if ρ ≤ O(
√

r
d ), with a high probability, we have

‖w̃ − w∗‖ ≤ Õ

(√
r

m

)
‖w∗‖,

similar to the result in Theorem 1.
As indicated by Corollary 3, the recovery error of the

proposed dual random projection is Õ(
√

r/m) if (i) X can be
well approximated by a matrix of rank r , and (ii) the optimal
solution w∗ can be well approximated by a linear combination
of the first r singular vectors of X .

B. Bounding ‖w̃ − w∗‖ When w∗ Is Approximately Sparse

Similar to the previous subsection, we first consider the
special case when the optimal solution is exactly sparse
and then extend the result to the general case when w∗ is
approximately sparse.

Let S be the support set for w∗ that includes the indices
for the non-zero entries in w∗, and let s = |S| be the
number of nonzero elements in w∗. We denote by XS ∈ R

s×n

the sub-matrix of X that includes the rows of X in S, and
XS ∈ R

(d−s)×n the sub-matrix that includes the rows of X in
S = [d] \ S. In this case, we assume that the support set S
includes the most “important” coordinates in matrix X . More
specifically, we assume

η := ‖X� X − X�
S XS‖2 = ‖XS X�

S‖2 (12)

is bounded by a small constant, where ‖ · ‖2 stands for the
spectral norm of matrix. We note that the assumption that
η is small indicates that X X� can be well approximated
by a matrix of rank s, which implies that X can be well
approximated by a low-rank matrix.

We have the following theorem to bound the recovery error.
Theorem 4: Suppose

m ≥ max

(
32(s + 1), 4 log

2m

δ
,

784γ dη

9λn

)
log

d

δ
, (13)

d ≥ max

(
s + 2 log

2m

δ
, 2s

)
. (14)

Then, with a probability at least 1 − 3δ, we have

‖w̃ − w∗‖ ≤ 2

√(
1

1 − ε
+ γ η

λn

)(
ε2

1 − ε
+ γ ητ 2

λn

)
‖w∗‖,

where ε and τ are given by

ε = 2

√
2(s + 1)

m
log

2s

δ
, and τ = 7

3

√
2(d − s)

m
log

d

δ
.

The following corollary provides a simplified result for
small η.

Corollary 5: Assume η ≤ O( λn
γ d ), m ≥ Õ(s log d), and d

obeys the condition in (14). With a high probability, we have

‖w̃ − w∗‖ ≤ Õ

(√
s

m

)
‖w∗‖,

similar to the result in Theorem 1.
We now proceed to bound the general case, i.e., when w∗

can be approximated by a sparse vector. Let S include the
indices of the first s entries in w∗ with the largest magnitude.
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We denote by [w∗]S ∈ R
s the sub-vector of w∗ that includes

the entries of w∗ in S, and [w∗]S ∈ R
d−s the sub-vector that

includes the entries of w∗ in S = [d]\S. To capture that w∗ is
approximately sparse, we assume that

∥∥[w∗]S
∥∥ ≤ ρ‖w∗‖ (15)

holds for some small constant ρ.
Theorem 6: Suppose

m ≥ max

(
32(s + 1), 4 log

2m

δ
,

784γ dη

9λn

)
log

d

δ
, (16)

d ≥ max

(
s + 1 + m

2
, s + 2 log

2m

δ

)
. (17)

Then, with a probability at least 1 − 4δ, we have

‖w̃ − w∗‖ ≤ 2

√

2

(
1

1 − ε
+ γ η

λn

)

·
√(

ε2 + τ 2ρ2

1 − ε
+ γ η(τ 2 + υ2ρ2)

λn

)
‖w∗‖,

where ρ is given in (15), and ε, τ , and υ are given by

ε = 2

√
2(s + 1)

m
log

2s

δ
, τ = 7

3

√
2(d − s)

m
log

d

δ
,

υ = 4(d − s + 1)

m
log

2(d − s)

δ
.

Moreover, if η ≤ O( λn
γ d ) and m ≥ Õ(s log d), with a high

probability, we have

‖w̃ − w∗‖ ≤ O

(√
s

m
+ ρ

√
d

m

)
‖w∗‖.

V. THE ANALYSIS

Our analysis is built upon the following lemma, which
reveals the relationship between α̂∗ and α∗.

Lemma 1: Let α∗ ∈ R
n and α̂∗ ∈ R

n be the optimal dual
solutions to (2) and (4), respectively. Then, we have

[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y] + λn‖α̂∗ − α∗‖2

γ

≤ [(̂α∗ − α∗) ◦ y]�(G − Ĝ)(α∗ ◦ y) (18)

where G = X� X and Ĝ = X� AA�X .

Proof: For the convenience of presentation, we consider
the minimization version of the dual problem, i.e.,

min
α∈�n

L̂(α) =
n∑

i=1

�∗(αi ) + 1

2λn
(α ◦ y)�Ĝ(α ◦ y).

We denote by L(α) the objective function of the dual problem
without random projection, i.e.,

L(α) =
n∑

i=1

�∗(αi ) + 1

2λn
(α ◦ y)�G(α ◦ y).

Because α∗ and α̂∗ minimize L(·) and L̂(·) respectively, from
the optimality condition of convex optimization [25], we have

〈∇L(α∗), α̂∗ − α∗〉 ≥ 0, (19)

〈∇ L̂ (̂α∗),α∗ − α̂∗〉 ≥ 0. (20)

Notice that the smoothness assumption of �(·) implies
that �∗(·) is 1

γ -strongly convex [28]. Let F(α) = ∑n
i=1 �∗(αi ),

which is also 1
γ -strongly convex. From the definition of strong

convexity [29], we have

F(α∗) ≥ F (̂α∗) + 〈∇F (̂α∗),α∗ − α̂∗〉 + ‖α̂∗ − α∗‖2

2γ
. (21)

Furthermore, it is easy to verify that

1

2λn
(α∗ ◦ y)�Ĝ(α∗ ◦ y)

= (̂α∗ ◦ y)�Ĝ (̂α∗ ◦ y)

2λn
+ 〈Ĝ (̂α∗ ◦ y), (α∗ − α̂∗) ◦ y〉

λn

+ 1

2λn
[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]. (22)

Adding (21) to (22), we obtain

L̂(α∗) ≥ L̂ (̂α∗) + 〈∇F (̂α∗),α∗ − α̂∗〉 + 1

2γ
‖α̂∗ − α∗‖2

+ 1

λn
〈Ĝ (̂α∗ ◦ y), (α∗ − α̂∗) ◦ y〉

+ 1

2λn
[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]

= L̂ (̂α∗) + 〈∇ L̂ (̂α∗),α∗ − α̂∗〉 + 1

2γ
‖α̂∗ − α∗‖2

+ [(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]
(20)≥ L̂ (̂α∗) + 1

2γ
‖α̂∗ − α∗‖2

+ 1

2λn
[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]. (23)

On the other hand, we have

L̂(α∗) + 1

λn
[(̂α∗ − α∗) ◦ y]�(Ĝ − G)(α∗ ◦ y)

= L̂(α∗) + 〈∇ L̂(α∗) − ∇L(α∗), α̂∗ − α∗〉
(19)≤ L̂(α∗) + 〈∇ L̂(α∗), α̂∗ − α∗〉
≤ L̂ (̂α∗) − 1

2λn
[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]

− 1

2γ
‖α̂∗ − α∗‖2 (24)

where the last inequality follows from the convexity of L̂(α).
We complete the proof by combining (23) and (24).

A. Proof of Theorem 1

Let the SVD of X be

X = U
V � =
r∑

i=1

λi ui v�
i ,

where 
 = diag(λ1, . . . , λr ), U = [u1, . . . , ur ], V =
[v1, . . . , vr ], λi is the i -th singular value of X , ui ∈ R

d and
vi ∈ R

n are the corresponding left and right singular vectors
of X . Then, we can rewrite G and Ĝ in Lemma 1 as

G = V 
U�U
V � = V 
2V �,

Ĝ = V 
U� AA�U
V � = V 
B B�
V �,
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where

B = U� A ∈ R
r×m .

It is easy to verify that B can be treated as a random matrix,
each element of which is independently sampled from a
Gaussian distribution N (0, 1/m).

To simplify the notation, we define

a = 
V �[(̂α∗ − α∗) ◦ y], c = 
V �(α∗ ◦ y),

ε = ‖B B� − I‖2.

Since U is an orthogonal matrix, we have

‖w̃ − w∗‖ =
∥∥∥∥

1

λn
X[(̂α∗ − α∗) ◦ y]

∥∥∥∥ = 1

λn
‖a‖, (25)

‖w∗‖ =
∥∥∥∥−

1

λn
X (α∗ ◦ y)

∥∥∥∥ = 1

λn
‖c‖. (26)

From Lemma 1, we have

a�B B�a ≤ a� (I − B B�) c,

which implies

‖a‖2(1 − ε) ≤ ε‖a‖‖c‖ ⇒ ‖a‖(1 − ε) ≤ ε‖c‖. (27)

From (25), (26), and (27), we obtain the second inequality in
Theorem 1.

To bound ε, we have the following concentration inequality
for Gaussian random matrix.

Lemma 2: Let δ ∈ (0, 1) be the failure probability. With a
probability at least 1 − δ, we have

ε =
∥∥∥B B� − I

∥∥∥
2

≤ 2

√
2(r + 1)

m
log

2r

δ
,

provided m ≥ 2(r + 1) log 2r
δ .

The proof of Lemma 2 and other omitted proofs are deferred
to the Appendix.

B. Proof of Theorem 2

Based on the SVD of X , we introduce the following
notations

Ur = [u1, . . . , ur ], Ur̄ = [ur+1, . . . , ud ],

r = diag(λ1, . . . , λr ), 
r̄ = diag(λr+1, . . . , λd ),

Vr = [v1, . . . , vr ], Vr̄ = [vr+1, . . . , vd ].
Then, we can rewrite G and Ĝ in Lemma 1 as

G = Vr

2
r V �

r + Vr̄

2
r̄ V �̄

r ,

Ĝ = Vr
r Br B�
r 
r V �

r + Vr̄
r̄ Br̄ B�̄
r 
r̄ V �̄

r

+Vr̄
r̄ Br̄ B�
r 
r V �

r + Vr
r Br B�̄
r 
r̄ V �̄

r ,

where

Br = U�
r A ∈ R

r×m , Br̄ = U �̄
r A ∈ R

(d−r)×m .

It is straightforward to check that both B and Br̄ can be treated
as two independent Gaussian random matrices, where each
entry of these two matrices is independently sampled from a
Gaussian distribution N (0, 1/m).

Define

a = 
r V �
r [(̂α∗ − α∗) ◦ y], b = 
r̄ V �̄

r [(̂α∗ − α∗) ◦ y],
c = 
r V �

r (α∗ ◦ y), d = 
r̄ V �̄
r (α∗ ◦ y),

ε =
∥∥∥Br B�

r − I
∥∥∥

2
, τ =

∥∥∥Br̄ B�
r

∥∥∥
2
,

υ =
∥∥∥Br̄ B�̄

r − I
∥∥∥

2
.

It is easy to verify that

‖w̃ − w∗‖2 = 1

λ2n2 ‖a‖2 + 1

λ2n2 ‖b‖2, (28)

‖w∗‖2 = 1

λ2n2 ‖c‖2 + 1

λ2n2 ‖d‖2, (29)

‖d‖ = λn‖U �̄
r w∗‖

(9)≤ λnρ‖w∗‖. (30)

Using the definition of a, b, c, and d, we bound [(̂α∗−α∗)◦
y]�Ĝ[(̂α∗ − α∗) ◦ y], the first term in (18), as

[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]
= a�Br B�

r a + b�Br̄ B�̄
r b

+ a�Br B�̄
r b + b�Br̄ B�

r a

≥ ‖a‖2(1 − ε) − 2‖a‖‖b‖τ, (31)

and λn‖α̂∗ − α‖2, the second term in (18), as

λn

γ
‖α̂∗ − α∗‖2 yi∈±1= λn

γ
‖(̂α∗ − α∗) ◦ y‖2

≥ λn

γ

∥∥
r̄ V �̄
r [(̂α∗ − α∗) ◦ y]∥∥2

‖Vr̄

2
r̄ V �̄

r ‖2
≥ λn

γ λ2
r+1

‖b‖2. (32)

Finally, the last term in (18) is upper bounded by

[(̂α∗ − α∗) ◦ y]�(G − Ĝ)(α∗ ◦ y)

= a�(I − Br B�
r )c + b�(I − Br̄ B�̄

r )d

− a�Br B�̄
r d − b� Br̄ B�

r c

≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ. (33)

From (18), (31), (32), and (33), we have

(1 − ε)‖a‖2 − 2τ‖a‖‖b‖ + λn

γ λ2
r+1

‖b‖2

≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ. (34)

In the case when

4τ 2 ≤ (1 − ε)λn

γ λ2
r+1

, (35)

we have

1 − ε

2
‖a‖2 − 2τ‖a‖‖b‖ + λn

2γ λ2
r+1

‖b‖2 ≥ 0. (36)
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From (34) and (36), we have

1 − ε

2
‖a‖2 + λn

2γ λ2
r+1

‖b‖2

≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ
≤ 1−ε

8
‖a‖2+ 2ε2

1−ε
‖c‖2+ λn

8γ λ2
r+1

‖b‖2 + 2γ λ2
r+1υ

2

λn
‖d‖2

+1 − ε

8
‖a‖2 + 2τ 2

1 − ε
‖d‖2

+ λn

8γ λ2
r+1

‖b‖2 + 2γ λ2
r+1τ

2

λn
‖c‖2,

which implies

1 − ε

4
‖a‖2 + λn

4γ λ2
r+1

‖b‖2

≤
(

2ε2

1 − ε
+ 2γ λ2

r+1τ
2

λn

)
‖c‖2

+
(

2γ λ2
r+1υ

2

λn
+ 2τ 2

1 − ε

)
‖d‖2

(29, 30)≤
(

2ε2

1 − ε
+ 2γ λ2

r+1τ
2

λn

)
λ2n2‖w∗‖2

+
(

2γ λ2
r+1υ

2

λn
+ 2τ 2

1 − ε

)
λ2n2ρ2‖w∗‖2.

As a result, we can upper bound ‖w̃ − w∗‖2 by

‖w̃ − w∗‖2 (28)≤ 8

(
1

1 − ε
+ γ λ2

r+1

λn

)

·
(

ε2 + τ 2ρ2

1 − ε
+ γ λ2

r+1(τ
2 + υ2ρ2)

λn

)
‖w∗‖2

leading to the third inequality in Theorem 2.
Next, we discuss how to bound ε, τ and υ. Since

m
(10)≥ 32(r + 1) log

d

δ

(10,11)≥ 2(r + 1) log
2r

δ
,

similar to Lemma 2, we have the following lemma.
Lemma 3: Let δ ∈ (0, 1) be the failure probability. With a

probability at least 1 − δ, we have

ε =
∥∥∥Br B�

r − I
∥∥∥

2
≤ 2

√
2(r + 1)

m
log

2r

δ
,

provided the conditions in (10) and (11) hold.
Based on the noncommutative variant of Bernstein’s

inequality [30], we have the following lemma to bound τ .
Lemma 4: Let δ ∈ (0, 1/2) be the failure probability. Then,

with a probability at least 1 − 2δ, we have

τ = ‖Br̄ B�
r ‖2 ≤ 7

3

√
2(d − r)

m
log

d

δ
,

provided the conditions in (10) and (11) hold.
Following a similar proof of Lemma 2, we have the

following lemma to bound υ.

Lemma 5: Let δ ∈ (0, 1) be the failure probability. With a
probability at least 1 − δ, we have

υ =
∥∥∥Br̄ B�̄

r − I
∥∥∥

2
≤ 4(d − r + 1)

m
log

2(d − r)

δ
,

provided the condition in (11) holds.
Finally, we need to show that (35) is true given our

assumptions. From Lemma 3, it is straightforward to check
that

ε
(10)≤ 2

√
2(r + 1) log 2r/δ

32(r + 1) log d/δ

(11)≤ 1

2
. (37)

Based on Lemma 4, we have

4τ 2 ≤ 4
49

9

2d

m
log

d

δ

(10)≤ λn

2γ λ2
r+1

(37)≤ (1 − ε)λn

γ λ2
r+1

.

C. Proof of Theorem 4

Since w∗ is sparse, α∗ ◦ y is orthogonal to the subspace
spanned by the rows in XS , as revealed by the following
lemma.

Lemma 6: Assume w∗ is supported by a subset S ⊂ [d].
We have

XS (α∗ ◦ y) = 0. (38)
We denote by AS ∈ R

s×m the sub-matrix of A that includes
the rows of A in S, and AS ∈ R

(d−s)×m the sub-matrix
that includes the rows of A in S. Using these definitions,
we rewrite Ĝ in Lemma 1 as

Ĝ = X�
S AS A�

S XS + X�
S AS A�

S XS
+X�

S AS A�
S XS + X�

S AS A�
S XS .

We define

a = XS [(̂α∗ − α∗) ◦ y], b = XS (̂α∗ ◦ y),

c = XS (α∗ ◦ y),

ε =
∥∥∥AS A�

S − I
∥∥∥

2
, τ =

∥∥∥AS A�
S
∥∥∥

2
.

Then, we have

‖w̃ − w∗‖2 (38)= 1

λ2n2 ‖a‖2 + 1

λ2n2 ‖b‖2, (39)

‖w∗‖ = 1

λn
‖c‖. (40)

Based on the above definitions, we bound the three terms
in (18) as follows.

[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]
(38)= a� AS A�

Sa + b� AS A�
Sb

+ a� AS A�
Sb + b�

S AS A�
Sa

≥ (1 − ε) ‖a‖2 − 2τ‖a‖‖b‖. (41)
λn

γ
‖α̂∗ − α∗‖2 yi∈±1= λn

γ
‖(̂α∗ − α∗) ◦ y‖2

≥ λn

γ

∥∥XS[(̂α∗ − α∗) ◦ y]∥∥2

‖X�
S XS‖2

(12,38)= λn

γ η
‖b‖2. (42)

[(̂α∗ − α∗) ◦ y]�(G − Ĝ)(α∗ ◦ y)
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(38)= a�(I − AS A�
S )c − b�

S AS A�
Sc

≤ ‖c‖(ε‖a‖ + τ‖b‖). (43)

From (18), (41), (42), and (43), we have

(1 − ε)‖a‖2 − 2τ‖a‖‖b‖ + λn

γ η
‖b‖2

≤ ‖c‖ (ε‖a‖ + τ‖b‖). (44)

In the case when

4τ 2 ≤ (1 − ε)λn

γ η
, (45)

we have

1 − ε

2
‖a‖2 − 2τ‖a‖‖b‖ + λn

2γ η
‖b‖2 ≥ 0. (46)

From (44) and (46), we have

1 − ε

2
‖a‖2 + λn

2γ η
‖b‖2

≤ ‖c‖ (ε‖a‖ + τ‖b‖)
≤ ε2

1 − ε
‖c‖2 + 1 − ε

4
‖a‖2 + γ ητ 2

λn
‖c‖2 + λn

4γ η
‖b‖2,

which implies

1 − ε

4
‖a‖2 + λn

4γ η
‖b‖2 ≤

(
ε2

1 − ε
+ γ ητ 2

λn

)
‖c‖2. (47)

Then, we can upper bound ‖w̃ − w∗‖2 by

‖w̃ − w∗‖2 (39, 47)≤ 1

λ2n2

(
4

1 − ε
+ 4γ η

λn

)(
ε2

1 − ε
+ γ ητ 2

λn

)
‖c‖2

(40)≤
(

4

1 − ε
+ 4γ η

λn

)(
ε2

1 − ε
+ γ ητ 2

λn

)
‖w∗‖2

leading to the third inequality in Theorem 4.
Similar to Lemmas 3 and 4, we have the following lemmas

to bound ε and τ .
Lemma 7: Let δ ∈ (0, 1) be the failure probability. With a

probability at least 1 − δ, we have

ε =
∥∥∥AS A�

S − I
∥∥∥

2
≤ 2

√
2(s + 1)

m
log

2s

δ
,

provided the conditions in (13) and (14) hold.
Lemma 8: Let δ ∈ (0, 1/2) be the failure probability. Then,

with a probability at least 1 − 2δ, we have

τ = ‖AS A�
S‖2 ≤ 7

3

√
2(d − s)

m
log

d

δ
,

provided the conditions in (13) and (14) hold.
Finally, we need to show that (45) is true given our

assumptions. From Lemma 7, it is straightforward to check
that

ε
(13)≤ 2

√
2(s + 1) log 2s/δ

32(s + 1) log d/δ

(14)≤ 1

2
. (48)

Based on Lemma 8, we have

4τ 2 ≤ 4
49

9

2d

m
log

d

δ

(13)≤ λn

2γ η

(48)≤ (1 − ε)λn

γ η
.

D. Proof of Theorem 6

Similar to the proof of Theorem 4, we define

a = XS [(̂α∗ − α∗) ◦ y], b = XS [(̂α∗ − α∗) ◦ y],
c = XS (α∗ ◦ y), d = XS (α∗ ◦ y),

ε =
∥∥∥AS A�

S − I
∥∥∥

2
, τ =

∥∥∥AS A�
S
∥∥∥

2
,

υ =
∥∥∥AS A�

S − I
∥∥∥

2
.

Then, we have

‖w̃ − w∗‖2 = 1

λ2n2 ‖a‖2 + 1

λ2n2 ‖b‖2, (49)

‖w∗‖2 = 1

λ2n2 ‖c‖2 + 1

λ2n2 ‖d‖2, (50)

‖d‖ = λn‖[w∗]S‖ (15)≤ λnρ‖w∗‖. (51)

Then, we bound each term in (18) as follows.

[(̂α∗ − α∗) ◦ y]�Ĝ[(̂α∗ − α∗) ◦ y]
= a� AS A�

Sa + b� AS A�
Sb

+a� AS A�
Sb + b� AS A�

Sa

≥ ‖a‖2(1 − ε) − 2‖a‖‖b‖τ. (52)
λn

γ
‖α̂∗ − α∗‖2 yi∈±1= λn

γ
‖(̂α∗ − α∗) ◦ y‖2

≥ λn

γ

∥∥XS [(̂α∗ − α∗) ◦ y]∥∥2

‖X�
S XS‖2

(12)= λn

γ η
‖b‖2. (53)

[(̂α∗ − α∗) ◦ y]�(G − Ĝ)(α∗ ◦ y)

= a�(I − AS A�
S )c + b�(I − AS A�

S )d

− a� AS A�
Sd − b� AS A�

Sc
≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ. (54)

From (18), (52), (53), and (54), we have

(1 − ε)‖a‖2 − 2τ‖a‖‖b‖ + λn

γ η
‖b‖2

≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ.
Following the same analysis as that for Theorem 4, we can
show both (45) and (46) are true. As a result, we have

1 − ε

2
‖a‖2 + λn

2γ η
‖b‖2

≤ ‖a‖‖c‖ε + ‖b‖‖d‖υ + ‖a‖‖d‖τ + ‖b‖‖c‖τ
≤ 1 − ε

8
‖a‖2 + 2ε2

1 − ε
‖c‖2 + λn

8γ η
‖b‖2 + 2γ ηυ2

λn
‖d‖2

+1 − ε

8
‖a‖2 + 2τ 2

1 − ε
‖d‖2 + λn

8γ η
‖b‖2 + 2γ ητ 2

λn
‖c‖2

which implies

1 − ε

4
‖a‖2 + λn

4γ η
‖b‖2

≤
(

2ε2

1 − ε
+ 2γ ητ 2

λn

)
‖c‖2 +

(
2γ ηυ2

λn
+ 2τ 2

1 − ε

)
‖d‖2

(50,51)≤
(

2ε2

1 − ε
+ 2γ ητ 2

λn

)
λ2n2‖w∗‖2

+
(

2γ ηυ2

λn
+ 2τ 2

1 − ε

)
λ2n2ρ2‖w∗‖2.
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Then, we can upper bound ‖w̃ − w∗‖2 by

‖w̃ − w∗‖2 (49)≤ 8

(
1

1 − ε
+ γ η

λn

)

·
(

ε2

1 − ε
+ γ ητ 2

λn
+ τ 2ρ2

1 − ε
+ γ ηυ2ρ2

λn

)
‖w∗‖2

leading to the third inequality in Theorem 6.
Similar to Lemma 5, we have the following lemma to

bound υ.
Lemma 9: Let δ ∈ (0, 1) be the failure probability. With a

probability at least 1 − δ, we have

υ =
∥∥∥AS A�

S − I
∥∥∥

2
≤ 4(d − s + 1)

m
log

2(d − s)

δ
,

provided the condition in (17) holds.

VI. AN ITERATIVE EXTENSION OF

DUAL RANDOM PROJECTION

From the results in Section IV, we observe that the recovery
error of dual random projection enjoys a relative error bound.
This observation motives us to develop an iterative extension
of dual random projection which is able to reduce the recovery
error exponentially.

A. The Algorithm

The main idea stems from the fact that if ‖w̃−w∗‖ ≤ ε‖w∗‖
with a small ε ≤ 1, we can apply the same dual random
projection algorithm to recover �w = w∗ − w̃, which will
result in a recovery error of ε‖�w‖ ≤ ε2‖w∗‖. If we repeat the
above process for T iterations, we should be able to obtain a
solution with a recovery error of εT ‖w∗‖. This simple intuition
leads to the iterative method shown in Table II. At the t-th
iteration, given the recovered solution w̃t−1 obtained from the
previous iteration, we solve the optimization problem in (55)
that is designed to recover w∗ − w̃t−1.

It is important to note that although the iterative algorithm
consists of multiple iterations, the random projection of the
data matrix is only computed once before the start of the
iterations. This important feature makes the iterative algorithm
computationally attractive as calculating random projections of
a large data matrix is computationally expensive and has been
the subject of many studies, see [22], [31], [32]. We also note
that the iterative algorithm in Table II is related to the epoch
gradient descent algorithm [33] for stochastic optimization in
the sense that the solution obtained from the previous iteration
serves as the starting point to the optimization problem at the
current iteration. Unlike the epoch gradient algorithm, we do
not shrink the domain size over the iterations.

B. The Derivation

In this subsection, we provide the derivation of the iterative
algorithm given in Table II. At the t-th iteration, we consider
the following optimization problem:

min
w∈Rd

λ

2
‖w + w̃t−1‖2 + 1

n

n∑

i=1

�
(

yi (w + w̃t−1)�xi

)
, (56)

TABLE II

AN ITERATIVE EXTENSION OF DUAL RANDOM PROJECTION

where w̃t−1 is the solution obtained from the t−1-th iteration.
It is straightforward to show that �t∗ = w∗ − w̃t−1 is the
optimal solution to (56). Our goal is to apply the dual random
projection approach to recover �t∗ by �̃t .

In order to apply dual random projection in Table I to
solve (56), we need to write the optimization problem in the
same form as (1). To this end, we first note that w̃t−1 lies
in the subspace spanned by x1, . . . , xn , and therefore we can
write w̃t−1 as

w̃t−1 = − 1

λn
X (̂αt−1∗ ◦ y) = − 1

λn

n∑

i=1

[̂αt−1∗ ]i yi xi .

Then, the objective function in (56) can be written as

λ

2
‖w̃t−1‖2 + λ

2
‖w‖2 + λw�w̃t−1

+ 1

n

n∑

i=1

�
(

yi w�xi + yi x�
i w̃t−1

)

= λ

2
‖w̃t−1‖2 + λ

2
‖w‖2

+ 1

n

n∑

i=1

�
(
yi w�xi + yi x�

i w̃t−1)− [̂αt−1∗ ]i yi w�xi

= λ

2
‖w̃t−1‖2 + λ

2
‖w‖2 + 1

n

n∑

i=1

�t
i

(
yi w�xi

)
,

where the new loss function �t
i (z), i = 1, . . . , n is defined as

�t
i (z) = �

(
z + yi x�

i w̃t−1
)

− [̂αt−1∗ ]i z. (57)
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Therefore, �t∗ is the solution to the following problem:

min
w∈Rd

λ

2
‖w‖2 + 1

n

n∑

i=1

�t
i

(
yi w�xi

)
. (58)

To apply the dual random projection approach to recover-
ing �t∗, we solve the following low-dimensional optimization
problem:

min
z∈Rm

λ

2
‖z‖2 + 1

n

n∑

i=1

�t
i

(
yi z�x̂i

)
, (59)

where x̂i ∈ R
m is the low-dimensional representation for

example xi ∈ R
d . The following derivation signifies that the

above problem is equivalent to the problem in (55).

λ

2
‖z‖2 + 1

n

n∑

i=1

�t
i

(
yi z�x̂i

)

= λ

2
‖z‖2 + 1

n

n∑

i=1

�
(

yi z�x̂i + yi x�
i w̃t−1

)
− [̂αt−1∗ ]i yi z�x̂i

= λ

2
‖z‖2 + λz�(A�w̃t−1) + 1

n

n∑

i=1

�
(

yi z�x̂i + yi x�
i w̃t−1

)

= λ

2

∥∥∥z + A�w̃t−1
∥∥∥

2 + 1

n

n∑

i=1

�
(

yi z�x̂i + yi x�
i w̃t−1

)

−λ

2

∥∥∥A�w̃t−1
∥∥∥

2
,

where in the third line we use the fact that x̂i = A�xi and
w̃t−1 = −∑

i [̂αt−1∗ ]i yi xi/(λn). Given the optimal solution zt∗
to the above problem, we can recover �t∗ by

�̃t = − 1

λn
X (β̂ t∗ ◦ y), (60)

where β̂ t∗ is computed by

[β̂ t∗]i = ∇�t
i

(
yi x̂�

i zt∗
)

(57)= �′ (yi x̂�
i zt∗ + yix�

i w̃t−1
)

− [̂αt−1∗ ]i , i = 1, . . . , n.

The updated solution w̃t is computed by

w̃t = w̃t−1 + �̃t

= − 1

λn
X
[(

α̂t−1∗ + β̂ t∗
)

◦ y
]

= − 1

λn
X (̂αt∗ ◦ y),

where

[̂αt∗]i = [̂αt−1∗ ]i + [β̂ t∗]i

= �′(yi x̂�
i zt∗ + yi x�

i w̃t−1), i = 1, . . . , n.

C. The Analysis

In each iteration of the iterative algorithm, dual ran-
dom projection is used to recover the optimal solution
�t∗ = w∗ − w̃t−1 of (58). To analyze the recovery error
of the final solution, we just need to apply our previ-
ous analysis to bound the recovery error in each itera-
tion. And the recovery error of the final solution follows
directly.

Theorem 7: Assume that X is low-rank with rank r . Let w∗
be the optimal solution to (1) and w̃T be the solution recovered
by the iterative algorithm. Suppose

m ≥ 32(r + 1) log
2r

δ
.

Then, with a probability at least 1 − δ, we have

‖w̃T − w∗‖ ≤
(

ε

1 − ε

)T

‖w∗‖,

where

ε = 2

√
2(r + 1)

m
log

2r

δ
≤ 1

2
.

Proof: Suppose we can show that

‖�̃t − �t∗‖ ≤ εt‖�t∗‖, t = 1, . . . , T . (61)

From the fact that w̃t = w̃t−1 + �̃t and �t∗ = w∗ − w̃t−1,
we have

‖w̃t − w∗‖ = ‖�̃t − �t∗‖
(61)≤ εt‖�t∗‖ = εt‖w̃t−1 − w∗‖.

Repeating the above inequality for t = 1, . . . , T , the recovery
error of the last solution w̃T is upper bounded by

‖w̃T − w∗‖ ≤
T∏

t=1

εt‖w̃0 − w∗‖ =
T∏

t=1

εt‖w∗‖,

where we assume w̃0 = 0.
In the following, we will decide the value of εt in (61) under

the assumption that X is low-rank. The analysis is almost the
same as that for Theorem 1. The only difference is that in
the iterative algorithm, the loss functions �t

i (·) depends on the
random matrix A. However, it turns out that this dependency
is not problematic, because our analysis only needs the matrix
concentration inequality in Lemma 2.

Let �̄t
i (·) be the convex conjugate of �t

i (·), i.e.,

�t
i (z) = max

α∈�t
i

αz − �̄t
i (α),

where �t
i is the domain of the dual variable. The dual problem

of (58) is given by

max
αi∈�t

i

−
n∑

i=1

�̄t
i (αi ) − 1

2λn
(α ◦ y)�X� X (α ◦ y), (62)

and the dual problem of (59) is

max
αi ∈�t

i

−
n∑

i=1

�̄t
i (αi ) − 1

2λn
(α ◦ y)�X� AA�X (α ◦ y). (63)

Following exactly the same analysis of Lemma 1, we have the
following lemma to bound the optimal dual solutions.

Lemma 10: Let β t∗ ∈ R
n and β̂ t∗ ∈ R

n be the optimal dual
solutions to (62) and (63), respectively. Then, we have

[(β̂ t∗ − β t∗) ◦ y]�Ĝ[(β̂ t∗ − β t∗) ◦ y]
≤ [(β̂ t∗ − β t∗) ◦ y]�(G − Ĝ)(β t∗ ◦ y)

where G = X� X and Ĝ = X� AA�X .
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Following the notations in Theorem 1, we introduce the
SVD of X , and write X , G, and Ĝ as

X = U
V �, G = V 
U�U
V � = V 
2V �,

Ĝ = V 
U� AA�U
V � = V 
B B�
V �,

where

B = U� A ∈ R
r×m .

To simplify the notation, we define

a = 
V �[(β̂ t∗ − β t∗) ◦ y], c = 
V �(β t∗ ◦ y),

ε = ‖B B� − I‖2.

Recall that �t∗ = − 1
λn X (β t∗ ◦ y) is the optimal solution

to (58), and �̃t in (60) is the recovered solution. Since U
is an orthogonal matrix, we have

‖�̃t − �t∗‖ =
∥∥∥∥

1

λn
X[(β̂ t∗ − β t∗) ◦ y]

∥∥∥∥ = 1

λn
‖a‖, (64)

‖�t∗‖ =
∥∥∥∥−

1

λn
X (β t∗ ◦ y)

∥∥∥∥ = 1

λn
‖c‖. (65)

From Lemma 10, we have

a�B B�a ≤ a� (I − B B�) c,

which implies

‖a‖2(1 − ε) ≤ ε‖a‖‖c‖ ⇒ ‖a‖(1 − ε) ≤ ε‖c‖. (66)

From (64), (65), and (66), we have εt = ε
1−ε , t = 1, . . . , T .

And thus

‖w̃T − w∗‖ ≤
(

ε

1 − ε

)T

‖w∗‖.
We complete the proof by applying Lemma 2 once to
bound ε.

Theorem 7 implies that we can recover the optimal solution
with a relative error α, i.e., ‖w∗ − w̃T ‖ ≤ α‖w∗‖, by using
�log(1−ε)/ε 1/α� iterations. We finally note that it is unclear if
the iterative algorithm can achieve similar error reduction for
more general cases as they require further assumption on w∗,
which may not hold for the intermediate steps of the iterative
algorithm.

VII. COMPLEXITY ANALYSIS AND

EMPIRICAL STUDY

In this section, we first analyze the numerical complexities
of the baseline algorithm that optimizes the original problem,
the proposed dual random projection algorithm and its iter-
ative extension. Then, we conduct experiments to verify our
theoretical claims.

A. Numerical Complexity

Suppose our goal is to find a solution w̄ such that
‖w̄ − w∗‖ ≤ α‖w∗‖, where α > 0 is a given parameter.
We assume the �2 norm of each data point is bounded, that
is, ‖xi‖ = O(1), i = 1, . . . , n. Since random projection
preserves the �2 norm [20]–[22], with a high probability, we
also have ‖̂xi‖ = O(1), i = 1, . . . , n. Before presenting the

analysis, we need to decide the optimization algorithm used
to solve (1), (3), and (55). Since we assume both n and d
are very large, first-order optimization methods, that relies on
the gradient of the objective function, become a natural choice.
Notice that the optimization problems considered in this paper
are both smooth and strongly convex. According to the convex
optimization theory [29], the number of iterations required to
find a solution with an error ε is on the order of

√
κ log 1/ε,

where κ is the condition number.1

1) The Baseline Algorithm: Let Lh ≥ μh ≥ λ be the moduli
of smoothness and strong convexity of the high-dimensional
optimization problem in (1), and κh = Lh/μh be the condition
number. If we are able to find a solution w̄ to (1) with
an error 1

2μhα2‖w∗‖2, then due to the strong convexity, we
have ‖w̄ − w∗‖ ≤ α‖w∗‖. Based on the previous discussion,
we know that the number of iterations is on the order of√

κh log 1
μhα‖w∗‖ . The cost in each iteration is dominated by

the evaluation of the gradient, whose complexity is O(nd).
Thus, the overall numerical complexity of the baseline algo-
rithm is

O

(
nd

√
κh

(
log

1

μh
+ log

1

‖w∗‖ + log
1

α

))
,

which can be simplified to

O

(
nd

√
κh log

1

α

)

under appropriate conditions.
2) Dual Random Projection: It is easy to verify that the

numerical complexity of Steps 1, 2, 4 and 5 in Table I is
O(ndm). In the following, we will discuss the numerical
complexity of Step 3, as well as the order of m.

Let Ll ≥ μl ≥ λ be the moduli of smoothness and strong
convexity of the low-dimensional optimization problem in (3),
and κl = Ll/μl be the condition number. Let ẑ be the
solution that we obtained by solving (3) numerically. Then,
based on the procedure in Table I, we will return a solution
w̄ = − 1

λn X (̂α ◦ y), where [̂α]i = �′ (yi x̂�
i ẑ
)
, i = 1, . . . , n.

The difference between w̄ and w∗ can be decomposed into two
parts corresponding to the optimization error and the recovery
error, respectively, that is,

‖w̄ − w∗‖ ≤ ‖w̄ − w̃‖︸ ︷︷ ︸
Optimization Error

+ ‖w̃ − w∗‖︸ ︷︷ ︸
Recovery Error

.

To ensure that ‖w̄−w∗‖ ≤ α‖w∗‖, a sufficient condition is to
ensure both ‖w̄ − w̃‖ and ‖w̃ − w∗‖ are smaller than α

2 ‖w∗‖.
Let’s first consider bounding ‖w̄−w̃‖. After some algebraic

manipulations, we obtain

‖w̄ − w̃‖ = O

(
γ ‖ẑ − z∗‖

λ

)
, (67)

whose derivation is provided in Appendix F. Thus, to ensure
‖w̄ − w̃‖ ≤ α

2 ‖w∗‖, it is sufficient to find a solution ẑ

1Let’s review some basic concepts in convex optimization [25], [29].
Suppose we want to minimize a convex function f (·) over a convex domain D.
A solution x̂ with an error ε means f (̂x) − minx∈D f (x) ≤ ε. When the
function f (·) is μ-strongly convex, we further have μ

2 ‖̂x − x∗‖2 ≤ ε,
where x∗ = arg min x∈D f (x). For a function that is μ-strongly convex and
L-smooth, the condition number κ is defined as L/μ.



ZHANG et al.: RANDOM PROJECTIONS FOR CLASSIFICATION 7311

to (3), such that ‖ẑ − z∗‖ = O
(

α‖w∗‖λ
γ

)
. Following the

same argument in Section VII-A.1, we know that the overall
numerical complexity of solving (3) is

O

(
nm

√
κl

(
log

1

μl
+ log

γ

λ
+ log

1

‖w∗‖ + log
1

α

))
.

Next, we consider bounding the recovery error ‖w̃−w∗‖, from
which we decide the order of m. Recall that in Section IV, we
provided four theorems to bound the recovery error in different
scenarios. In the following, we take the the case that X is
low-rank as an example. According to Theorem 1, to ensure
‖w̃ − w∗‖ ≤ α

2 ‖w∗‖, it is sufficient to set m = O
(

r log r
α2

)
.

In summary, the numerical complexity of dual random
projection is

O

(
ndr log r

α2

+n
√

κlr log r

α2

(
log

1

μl
+ log

γ

λ
+ log

1

‖w∗‖ + log
1

α

))
,

which can be simplified to

O

(
ndr log r

α2 + n
√

κlr log r

α2 log
1

α

)

under appropriate conditions.
3) The Iterative Extension: It is easy to verify that the

numerical complexity of Steps 1 and 2 in Table II is O(ndm),
and the numerical complexity of Steps 6 and 7 is O(ndT ).
In the following, we will discuss the numerical complexity of
Step 5, as well as the order of m and T .

Recall that the linear convergence in Theorem 7 comes
from the fact that there are a recovery error ε

1−ε ‖�t∗‖ and no
optimization error in the t-th iteration. Alternatively, if both the
recovery error and the optimization error in the t-th iteration

are bounded by 1
2

(
ε

1−ε

)t ‖w∗‖, we can obtain a similar linear

convergence.2 Thus, we still have T = �log(1−ε)/ε 1/α� even
in the presence of optimization error.

Let Lt
l ≥ μt

l ≥ λ be the moduli of smoothness and
strong convexity of the low-dimensional optimization problem
in (55), and κ t

l = Lt
l/μ

t
l be the condition number. Following

the same analysis in Section VII-A.2, to ensure the optimiza-

tion error is upper bounded by 1
2

(
ε

1−ε

)t ‖w∗‖, the overall
numerical complexity of solving (55) is

O

(
nm

√
κ t

l

(
log

1

μt
l

+ log
γ

λ
+ log

1

‖w∗‖ + t log
1 − ε

ε

))
.

And based on induction, it is easy to verify that m = O( r log r
ε2 )

is sufficient to satisfy the requirement on the recovery error.
By setting ε to be a small constant (e.g., 1/3), we have m =

O(r log r), T = O(log 1/α), and the numerical complexity of
the iterative extension is

O

(
nd

(
r log r + log

1

α

)

+ nr log r
T∑

t=1

√
κ t

l

(
log

1

μt
l

+ log
γ

λ
+ log

1

‖w∗‖ + t

))
,

2Strictly speaking, the former one (i.e., the one in Theorem 7) is Q-linear,
and the latter one is R-linear [34, Section A.2].

which can be simplified to

O

(
nd

(
r log r + log

1

α

)
+ nr log r log

1

α

T∑

t=1

√
κ t

l

)

under appropriate conditions.
4) Comparisons: To simplify the comparisons, we make an

conservative assumption that all the condition numbers are on
the same order, and are denoted by κ . Then, the numerical
complexities of different algorithms are summarized below.

• Baseline: O(nd
√

κ log 1
α )

• Dual random projection: O( ndr log r
α2 + n

√
κr log r
α2 log 1

α )

• The iterative extension: O(nd(r log r + log 1
α ) +

n
√

κr log r log2 1
α )

From the above results, we observe that one limitation of
dual random projection is that its numerical complexity has
a quadratic dependence on 1

α . As a result, the numerical
complexity of dual random projection is small than that of
baseline only when α is not too small, that is,

α2 ≥ O

(
r log r

min(
√

κ log 1/α, d)

)
.

On the other hand, the iterative extension is especially suit-
able for finding a high-precision solution, since its numerical
complexity only has a polylogarithmic dependence on 1

α .
Furthermore, when the rank r is small enough, that is,

r log r ≤ O

(
min

(√
κ log

1

α
,

d

log 1/α

))
,

the numerical complexity of the iterative extension will be
always smaller than that of the baseline.

B. Experimental Results

We perform experiments on a synthetic data set to
compare the proposed algorithms with the baseline approach.
We generate a data matrix by X = AB , where A ∈ R

d×r

and B ∈ R
r×n are two random Gaussian matrices, scale X to

ensure the �2 norm of each data point is bounded by 1, and
generate the label by y = sign(X�w), where w ∈ R

d is a
random Gaussian vector. To simulate the case that X is
high-dimensional, large-scale, and low-rank, we set
d = 20, 000, n = 50, 000, and r = 10. For each setting
of m we repeat the recovery experiment for 10 trials,
and report the average result. We choose the logit loss
�(x) = ln(1 + exp(−x)), and set λ = 1/n. We implement the
optimal first-order algorithm in [35] to solve the optimization
problems.

Since the exact value of w∗ is unknown, we take
the output of the Baseline algorithm to approximate it.3

In Fig. 1, we show how the relative recovery errors of
Dual Random Projection (DRP) and the naive solution in (6)
(i.e., ‖w̃ − w∗‖/‖w∗‖ and ‖ŵ − w∗‖/‖w∗‖) vary with respect
to the number of random projections. We observe that with a
sufficiently large number of random projections, DRP is able
to find an accurate estimator of w∗. On the other hand, the

3Note that w∗ is in general different from w since we are interested in
minimizing the classification error measured by the logistic regression model.



7312 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 11, NOVEMBER 2014

Fig. 1. The relative recovery error versus the number of random projections.

Fig. 2. The running time versus the number of random projections.

Fig. 3. The relative recovery error of the iterative extension versus the
number of iterations.

recovery error of the naive solution is much larger than that
of DRP, which is consistent with Proposition 2.

Fig. 2 plots the running times of Baseline, DRP, and the
Random Projection (RP) step in DRP. As revealed by our
discussion in Section VII-A.4, the running time of DRP is
smaller than that of Baseline when m is not too large, or in
other words, when the recovery error is not too small. We
also observed that the majority of the running time is spent

Fig. 4. The running time of the iterative extension versus the number of
iterations.

on random projection. Thus, if we utilize the fast random
projection techniques [22], [31], [32], the running time of
DRP could be reduced dramatically. For instance, the fast
random projection algorithm in [31] reduces the dependency
of complexity on m from O(m) to O(log m).

Finally, we provide the relative recovery error and running
time of the iterative extension (with m = 200, 300, 500)
in Fig. 3 and Fig. 4, respectively. As indicated by Theorem 7,
the iterative extension is able to reduce the recovery error
exponentially by using a small number of random projections.
Furthermore, its running time is shorter than that of Baseline,
and increases slowly over iterations. Thus, the iterative exten-
sion is preferred if we want to find a high-precision solution.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of recovering
the optimal solution w∗ to the original high-dimensional
optimization problem based on random projection. To this
end, we propose to use the dual solution α̂∗ to the low-
dimensional optimization problem to recover w∗. Our analysis
shows that with a high probability, the solution w̃ returned by
our proposed method approximates the optimal solution w∗
with a small error, when the data matrix is (approximately)
low-rank and/or the optimal solution is (approximately)
sparse. We further develop an iterative extension of the basic
algorithm, that is able to reduce the recovery error exponen-
tially when the data matrix is low-rank.

One of our future work is to analyze the generalization
error of the recovered solution w̃. There are three types of
errors that affect the generalization error. The first one is the
optimization error since the empirical risk is only optimized
approximately. The second error is the estimation error which
measures the difference between minimizing the empirical
risk and minimizing the expected risk. The last error is the
approximation error that reflects how closely the optimal
classifier can be approximated by a function in a restricted
hypothesis space [36]. The proposed Dual Random Projection
can guarantee w̃ is a good estimator of w∗, implying a small
optimization error since the loss function is smooth. The
estimation error can be bounded by the uniform convergence
concept [37] or the data-dependent complexity estimate such
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as the Rademacher complexity [38], [39], and the approxi-
mation error is determined by the regularizer and the optimal
risk. We will investigate the tradeoff among these three types
of errors in the future.

APPENDIX A
PROOF OF PROPOSITION 1

First, if α∗ is the optimal dual solution, by replacing �(·)
in (1) with its conjugate form, the optimal primal solution can
be solved by

w∗ = arg min
w∈Rd

λ

2
‖w‖2 + 1

n

n∑

i=1

[α∗]i yi x�
i w.

Setting the gradient with respect to w to zero, we obtain

w∗ = − 1

λn

n∑

i=1

[α∗]i yixi = − 1

λn
X (α∗ ◦ y).

Second, let’s consider how to obtain the dual solution α∗
from the primal solution w∗. Note that

�(yix�
i w∗) = [α∗]i

(
yi x�

i w∗
)

− �∗ ([α∗]i ).

By the Fenchel conjugate theory [40], [41], we have α∗
satisfying

[α∗]i = �′ (yi x�
i w∗

)
, i = 1, . . . , n.

APPENDIX B
PROOF OF LEMMA 2

In the proof, we need the recent development in tail bounds
for the eigenvalues of a sum of random matrices [42], [43].

Theorem 8: ([43, Th. 1]) Let {ξ j : j = 1, . . . , n} be
i.i.d. samples drawn from a multivariate Gaussian distribu-
tion N (0, C), where C ∈ R

d×d . Define

Ĉn = 1

n

n∑

j=1

ξ j ξ
�
j .

Then, for any θ ≥ 0

Pr

{ ∥∥Ĉn − C
∥∥

2 ≥
(√

2θ(k + 1)

n
+ 2θk

n

)
‖C‖2

}

≤ 2d exp(−θ),

where k = tr(C)/‖C‖2.
We write B = 1√

m
(v1, . . . , vm), where {vi ∈ R

r }m
i=1 are

i.i.d. sampled from the Gaussian distribution N (0, I ), and
write B B� as

B B� = 1

m

m∑

i=1

vi v�
i .

Following Theorem 8, we have, with a probability at least
1 − 2r exp(−θ),

∥∥∥B B� − I
∥∥∥

2
≤
√

2θ(r + 1)

m
+ 2θr

m
.

By setting 2r exp(−θ) = δ, we have, with a probability at
least 1 − δ,
∥∥∥B B� − I

∥∥∥
2

≤
√

2(r + 1)

m
log

2r

δ
+ 2r

m
log

2r

δ
≤ 2

√
2(r + 1)

m
log

2r

δ
,

where the last inequality follows from the assumption
m ≥ 2(r + 1) log 2r

δ .

APPENDIX C
PROOF OF LEMMA 3

During the analysis, we need to use the tail bounds for
the χ2 distribution [44] and a noncommutative variant of
Bernstein’s inequality [30].

Theorem 9 (Tail Bounds for the χ2 Distribution [44]): Let
X be a random variable distributed according to the χ2

distribution with d degrees of freedom. For any ε > 0, we
have

Pr
[

X ≤ d − 2
√

dε
]

≤ exp(−ε),

Pr
[

X ≥ d + 2
√

dε + 2ε
]

≤ exp(−ε).

Theorem 10 (Noncommutative Bernstein Inequality [30]):
Let X1, . . . , X L be independent zero-mean random matrices
of dimension d1 × d2. Suppose ρ2

k = max{‖E[Xk X∗
k ]‖2,

‖E[X∗
k Xk]‖2} and ‖Xk‖2 ≤ M almost surely for all k. Then

for any τ ≥ 0,

Pr

[∥∥∥∥∥

L∑

k=1

Xk

∥∥∥∥∥
2

≥τ

]
≤ (d1 + d2) exp

(
− τ 2

2(
∑L

k=1 ρ2
k + Mτ/3)

)
.

We write Br̄ = 1√
m

(u1, . . . , um) and Br = 1√
m

(v1, . . . , vm),

where entries in ui ∈ R
d−r and vi ∈ R

r are sampled from the
standard Gaussian distribution N (0, 1). We thus have

Br̄ B�
r = 1

m

m∑

i=1

ui v�
i .

To bound the norm of ui and vi , using Theorem 9, we have,
with a probability at least 1 − δ

‖ui‖2 ≤ (d − r) + 2

√
(d − r) log

2m

δ
+ 2 log

2m

δ

≤
(√

d − r +
√

2 log
2m

δ

)2

,

‖vi‖2 ≤ r + 2

√
r log

2m

δ
+ 2 log

2m

δ

≤
(√

r +
√

2 log
2m

δ

)2

, ∀i ∈ [m].

Hence, with a probability at least 1 − δ, we have

max
1≤i≤m

‖ui v�
i ‖2 = max

1≤i≤m
‖ui‖‖vi‖

≤
(√

d − r +
√

2 log
2m

δ

)(√
r +

√
2 log

2m

δ

)
.
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In addition, we have
∥∥∥E[ui v�

i vi u�
i ]
∥∥∥

2
= r

(10,11)≤ d − r,
∥∥∥E[vi u�

i ui v�
i ]
∥∥∥

2
= d − r.

Following directly from Theorem 10, we have, with a proba-
bility at least 1 − 2δ,

‖Br̄ B�
r ‖2

≤
√

2(d − r)

m
log

d

δ
+ 2

3m

(√
d − r +

√
2 log

2m

δ

)

·
(√

r +
√

2 log
2m

δ

)
log

d

δ

=
√

2(d − r)

m
log

d

δ
+ 1

3

√
2(d − r)

m
log

d

δ

√
1

m(d − r)
log

d

δ

·
(
√

2r(d − r) +
√

4r log
2m

δ
+
√

4(d − r) log
2m

δ

+ 2
√

2 log
2m

δ

)
.

We complete the proof by combining the above inequality with
the following ones

m(d − r)
(10)≥ 32(d − r)(r + 1) log

d

δ
≥ 2r(d − r) log

d

δ
,

m(d − r)
(10)≥ 4(d − r) log

2m

δ
log

d

δ

(10,11)≥ 4r log
2m

δ
log

d

δ
,

m(d − r)
(10)≥ 4(d − r) log

2m

δ
log

d

δ
,

m(d − r)
(10)≥ 4(d − r) log

2m

δ
log

d

δ

(11)≥ 8 log2 2m

δ
log

d

δ
.

APPENDIX D
PROOF OF LEMMA 4

We write Br̄ = 1√
m

(u1, . . . , um), where {ui ∈ R
d−r }m

i=1
are i.i.d. sampled from the Gaussian distribution N (0, I ), and
write Br̄ B�̄

r as

Br̄ B�̄
r = 1

m

m∑

i=1

ui u�
i .

Following Theorem 8, we have, with a probability at least
1 − 2(d − r) exp(−θ),

∥∥∥Br̄ B�̄
r − I

∥∥∥
2

≤
√

2θ(d − r + 1)

m
+ 2θ(d − r)

m
.

By setting 2(d − r) exp(−θ) = δ, we have, with a probability
at least 1 − δ,∥∥∥Br̄ B�̄

r − I
∥∥∥

2

≤
√

2(d − r + 1)

m
log

2(d − r)

δ
+ 2(d − r)

m
log

2(d − r)

δ

≤ 4(d − r + 1)

m
log

2(d − r)

δ
,

where the last inequality follows from the facts:

2(d − r + 1)
(11)≥ m, and 2(d − r)

(11)≥ m + 2 ≥ e.

APPENDIX E
PROOF OF LEMMA 5

From the assumption, we have

[w∗]S = 0. (68)

From the expression of w∗ in (7), we have

[w∗]S = − 1

λn
XS (α∗ ◦ y)

(68)⇒ XS (α∗ ◦ y) = 0.

APPENDIX F
DERIVATION OF (67)

We have

‖w̄ − w̃‖ = 1

λn
‖X (̂α ◦ y − α̂∗ ◦ y)‖

≤ 1

λn
‖X‖2 ‖α̂ ◦ y − α̂∗ ◦ y‖

yi∈±1= 1

λn
‖X‖2‖α̂ − α̂∗‖. (69)

To bound ‖α̂ − α̂∗‖, we have

‖α̂ − α̂∗‖ =
√√√√

n∑

i=1

(
�′ (yi x̂�

i ẑ
)− �′ (yi x̂�

i z∗
))2

≤ γ

√√√√
n∑

i=1

(
x̂�

i ẑ − x̂�
i z∗

)2 = O(γ ‖ẑ − z∗‖√n).

(70)

From (69) and (70), we have

‖w̄ − w̃‖ = O

(
γ ‖X‖2‖ẑ − z∗‖

λ
√

n

)
= O

(
γ ‖ẑ − z∗‖

λ

)
,

where we use the fact that ‖X‖2 ≤ √
tr(X X�) = O(

√
n).
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