
Multi-View Concept Learning for
Data Representation

Ziyu Guan, Lijun Zhang, Jinye Peng, and Jianping Fan

Abstract—Real-world datasets often involve multiple views of data items, e.g., a Web page can be described by both its content

and anchor texts of hyperlinks leading to it; photos in Flickr could be characterized by visual features, as well as user contributed tags.

Different views provide information complementary to each other. Synthesizing multi-view features can lead to a comprehensive

description of the data items, which could benefit many data analytic applications. Unfortunately, the simple idea of concatenating

different feature vectors ignores statistical properties of each view and usually incurs the “curse of dimensionality” problem. We

propose Multi-view Concept Learning (MCL), a novel nonnegative latent representation learning algorithm for capturing conceptual

factors from multi-view data. MCL exploits both multi-view information and label information. The key idea is to learn a common latent

space across different views which (1) captures the semantic relationships between data items through graph embedding

regularization on labeled items, and (2) allows each latent factor to be associated with a subset of views via sparseness constraints.

In this way, MCL could capture flexible conceptual patterns hidden in multi-view features. Experiments on a toy problem and three

real-world datasets show that MCL performs well and outperforms baseline methods.

Index Terms—Multi-view learning, nonnegative matrix factorization, graph embedding, structured sparsity

Ç

1 INTRODUCTION

MANY real-world data analytic problems involve rich
data which consists of multiple modalities or views of

data items. For example, the same news story can be written
in different languages; in recommender systems a user’s
potential interests are reflected by not only her blog articles
but also her social circles; in a photo sharing Website (e.g.
Flickr), images could be indexed with various visual fea-
tures as well as tags contributed by users. Generally speak-
ing, different views represent features of the data items
from different perspectives and therefore often provide
information complementary to each other. A good synthes-
ization of multi-view features can lead to a more compre-
hensive description of the data items, which could benefit
many related tasks such as classification, clustering and
retrieval. For instance, by considering both user generated
content and social relationships, the recommendation per-
formance can be boosted [1]; by combining multiple (visual)
features of images, we could also improve the performance
of image classification [2], [3], search [4], etc.

A straightforward solution for synthesizing multi-view
features is to concatenate the feature vectors to form a new
vector and feed the new vector into machine learning algo-
rithms. However, this method ignores the specific statistical
properties of different views and usually incurs the curse of

dimensionality problem [5]. In recent years, multi-view learn-
ing has attracted more and more attention from the research
community. Multi-view learning approaches have been pro-
posed in various contexts, e.g. co-training of classifiers [6],
multi-view clustering [7], [8], multiple kernel learning [9],
[10], multi-view transfer learning [11], [12], etc. A growing
area in the multi-view learning literature is multi-view latent
subspace learning. The goal is to obtain a unified latent sub-
space (i.e., representation) shared by multiple views. The
dimensionality of the subspace is typically lower than that
of any single view, consequently alleviating the curse of
dimensionality problem. The earliest method, Canonical
Correlation Analysis (CCA) [13], tries to extract a common
subspace for two views by maximizing the correlations
between their projections onto the subspace. Recently, a lot
of techniques have been generalized or applied to multi-
view subspace learning, such as matrix factorization [2],
[14], [15], [16], [17], spectral embedding [18], undirected
graphical models [19] and Gaussian processes [20].

Matrix factorization is a promising technique for latent
representation learning, since the learned latent factors
could be interpreted by the corresponding basis components
and we can conveniently regularize the factorized matrices
for different purposes. Among the matrix factorization
methods, Nonnegative Matrix Factorization (NMF) [21] is a
popular one. In NMF, Each data item is reconstructed as an
additive linear combination of nonnegative basis compo-
nents. Therefore, NMF has the intuitive notion of combining
parts to form the whole, which conforms to the cognitive
process of human brains from psychological and physiologi-
cal evidences. Recently, researchers have also proposed var-
iants of NMF for multi-view problems [3], [16], [17].

In this work, we are concerned with nonnegative latent
representation learning from multi-view features. Since
the learned latent space is typically used for semantic tasks
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(e.g. classification), a good learning algorithm should be able
to capture the conceptual structures in multi-view data. A
conceptual latent space learned frommulti-view data should
possess the following properties: (1) The semantic relation-
ships between data items are preserved in the latent space.
(2) Each latent factor (i.e., latent dimension) of the latent
space has the flexibility of being associated with a subset of
views [14]. This is because the conceptual patterns hidden in
multi-view data might not be associated with all the views.
For example, people follow their own tastes for some kinds
of interests (e.g. clothes), while for interests such as
“electronic products” they are much more likely to be influ-
enced by friends and follow their recommendations; Images
of concept “striped shirts” exhibit visual patterns which are
associated with texture features but independent on color
features, since the stripes can be in different colors. However,
to our knowledge no existing multi-view latent space learn-
ing algorithm aimed to find a latent space which possesses
both properties described above.

We propose in this paper a novel nonnegative latent
representation learning algorithm, namely, Multi-view Con-
cept Learning (MCL), for multi-view data. MCL jointly fac-
torizes data matrices (containing feature vectors of data
items as columns) of different views. Each data matrix is fac-
torized into a basis matrix and an encoding matrix where the
encoding matrix is shared among different views and is
called the consensus encoding matrix. The intuition behind
this joint factorization scheme is that each dimension of the
consensus latent space represents a conceptual pattern
which is interpreted by the combination of corresponding
basis vectors from different views. We regularize this basic
factorization framework to encourage the aforementioned
two properties. First, in order to ensure the learned latent
space captures the semantic relationships between data
items, partial label information is incorporated into the fac-
torization framework via imposing graph embedding [22]
regularization on the consensus encodings directly. The gen-
eral idea is that we encourage items of the same category to
be close to each other while keep those belonging to different
categories far away from each other in the learned latent
space. Second, we add structured sparseness constraints on
the basis matrices to allow a latent dimension to be associ-
ated with a subset of views. Specifically, for each view’s
basis matrix we add a L1;1 norm regularizer to encourage
some basis vectors to be zeroed-out [14]. By imposing such
structured sparseness constraints, some latent dimensions
would be explained by subsets of views rather than by all
the views only. Finally, an L1 regularizer is imposed on the
consensus encoding matrix since a data item usually does
not possess many conceptual features. This would force the
latent space to represent information compactly.

We develop an optimization method for MCLwhich opti-
mizes the objective functionwith respect to the basis matrices
and the consensus encoding matrix alternately. For the sub-
problems involving basis matrices, we develop an efficient
optimization algorithm based on the composite gradient
mapping method which has been proved to converge very
fast [23]. For the sub-problem of the consensus encoding
matrix, a multiplicative update algorithm is proposed.
We also analyze the computational complexity of the pro-
posed optimization method. For empirical evaluation, a toy

factorization problem and three real-world datasets are
employed. Experimental results on these datasets indicate
thatMCL is effective and outperforms baselines significantly.

The contributions of this work are summarized as fol-
lows: (1) We propose the problem of learning a nonnegative
conceptual representation from multi-view data. In order to
capture the flexible conceptual patterns in multi-view data,
the learned latent space ought to not only preserve the
semantic relationships between data items, but also allow
each latent factor to be associated with a subset of views.
Nevertheless, no existing work targeted the same goal.
(2) We propose a novel nonnegative latent representation
learning algorithm MCL to address this problem. MCL
forces the learned latent space to possess the aforemen-
tioned two properties by graph embedding regularization
on labeled items’ encodings and structured sparseness reg-
ularization on basis matrices. (3) We develop a block coordi-
nate descent method to solve the optimization problem of
MCL. The optimization of basis matrices is based on the
recently proposed composite gradient mapping technique
[23]. For the consensus encoding matrix, we develop a mul-
tiplicative update algorithm. The optimization method is
efficient, as we will show in complexity analysis. (4) We
evaluate MCL qualitatively on a synthetic toy dataset and
quantitatively on three real-world datasets. The results
show that MCL works as expected and is significantly supe-
rior over baseline methods.

2 A BRIEF REVIEW OF NMF AND RELATED

VARIANTS

In this section we briefly review NMF and some follow-up
variants which are related to our work. We begin with a
description of common notations in this paper.

2.1 Common Notations

In this paper, we use upper case letters in bold face and
lower case letters in bold face to represent matrices and vec-
tors, respectively. For matrix M, we denote its ði; jÞth ele-
ment by Mij. The ith element of a vector a is denoted by ai.

Given a set of N items, we use X 2 RM�N
þ to denote the non-

negative data matrix where the ith column vector is the fea-
ture vector for the ith item. In the multi-view setting, we
haveH views and the data matrix of the vth view is denoted

by XðvÞ 2 RMv�Nþ , where Mv is the dimensionality of the vth
view. Throughout this paper, kMkF denotes the Frobenius
norm of matrixM and kakp denotes the Lp norm of vector a.

2.2 NMF and Related Variants

NMF [21] is designed for analyzing data matrices with non-
negative elements. Given data matrix X and a pre-specified
positive integer K < minðM;NÞ, the goal is to find two

nonnegative matrices U 2 RM�K
þ and V 2 RK�N

þ such that

their product well approximates the original data matrix:

X � UV:

When each column of X represents an item, NMF can be
interpreted as approximating it by a linear combination of k
“basis” columns in U where the combination weights come
from the corresponding column of V. Therefore, the basis
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matrix U and the encoding matrix V together define a latent
space representation for the data items. Due to the nonnega-
tive constraints, the factorized latent space has the intuitive
notion of combining parts to form an object [21].

In order to learn U and V, Lee and Seung introduced two
cost functions to quantify the quality of the approximation:
a least square cost and a divergence-style cost [21]. In this
paper, we are focused on the least square cost which is
defined as

O ¼
XM
i¼1

XN
j¼1

Xij �
XK
k¼1

UikVkj

 !2

¼ kX�UVk2F : (1)

The optimization problem in terms of O can be formu-
lated as

min
U;V

1

2
kX�UVk2F

s.t. Uik � 0; Vkj � 0; 8i; j; k:
(2)

The objective function O is not convex when both U and V
are taken as variables. However, O is convex in Uwhen V is
fixed and vice versa. Lee and Seung [21] presented an itera-
tive multiplicative update algorithm to find a local mini-
mum of O. In the tth iteration, new values of U and V are
calculated from their values in the last iteration:

Utþ1
ik ¼ Ut

ik

ðXðVtÞT Þik
ðUtVtðVtÞT Þik

V tþ1
kj ¼ V t

kj

ððUtþ1ÞTXÞkj
ððUtþ1ÞTUtþ1VtÞkj

:

By constructing auxiliary functions, it is proved that O is
non-increasing under the above update rules.

The basic NMFmodel has been extended in various ways
in recent years. We just name a few which are related to our
work. A comprehensive survey can be found in [24]. One
direction related to our work is incorporating label informa-
tion into NMF [25], [26]. These works added discriminative
information into NMF via regularizing the encodings of
items (i.e., columns of V) by fisher-style discriminative con-
straints. Our method also exploits label information through
regularizing the encoding matrix V. Nevertheless, our regu-
larization is defined as a general graph embedding frame-
work, with fisher discriminative analysis as its special case
[22]. Another related variant of NMF is sparse NMF [27],
[28], [29]. Sparseness constraints not only encourage local
and compact representations, but also improve the stability
of the factorization. Most previous works on sparse NMF
employed L1 norm or ratio between L1 norm and L2 norm
to achieve sparsity on U and V. In our case, we also impose
a L1 penalty on V. However, the story for the basis part is
different since we have multiple views and the goal is to
allow each latent dimension to be associated with a subset
of views. Therefore, structured sparseness penalties [14] are
used to achieve this goal.

Recently, NMF has also been adapted to the multi-view
setting in specific contexts, e.g. clustering [17], image anno-
tation [16] and semi-supervised learning [3]. However,
none of these works aimed to learn latent spaces which

preserve semantic relationships between items and mean-
while, allow latent dimensions to be associated with subsets
of views. In [3], Jiang et al. proposed a semi-supervised
Multi-view NMF which also exploited partial label informa-
tion of data items. Our MCL is different from their method
from two aspects: (1) In their method label information was
incorporated as a factorization constraint on V, i.e., recon-
structing the label indicator matrix through multiplying V
by a weight matrix. Hence, their method intrinsically
imposed indirect affinity constraints on encodings of labeled
items, while MCL directly penalizes the distances between
labeled items in the latent space. (2) their model did not
have sparseness constraints, while our model employs
sparseness constraints to learn flexible latent factors. We will
also compare MCLwith the method in [3] in experiments.

3 MULTI-VIEW CONCEPT LEARNING

In this section, we introduce Multi-view Concept Learning.
Fig. 1 illustrates the work flow of MCL. From the set of
items, we first obtain various features to construct the set of
data matrices fXðvÞgHv¼1 where XðvÞ 2 RMv�Nþ . Then the
labeled items are used to construct the within-class affinity
graph Ga and the between-class penalty graph Gp. Gener-
ally speaking, Ga encourages items with the same label to
be close to one another in the learned latent space, while Gp

tries to keep items of different classes far away from each
other. The data matrices are then factorized into basis matri-

ces (fUðvÞgHv¼1) and the consensus encoding matrix V. Note
that in Fig. 1 fully white elements in the matrices mean their
values are 0. By imposing a structured sparseness constraint

on each UðvÞ, some basis vectors could be zeroed-out so that
the corresponding latent dimensions do not depend on that

view. For example, in Fig. 1 the second column of Uð1Þ and
the third column of Uð2Þ are zero columns, which means the
second latent dimension is not associated with view 1 and
the third is not associated with view 2. For V, we add a
sparseness constraint in addition to the graph embedding
regularization to prevent an item from possessing too many
latent features. In the following, we discuss the design
choices and formulate the optimization problem of MCL.

3.1 Multi-View NMF

The consensus principle is the fundamental principle in
multi-view learning [30]. The basic optimization framework
of MCL tries to learn a common latent space via a shared
encoding matrix V [14], [16], [17]:

min
fUðvÞgHv¼1;V

1

2

XH
v¼1
kXðvÞ �UðvÞVk2F

s.t. U
ðvÞ
ik � 0; Vkj � 0; 8i; j; k; v:

(3)

In this way, each item is forced to have the same encoding
under different views and the basis matrices of different
views are coupled together through V. However, such an
unsupervised framework cannot guarantee that the learned
latent space captures the conceptual structures in multi-
view data. Next, we introduce the semi-supervised part of
the model.
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3.2 Semi-Supervision on V

In order to let the learned latent space reflect the semantic
relationships between items, we propose to regularize the
consensus encoding matrix V by a graph embedding frame-
work [22]. Since we assume only partial label information is
obtained, V and each data matrix can be divided into labeled

part and unlabeled part. We assume that columns in each XðvÞ

are arranged such that labeled items come before unlabeled

ones. Hence, XðvÞ and V can be written as XðvÞ ¼ ½XðvÞ;l XðvÞ;u�
and V ¼ ½Vl Vu�, where the superscripts l and u mean
“labeled” and “unlabeled”, respectively. As shown in Fig. 1,
we construct two graphs, the within-class affinity graph Ga

and the between-class penalty graph Gp, connecting within-
class items and between-class items, respectively. The nodes
in the graphs are labeled items and the edges are specified by
the corresponding weighted adjacency matrices, denoted by

Wa andWp. Let vli be the ith column ofVl. The graph embed-
ding objectives are defined as follows:

min
Vl

1

2

XNl

i¼1

XNl

j¼1
Wa

ijkvli � vljk22 ¼ min
Vl

1

2
tr½VlLaðVlÞT �; (4)

max
Vl

1

2

XNl

i¼1

XNl

j¼1
Wp

ijkvli � vljk22 ¼ max
Vl

1

2
tr½VlLpðVlÞT �; (5)

where trð�Þ denotes the trace of a matrix,Nl is the number of
labeled items and La ¼ Da �Wa is the graph Laplacian
matrix for Ga with the ði; iÞth element of the diagonal matrix

Da equals
PNl

j¼1 W
a
ij (Lp is for Gp). Generally speaking,

Eq. (4) means items belonging to the same class should be
near each other in the learned latent space, while Eq. (5)
tries to keep items from different classes as distant as possi-
ble. However, only with the nonnegative constraints Eq. (5)
would diverge. Note that there is an arbitrary scaling factor
in solutions to problem (3): for any invertible K �K

matrixQ, we have UðvÞV ¼ ðUðvÞQÞðQ�1VÞ. It means for any

solution < fUðvÞgHv¼1;V > of (3), we can always find a

proper Q such that < fUðvÞQgHv¼1;Q�1V > is an equivalent

solution and all elements of Q�1V are within ½0; 1�. There-
fore, without loss of generality, we add the constraints
fVkj 	 1; 8k; jg to put an upper bound on (5).

The above graph embedding regularization framework is
general and can be instantiated by a specification of Wa and
Wp. In this work, we defineWa andWp as

Wa
ij ¼

1
Nl
ci

� 1
Nl ; if ci ¼ cj

0; otherwise

(
; (6)

Wp
ij ¼

1
Nl ; if ci 6¼ cj
0; otherwise

�
; (7)

where ci denotes the label of item i and Nl
ci
is the total num-

ber of items with label ci. Although more sophisticated defi-
nitions for Wa and Wp (such as the maximum margin style
definitions in [22]) are available, they require additional
computation for similarity estimation and nearest neighbor
search. In this work we employ the above definitions for
simplicity and efficiency.

3.3 Sparseness Constraints

For each UðvÞ, a structured sparseness regularizer is added
to the objective function to encourage some basis column

vectors in UðvÞ to become 0. This makes view v independent
of the latent dimensions which correspond to these zero-
valued basis vectors. Let U be the basis matrix for an arbi-
trary view. One can achieve structured sparsity via L1;q

norm where q is an integer ranging from 1 to1:

kUk1;q ¼
XK
k¼1
kukkq;

Fig. 1. An illustration of the work flow of the proposed approach. Fully White color in the matrices means value 0.
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where uk represents the kth column of U. To keep the opti-
mization problem convex in U, q ¼ 2 and q ¼ 1 are com-
mon choices. In this work, we choose p ¼ 1 since it has
been shown that L1;1 is more effective than L1;2 [31]. L1;1
norm of matrix U is defined as

kUk1;1 ¼
XK
k¼1

max
1	i	M

jUikj: (8)

Finally, the L1 norm of each item’s encoding is added to
the objective function to make the encoding sparse with
the intuition that an item cannot possess too many con-
ceptual features:

kVk1;1 ¼
XN
i¼1

XK
k¼1
jVkij: (9)

3.4 Objective Function of MCL

By synthesizing the above objectives, the optimization
problem of MCL is formulated as

min
fUðvÞgHv¼1;V

1

2

XH
v¼1
kXðvÞ �UðvÞVk2F þ a

XH
v¼1
kUðvÞk1;1

þ b

2
ftr½VlLaðVlÞT � � tr½VlLpðVlÞT �g

þ gkVk1;1
s.t. U

ðvÞ
ik � 0; 1 � Vkj � 0; 8i; j; k; v:

(10)

Since we constrain elements of V to be in ½0; 1�, this optimi-
zation problem is well lower bounded. Note that the scaling
issue (i.e., scaling up U and scaling down V by the same fac-
tor do not affect the least square terms but always decrease
the L1;1 term) in the nonnegative sparse coding problem
[27] does not exist here due to the structured sparseness reg-
ularization on U’s. The way we incorporate label informa-
tion is similar to the previous Fisher-NMF works [25], [32].
However, the graph embedding framework in our model is
general and the fisher terms can be taken as a concrete
instantiation.

The optimization problem (10) is not convex in both

fUðvÞgHv¼1 and V. Therefore, we can only find its local min-
ima. In the next section, we develop an efficient optimiza-
tion method for (10).

4 OPTIMIZATION

When fUðvÞgHv¼1 are fixed, (10) is convex inV, and vice versa.
Therefore, we propose to solve MCL by a block coordinate
descent method [33] which optimizes one block of variables

(fUðvÞgHv¼1 or V) while keeping the other block fixed. The
procedure is depicted in Algorithm 1. Next, we describe the
detailed ideas for addressing the two subproblems (lines 4
and 5 in Algorithm 1).

4.1 Optimizing fUðvÞgHv¼1
It is easy to see that, given V the UðvÞ’s are independent
with one another. Since the optimization method is the
same, here we just focus on an arbitrary view and use X
and U to denote respectively the data matrix and the

basis matrix for the view. The subproblem involving U
can be written as

min
U

fðUÞ :¼ 1

2
kX�UVk2F þ akUk1;1

� �
s.t. Uik � 0; 8i; k:

(11)

Algorithm 1. Optimization of MCL

Input: fXðvÞgHv¼1, a, b, g
Output: fUðvÞgHv¼1, V

1 begin
2 Randomly initialize U

ðvÞ
ik � 0, 1 � Vkj � 0, 8i; j; k; v. ;

3 repeat
4 Optimize problem (10) with respect to fUðvÞgHv¼1 while

keeping V fixed. ;
5 Optimize problem (10) with respect to V while keeping

fUðvÞgHv¼1 fixed.
6 until convergence or max no. iterations reached;
7 end

fðUÞ is a composite objective functionwhere the first term
is strongly convex and differentiable, and the second term is
convex. We develop an optimization algorithm based on the
composite gradient mapping technique proposed for mini-
mizing composite objective functions [23]. The idea is to iter-
atively minimize an auxiliary function and adjust the guess
of the Lipschitz constant of the first term of fðUÞ so that we
decrease the objective function as fast as possible. Let

fðUÞ ¼ 1
2 kX�UVk2F andUt be the value ofU in the tth itera-

tion. In our case, the auxiliary function is defined as

mLðUt;UÞ ¼ fðUtÞ þ tr½rfðUtÞT ðU�UtÞ�
þ L

2
kU�Utk2F þ akUk1;1;

(12)

where L is the estimate of the Lipschitz constant, Lf , of fð�Þ,
andrfðUtÞ is the gradient of fð�Þ at Ut:

rfðUtÞ ¼ UtVVT � XVT : (13)

By minimizing mLðUt;UÞ with the nonnegative constraints,

we obtain a candidate for Utþ1 which is denoted by TLðUtÞ:

TLðUtÞ ¼ arg min
Uik�0;8i;k

mLðUt;UÞ (14)

Note that it is guaranteed that mLðUt;TLðUtÞÞ 	 fðUtÞ since
mLðUt;UtÞ ¼ fðUtÞ and TLðUtÞ is the minimizer of

mLðUt;UÞ. It has been proved that for L � Lf we have

fðTLðUtÞÞ 	 mLðUt;TLðUtÞÞ [23]. Therefore, the optimiza-
tion algorithm starts with an estimate L0 such that
0 < L0 	 Lf , and in each iteration adjusts L until we get

fðTLðUtÞÞ 	 mLðUt;TLðUtÞÞ. The algorithm is shown in
Algorithm 2. The inner loop (lines 5-11) tries to find an

acceptable Utþ1. L can keep increasing only if L 	 Lf . Then
L is scaled down by hd (line 13) since the step size (i.e.,

kTLðUtÞ �Utk) is inversely proportional to L. When
hu ¼ hd ¼ 2, the total number of inner iterations after t outer

iterations can be upper bounded by 2ðtþ 1Þ þ log 2
Lf

L0
[23].

Algorithm 2 was proved to converge as Oð1=T Þ where T is
the total number of outer iterations [23]. Nesterov also
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proposed an accelerated version of the algorithm with con-

vergence rate Oð1=T 2Þ.

Algorithm 2. Composite Gradient Mapping

Input: hu > 1, hd > 1: scaling parameters for L
1 begin
2 Initialize U0

ik � 0, 8i; k, and L0 : 0 < L0 	 Lf . ;
3 t ¼ 0 ;
4 repeat
5 repeat
6 L ¼ Lt;
7 Optimize (14) to get TLðUtÞ ;
8 if fðTLðUtÞÞ > mLðUt;TLðUtÞÞ then
9 L ¼ Lhu
10 end
11 until fðTLðUtÞÞ 	 mLðUt;TLðUtÞÞ;
12 Utþ1 ¼ TLðUtÞ;
13 Ltþ1 ¼ maxðL0; L=hdÞ;
14 t ¼ tþ 1
15 until convergence;
16 end

The remaining problem is how to optimize (14) effi-
ciently since we need to employ its solver as a routine in the
inner loop of Algorithm 2. We propose a linear time solver
for (14). First, we can rewrite mLðUt;UÞ as follows (let

Y :¼ U�Ut for clarity)

mLðUt;UÞ ¼ L

2
kYk2F þ tr½rfðUtÞTY� þ akUk1;1 þ fðUtÞ

¼ L

2
kYk2F þ

2

L
tr½rfðUtÞTY� þ 1

L2
krfðUtÞk2F

� �

þ akUk1;1 þ fðUtÞ � 1

2L
krfðUtÞk2F

¼ L

2
kYþ 1

L
rfðUtÞk2F þ akUk1;1 þ const:

Substituting U�Ut for Y, the optimization problem (14)
becomes

min
U

L

2
kU�Ut þ 1

L
rfðUtÞk2F þ a

XK
k¼1

max
1	i	M

jUikj

s.t. Uik � 0; 8i; k:
(15)

The Frobenius norm term is intrinsically a summation over
the costs of all U’s elements. The second term sums over the
infinity norms of all columns of U. Hence, (15) can be fur-
ther decomposed into independent optimization problems
for different columns of U. Let u be an arbitrary column of

U and b be the column of Ut � 1
LrfðUtÞ� �

at the same index.

The problem for this column can be written as

min
u

1

2
ku� bk22 þ

a

L
kuk1

s.t. ui � 0; 8i:
(16)

Next we show we can get rid of the nonnegative constraints
and derive the optimal solution to (16) by the optimal solu-
tion to the unconstrained version:

min
u

1

2
ku� bk22 þ

a

L
kuk1: (17)

First, we need the following lemma.

Lemma 1. Let u
 be the optimal solution to (17). For any element
u
i of u


, we have

bi ¼ 0) u
i ¼ 0;

bi > 0) u
i � 0;

bi < 0) u
i 	 0:

The proof can be found in the appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2015.2448542.
Lemma 1 indicates that (1) if all the elements of b are non-
negative, we can remove the nonnegative constraints in (16)
safely; (2) we can analyze the optimal solution to (16) by
dealing with positive and negative elements in b separately.
The following proposition gives the optimal solution to (16).

Proposition 1. Let ~b be a vector consisting of the positive ele-
ments in b and ~u represent a variable vector consisting of the
elements in u at the same indices. Let ~u
 be the optimal

solution to min~u
1
2 k~u� ~bk22 þ a

L k~uk1. The optimal solution

u
 to (16) can be obtained as follows: for each index i, if
bi 	 0, then u
i ¼ 0; otherwise, u
i is obtained as the corre-
sponding element of ~u
.

The proof is in the appendix, available in the online sup-
plemental material. By Proposition 1, we just need to extract
positive elements from b to form ~b and address the uncon-
strained problem:

min
~u

1

2
k~u� ~bk22 þ

a

L
k~uk1: (18)

Although (18) can be addressed using properties of the
subgradient set of k~uk1, a more efficient solution to its
dual form is well established. Define a as the dual variable.
We have

min
~u

1

2
k~u� ~bk22 þ

a

L
k~uk1

� 	

¼ min
~u

max
a

aT ð~b� ~uÞ � 1

2
kak22 þ

a

L
k~uk1

� 	

¼ max
a

min
~u
�aT ~uþ a

L
k~uk1 þ aT ~b� 1

2
kak22

� 	

¼ max
a

aT ~b� 1

2
kak22 s:t:kak1 	

a

L

� 	
;

which is equivalent to the following problem

min
a

1

2
ka� ~bk22 s:t:kak1 	

a

L
: (19)

Moreover, a satisfies the relation a ¼ ~b� ~u. Thus, by solving
(19) we can readily obtain a solution for (18). (19) is the
“Euclidean projection onto the L1-ball” problem and an effi-
cient solution has been proposed by Duchi et al. [34]. Here
we only describe the results but skip the analysis. In our
case the optimal vector a
 is computed as

a
i ¼ maxð0; ~bi � uÞ; (20)
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where u is a nonnegative scalar. Let ~bðiÞ be the ith largest

element in ~b. u is computed as

u ¼ 1

r

Xr
i¼1

~bðiÞ � a

L

 !
; (21)

where r is the maximum index satisfying the condition

Xr
i¼1
ð~bðiÞ � ~bðrÞÞ < a

L
: (22)

In order to handle the smallest element in ~b, an extra 0 is

added to ~b, i.e., ~bðMþþ1Þ ¼ 0 where Mþ is the length of ~b. If

we test up to the 0 element to find
PMþþ1

i¼1 ð~bðiÞ � 0Þ ¼PMþ
i¼1 ~bi < a

L , the optimal choice for u is 0. In this case, ~b is

in the L1-ball and a
 ¼ ~b. This corresponds to ~u
 ¼ 0, i.e.,
the corresponding basis vector is zeroed-out.

The key of the optimization of (19) is calculating u. A

straightforward way is to sort ~b and process the elements
sequentially. In this work, we employ the algorithm intro-
duced by Duchi et al. [34] to calculate u which is linear in
Mþ. The algorithm is presented in the appendix, available
in the online supplemental material.

4.2 Optimizing V

When fUðvÞgHv¼1 are fixed, the subproblem for V can be
written as

min
V

cðVÞ :¼
�
1

2

XH
v¼1
kXðvÞ �UðvÞVk2F þ gkVk1;1

þ b

2
ftr½VlLaðVlÞT � � tr½VlLpðVlÞT �g

�
s.t. 1 � Vkj � 0; 8j; k:

(23)

This is a bounded nonnegative quadratic programming
problem for V. Sha et al. [35] proposed a general multiplica-
tive optimization scheme for this kind of problems. We
follow their idea and develop a multiplicative update algo-
rithm for optimizing V. The minor difference is that they
dealt with vector variables while in our case the variable is
a matrix.

First, recall that XðvÞ ¼ ½XðvÞ;l XðvÞ;u� and V ¼ ½Vl Vu�. We
can transform the first term of cðVÞ:

1

2

XH
v¼1
kXðvÞ �UðvÞVk2F

¼ 1

2

XH
v¼1

tr½ðXðvÞ �UðvÞVÞT ðXðvÞ �UðvÞVÞ�

¼ 1

2

XH
v¼1
ðtr½VT ðUðvÞÞTUðvÞV� � 2tr½VT ðUðvÞÞTXðvÞ�Þ

þ const

¼ 1

2

XH
v¼1
ðtr½ðVlÞT ðUðvÞÞTUðvÞVl� � 2tr½ðVlÞT ðUðvÞÞTXðvÞ;l�

þ tr½ðVuÞT ðUðvÞÞTUðvÞVu� � 2tr½ðVuÞT ðUðvÞÞTXðvÞ;u�Þ
þ const:

For compactness and clarity, let P ¼PH
v¼1ðUðvÞÞTUðvÞ and

Ql ¼PH
v¼1ðUðvÞÞTXðvÞ;l. Qu is defined similarly for the unla-

beled part. Eq. (23) can be transformed into

min
V

1

2
tr½ðVlÞTPVl� � tr½ðVlÞTQl� þ gkVlk1;1

þ b

2
ftr½VlLaðVlÞT � � tr½VlLpðVlÞT �g

þ 1

2
tr½ðVuÞTPVu� � tr½ðVuÞTQu� þ gkVuk1;1

s.t. 1 � Vkj � 0; 8j; k:

(24)

Therefore, we can update Vl and Vu separately. To derive
the update rules, similar auxiliary functions as those in [35]
can be designed. We only show the results here and defer
the detailed derivations to the appendix, available in the
online supplemental material:

V l
kj  min 1;

�Bkj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

kj þ 4AkjCkj

q
2Akj

V l
kj

8<
:

9=
;; (25)

V u
kj  min 1;

�ðg �Qu
kjÞ þ jg �Qu

kjj
2ðPvuj Þk

V u
kj

( )
; (26)

where Akj, Bkj and Ckj are

Akj ¼ ðPvljÞk þ bððDa þWpÞ�vlkÞj; (27)

Bkj ¼ g �Ql
kj; (28)

Ckj ¼ bððDp þWaÞ�vlkÞj: (29)

Here vlj and �vlk denote the jth column vector and the kth row

vector of Vl, respectively.

4.3 Computational Complexity Analysis

The major space cost of MCL is due to the matrices

fUðvÞgHv¼1, V, Wa and Wp, which is OðKðPH
v¼1 Mvþ

NÞ þ 2ðNlÞ2Þ. The time complexity consists of two parts,

corresponding to the subproblems for fUðvÞgHv¼1 and V

respectively. For optimizing each UðvÞ, we need to run
Algorithm 2. The core step is the optimization of (14), which

requires solving (16) for each column of UðvÞ. The cost of

solving (16) for a column of UðvÞ is OðMvÞ, so the total cost
of solving (14) is OðMvKÞ. In the outer loop of Algorithm 2

we also need to compute rfðUÞ (OðMvK
2Þ if we pre-com-

pute VVT and XðvÞVT ). Assume we run T iterations of the
outer loop of Algorithm 2, and recall that the total number
of iterations of the inner loop is upper bounded by

2ðT þ 1Þ þ log 2
Lf

L0
. The major cost for optimizing UðvÞ is

OðMvKð2ðT þ 1Þ þ log2
Lf

L0
Þ þ TMvK

2Þ. Regarding V, we

update Vl and Vu iteratively. Let Nl and Nu be the number
of labeled and unlabeled items, respectively. In each itera-

tion, we need to compute three matrices for Vl (Eqs. (27)-

(29)): A (OðNlK2 þ ðNlÞ2KÞ), B (OðNlKÞ) and C (OððNlÞ2
KÞ). For Vu, the cost for computing PVu is OðNuK2Þ. Com-
bining these pieces together and incorporating the costs of
Eqs. (25) and (26), the major cost for optimizing V is
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OðT 0ðNK þNK2 þ ðNlÞ2KÞÞ, where T 0 is the number of iter-
ations. We can see that the time cost of MCL is linear in N

andMv, if other variables are fixed. Although ðNlÞ2 is a qua-
dratic term, it only depends on the number of labeled items.
In practice, labeled items are far less than unlabeled items.
Considering variables other than N and Mv are typically
much smaller, MCL is efficient.

In practice, we do not have to optimize the subproblems
for fUðvÞgHv¼1 and V until convergence in each iteration of
Algorithm 1. Instead, we optimize each subproblem for a
few iterations, which also prevents the optimization from
being too greedy. In experiments, we set T ¼ T 0 ¼ 10.

5 EXPERIMENTS

In this section, we show the empirical results of our
approach on learning latent representations from multi-
view inputs. We first applied MCL on a synthetic toy prob-
lem to investigate the efficacy of the proposed optimization
method. Then three real-world datasets were employed for
quantitatively testing MCL’s performance on item classifica-
tion and clustering.

5.1 A Toy Example

The major properties of MCL include: (1) The semantic rela-
tionships between items can be captured by the learned
latent space through incorporating label information by a
graph embedding framework. (2) Each dimension of the
learned latent space has the flexibility of being associated
with an arbitrary subset of views, which is encouraged by
the L1;1 terms. We constructed a toy factorization problem
to investigate whether these properties can be recovered by
the proposed optimization method. The toy dataset con-
sisted of two views of 20 data items generated from two cat-
egories, c1 and c2. The first 10 items belonged to c1 and the
remaining ones belonged to c2. The underlying latent space
had six dimensions, with three for each category. Among
the three dimensions for a category, two dimensions were
private to view 1 and view 2 respectively, and the third one
was a shared dimension. The dimensionality of both views
was 10. First, we randomly generated 10� 6 basis matrices
for the two views, with elements produced by a Gamma
distribution Gammað1; 0:9Þ. We also randomly retained
30-40 percent elements of each basis vector to be zero to sim-
ulate the notion of “parts”. Second, the consensus encoding
matrix was generated, where each item was a weighted
combination of the basis vectors for the corresponding

category and the weights were randomly distributed in
ð0:4; 1Þ. Finally, we obtained the data matrices via multiply-
ing the generated basis matrices by the consensus encoding
matrix and adding Gaussian noise with standard deviation
0.05. The generated basis matrices and consensus encoding
matrix are shown in Fig. 2a, where the first three columns of

Uð1Þ and Uð2Þ are for c1 and the remaining ones are for c2.
To run MCL, we also need to provide partial label infor-

mation for the dataset. We treated five items from each cate-
gory as labeled items. Fig. 2b shows the latent space
recovered by MCL. We can see that MCL correctly factor-
ized the data matrices, capturing both the semantic struc-
ture in the encoding matrix and the shared-private
structure in the basis matrices. The recovered results were
very similar to the ground truth. This indicates the two
important properties discussed above can be recovered by
our optimization method. We further tested the necessity of
the regularization terms. First, we set b ¼ 0, which corre-
sponded to removing the graph embedding terms. The
results are shown in Fig. 2c. We found in this setting the
semantic structure of V was not well recovered, e.g. some
items of c2 had weak connections with c1’s latent features.
The recovered V exhibited a larger within-class variance
and a lower average between-class distance. As a side effect,

Uð1Þ and Uð2Þ were not well recovered either. Second, we
removed the influence of the L1;1 terms by setting a ¼ 01.
The learned latent space is shown in Fig. 2d. Without the
L1;1 constraints, the optimization algorithm tended to learn
dense basis matrices with a lot of large values (some above
10). Consequently, the weights in V became much lower,
although the semantic structure was still preserved.

To summarize, we demonstrated via a toy example that
(1) the optimization method worked as expected; (2) both
the graph embedding regularization and the structured
sparseness regularization were important for recovering the
conceptual structures in the underlying latent space.

5.2 Experiments on Real-World Datasets

5.2.1 Datasets

We use three real-world datasets to evaluate MCL:
Reuters. This dataset was constructed from the Reuters

Multilingual collection [36] which contains totally 111,740
news documents written in five different languages.

Fig. 2. Latent spaces recovered on a toy example. (a) The true underlying basis matrices and consensus encoding matrix generated randomly as
described in the text. (b) The latent space recovered by MCL. (c) The latent space recovered by MCL with b ¼ 0, i.e., removing influence of the graph
embedding terms. (d) The latent space recovered by MCL with a ¼ 0, i.e., removing influence of the L1;1 penalty terms on U’s. Fully white columns
correspond to zero-valued vectors. For V, we let 1 correspond to fully black. For U’s, 1.5 corresponds to fully black and all values above 1.5 are
drawn as fully black.

1. In this case we also set g ¼ 0 to eliminate the scaling issue for non-
negative sparse coding models.
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Documents for each language can be divided into a com-
mon set of six categories. Each document was translated
into the other four languages and represented as TF-IDF
vectors. We took documents written in English as the first
view and their Italian and Spanish translations as the sec-
ond and third views. For each category, we randomly sam-
pled 300 documents, resulting in a dataset with 1,800
documents in total.

MM2.0. The second dataset came from Microsoft
Research Asia Internet Multimedia Dataset 2.0 (MSRA-MM
2.0) [37]. MSRA-MM 2.0 consists of about 1 million images
which were respective search results for 1,165 popular query
concepts inMicrosoft Live Search. Each concept has approxi-
mately 500-1,000 images. For each image, its relevance to the
corresponding concept was manually labeled with three lev-
els: very relevant, relevant and irrelevant. Seven low level
features were extracted for each image. To form the experi-
mental dataset, we randomly selected 25 query concepts
from theAnimal,Object and Scene branches as categories, and
then selected 200 images for each concept. Specifically, if the
concept had more than 200 “very relevant” images, we sim-
ply randomly sampled 200 images from them. Otherwise, all
“very relevant” images were taken and, if less than 200, we
further randomly sampled images from “relevant” images.
“Irrelevant” images were discarded. We took four features
in MSRA-MM 2.0 as four views: 64D HSV color histogram,
144D color correlogram, 75D edge distribution histogram
and 128D wavelet texture. ImgNet. The third dataset was
obtained from ImageNet [38], a real-world image database
containing roughly 15 million images organized according
to theWordNet hierarchy. Currently, over 20 thousand noun
synsets in WordNet are indexed and each synset has over
500 images on average.We randomly chose 50 leaf synsets in
the hierarchy as categories and randomly sampled 200
images from each selected synset. Three views of this dataset
were 64D HSV histogram, 1,000D bag of SIFT [39] visual
words, and 512DGIST descriptors [40].

The statistics of these datasets are summarized in Table 1.

5.2.2 Evaluation Methodology

In order to show the effectiveness of MCL, we compared it
with the following baseline methods:

� NMF on best view (NMF-b): This baseline simply
applies NMF [21] on each view and reports the best
performance.

� Feature concatenation (ConcatNMF): This method
concatenates feature vectors of different views to
form a united representation and then applies NMF.

� Multi-view NMF (MultiNMF): This is the unsuper-
vised Multi-view NMF algorithm proposed in [17].

� Semi-supervised Unified Latent Factor method
(SULF): SULF [3] is a multi-view nonnegative

factorization method which models partial label
information as a factorization constraint on Vl.

� Graph regularized NMF (GNMF): This variant of
NMF was originally proposed as a manifold regular-
ized version of NMF [41]. We extended it to the
multi-view case and replaced the affinity graph for
approximating data manifolds with the within-class
affinity graph defined in Eq. (6) to make it a semi-
supervised method on multi-view data.

Note that the first three are unsupervised methods while
the last two are semi-supervised methods.

The above six methods were evaluated by text/image
classification and clustering. We adopted an evaluation
scheme similar to 5 � 2 cross-validation [42], [43]. For each
dataset, we generated five random train-test splits. In a split,
we randomly took 50 percent items from each category as
labeled training data and put the remaining items into the
test set. Two-fold cross-validation was performed for each
split. Thus, there were totally 10 test cases. For each test
case, we run each method three times and computed the
averaged performance. The overall averaged performance
and standard deviation were reported. In case the method
has parameters, we tuned the parameters on a separate ran-
dom split. The dimensionalities of the latent space were
empirically set to 50, 100 and 150, for Reuters, MM2.0 and
ImgNet respectively.

We used the learned representations of different meth-
ods for classification and clustering. For classification, the
training items were fed to a kNN classifier (k ¼ 9) and the
Accuracy of the classifier on the test items was calculated.
For clustering, k-means was employed as the clustering
method. Since the semi-supervised methods made use of
the label information of training data, we only performed
clustering on test items for fairness. To measure clustering
performance, two metrics, Accuracy and Normalized Mutual
Information (NMI) were used. Accuracy is defined as

Accuracy ¼
Pn

i¼1 dðsi;mapðriÞÞ
n

; (30)

where n is the total number of items for clustering, ri and si
are cluster labels of item i in clustering results and in
ground truth, respectively, dðx; yÞ equals 1 if x ¼ y and
equals 0 otherwise, andmapðriÞ is the permutation mapping
function which maps ri to the equivalent cluster label in
ground truth. This mapping can be obtained by the Kuhn-
Munkres algorithm [44]. Given two sets of item clusters C

and Cy, NMI is defined as

NMIðC;CyÞ ¼ MIðC;CyÞ
maxðHðCÞ; HðCyÞÞ ; (31)

where HðCÞ denotes the entropy of cluster set C. MIðC;CyÞ
is the mutual information between C and Cy:

MIðC;CyÞ ¼
X

ci2C;cyj2Cy
pðci; cyjÞ log 2

pðci; cyjÞ
pðciÞpðcyjÞ

: (32)

pðciÞ is the probability that a randomly selected item from

all testing items belongs to cluster ci, and pðci; cyjÞ is the joint

TABLE 1
Statistics of the Datasets

Dataset Size # of categories Dimensionality of views

Reuters 1,800 6 21;531=15;506=11;547
MM2.0 5,000 25 64=144=75=128
ImgNet 10,000 50 64=1000=512
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probability that a randomly selected item is in ci and cyj
simultaneously. If C and Cy are identical, NMIðC;CyÞ ¼ 1.

NMIðC;CyÞ ¼ 0 when the two cluster sets are completely
independent. So the range of NMI is ½0; 1�. In our case, C rep-

resents obtained clusters and Cy is the ground truth.

5.2.3 Performance Comparison

Tables 2, 3 and 4 show the classification performance results
on Reuters, MM2.0 and ImgNet, respectively. We varied the
percentage of training items from 10 to 50 percent. Observa-
tions are as follows. First, methods that made use of multi-
ple features (i.e., views) of items outperformed NMF-b,
which only exploited 1 view. This is in accord with the
results of previous multi-view learning work. Second, semi-
supervised methods (the last three columns) tended to out-
perform unsupervised methods, which indicated that
exploiting label information could lead to latent spaces with
better discriminative structures. Third, MCL and GNMF
often showed superior performance over SULF. As afore-
mentioned in Section 2.2, SULF models label information as
a factorization constraint on Vl, i.e., reconstructing the label

indicator vector of item i by multiplying its encoding vli by a
weight matrix. Although identical encoding vectors lead to
identical label indicator vectors, it is also possible to recon-
struct the label indicator vector by combining columns of
the weight matrix in different ways. Therefore, this can be
viewed as imposing indirect affinity constraints on encod-
ings of within-class items. On the contrary, the graph
embedding terms in MCL and GNMF impose direct affinity

constraints on item encodings and therefore could lead to
clearer conceptual structures in the learned latent spaces.
Finally, MCL outperformed the baseline methods under
almost all cases. We performed F-test for 5 � 2 cross-valida-
tion [45] with significance level 0.05. The results indicated
that MCL was significantly superior over all baselines
except for the 10 percent cases of Reuters and ImgNet. MCL
not only exploits label information via a graph embedding
framework, but also allows flexible latent factor sharing

among different views by encouraging each UðvÞ to be
sparse in columns. These properties could help learn a more
meaningful conceptual latent space. In Section 5.2.4, we will
present parameter study and demonstrate that the semi-
supervised terms and the sparseness terms indeed contrib-
ute to the performance of MCL.

The clustering results are shown in Figs. 3, 4 and 5, for
Reuters, MM2.0 and ImgNet respectively. The observations
were very similar to those for classification. According to

TABLE 2
Classification Performance of Different Factorization Methods on the Reuters Dataset (Accuracy � std dev,%)

Labeled Percentage NMF-b ConcatNMF MultiNMF SULF GNMF MCL

10 61.90 � 3.91 62.81 � 3.77 63.51 � 3.41 64.58 � 2.54 68.13 � 1.91 67.97 � 1.79
20 65.50 � 2.44 65.97 � 2.40 67.33 � 2.14 68.35 � 1.87 69.53 � 1.79 71.78 � 1.99
30 67.15 � 2.18 68.38 � 2.18 69.58 � 1.63 69.88 � 1.71 70.80 � 1.22 73.47 � 1.61
40 68.87 � 1.76 69.33 � 1.94 70.38 � 1.72 70.71 � 1.15 72.04 � 1.74 74.43 � 1.42
50 69.58 � 1.71 70.30 � 2.03 71.25 � 1.43 72.02 � 1.42 73.06 � 1.45 76.02 � 1.10

TABLE 3
Classification Performance of Different Factorization Methods on the MM2.0 Dataset (Accuracy � std dev, %)

Labeled Percentage NMF-b ConcatNMF MultiNMF SULF GNMF MCL

10 23.10 � 1.23 27.38 � 0.95 26.25 � 1.21 27.21 � 1.19 27.91 � 1.18 30.26 � 1.14
20 25.24 � 1.04 31.10 � 1.10 30.20 � 1.32 30.53 � 1.23 31.48 � 1.23 34.05 � 1.08
30 26.98 � 0.86 32.22 � 0.92 31.74 � 0.87 32.80 � 0.91 33.82 � 0.85 36.33 � 0.92
40 28.13 � 1.08 34.55 � 0.87 33.66 � 0.85 34.73 � 0.82 35.40 � 1.07 37.38 � 0.81
50 28.69 � 0.79 35.42 � 1.14 34.73 � 0.70 36.13 � 0.58 36.71 � 0.70 38.48 � 0.75

TABLE 4
Classification Performance of Different Factorization Methods on the ImgNet Dataset (Accuracy � std dev,%)

Labeled Percentage NMF-b ConcatNMF MultiNMF SULF GNMF MCL

10 12.90 � 1.23 17.15 � 1.03 16.37 � 0.91 19.95 � 1.12 21.89 � 0.99 21.38 � 1.06
20 14.54 � 1.13 20.03 � 0.91 20.29 � 0.66 22.55 � 0.85 24.41 � 0.85 25.77 � 0.89
30 15.93 � 0.85 22.07 � 0.84 22.31 � 0.50 23.79 � 0.62 25.82 � 1.14 28.31 � 0.90
40 17.21 � 0.80 23.28 � 0.71 23.79 � 0.56 24.37 � 0.77 26.59 � 0.83 30.10 � 0.74
50 18.08 � 0.87 24.32 � 0.73 24.59 � 0.49 25.29 � 0.68 27.38 � 0.84 31.09 � 0.67

Fig. 3. Clustering performance of different methods on Reuters. Error
bars represent standard deviations.
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F-test with significance level 0.05, we found MCL signifi-
cantly outperformed the baseline methods under almost all
cases (except the 10 percent case of Accuracy and 10 and 20
percent cases of NMI on ImgNet, in Fig. 5).

5.2.4 Parameter Study

MCL has three parameters, a, b and g. bmeasures the impor-
tance of the semi-supervised part of MCL (i.e., the graph
embedding regularization terms), while a and g control the
degree of sparsity of the basis matrices and the consensus
encoding matrix respectively. We investigated their influence
on MCL’s performance by varying one parameter at a time
while fixing the other two. For each specific setting, we run
MCL 20 times and the average performancewas recorded.

The results are shown in Figs. 6 and 7 for Reuters and
MM2.0 respectively (results for ImgNet were similar with
those for MM2.0). We found the general behavior of the
three parameters was the same: when increasing the param-
eter from 0, the performance curves first went up and then
went down. This indicates that when assigned moderate
weights, the sparseness and semi-supervised constraints

indeed helped learn a better latent space. Specific observa-
tions are as follows. First, the model’s performance was not
very sensitive to the value of a (L1;1 is intrinsically a sum-
mation of only K terms). MCL achieved its best perfor-
mance when a was in ½150; 250� and ½50; 200�, for Reuters
and MM2.0 respectively. Second, b’s impact in Reuters
appeared to be smaller than its impact in image datasets.
This could be because that in Reuters a dominated the per-
formance boost (e.g. the clustering accuracy increased by
about 15 percent when varying a, as shown in Fig. 6a).
Finally, g seemed to contribute little to the performance of
MCL in MM2.0. As shown by Fig. 7c, the clustering perfor-
mance degenerated when increasing g from 0, although the
classification accuracy increased a bit at the beginning.
Based on these observations, we set a ¼ 150, b ¼ 0:02 and
g ¼ 0:005 for other experiments.

5.2.5 Convergence Analysis

The optimization method for MCL solves the subproblems
for fUðvÞgHv¼1 and V iteratively to find a local minimum of
(10). Here we analyze its empirical convergence properties.

Fig. 4. Clustering performance of different methods on MM2.0. Error
bars represent standard deviations.

Fig. 5. Clustering performance of different methods on ImgNet. Error
bars represent standard deviations.

Fig. 6. Influence of different parameter settings on the performance of MCL in the Reuters dataset: (a) varying a while setting b ¼ 0:02 and g ¼ 0:005,
(b) varying b while setting a ¼ 150 and g ¼ 0:005, and (c) varying g while setting a ¼ 150 and b ¼ 0:02.

Fig. 7. Influence of different parameter settings on the performance of MCL in the MM2.0 dataset: (a) varying a while setting b ¼ 0:02 and g ¼ 0:005,
(b) varying b while setting a ¼ 150 and g ¼ 0:005, and (c) varying g while setting a ¼ 150 and b ¼ 0:02.

3026 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 11, NOVEMBER 2015



Figs. 8a and 8b plot both the objective function value and
the classification accuracy against the number of iterations
performed, for Reuters and MM2.0 respectively. Its behav-
ior on ImgNet was similar. We found that at the beginning
the objective function value dropped drastically and the
performance increased rapidly. The converging speed was
faster on text data than on image data. The reason would be
that text data has clearer conceptual structures than image
data. The optimization procedure typically converged
around 40 iterations and 100 iterations, for Reuters and
MM2.0 respectively. Although the converging speed was
not very fast, the performance achieved the best very fast.
We can see from Fig. 8 that the performance becomes stable
in about 10 iterations for Reuters and 20 for MM2.0.

6 CONCLUSIONS

In this work we proposed Multi-view Concept Learning, a
novel nonnegative latent representation learning algorithm
for representation learning from multi-view data. MCL
tried to learn a conceptual latent space of items by exploit-
ing both multiple views of items and partial label informa-
tion. The partial label information was used to construct a
graph embedding framework, which encouraged items of
the same category to be near one another and kept items
belonging to different categories as distant as possible, in
the learned latent space. Another novel property of MCL
was that it allowed each latent dimension to be associated
with a subset of views by imposing L1;1 regularization on

each basis matrix UðvÞ. Therefore, MCL is able to learn flexi-
ble latent factor sharing structures which could lead to
more meaningful conceptual latent spaces. We proposed an
efficient optimization method for MCL and demonstrated
its efficacy by a toy factorization problem. We used two
real-world datasets to evaluate the empirical performance
of MCL. Experimental results indicated that MCL was effec-
tive and outperformed baseline methods.

The proposed graph embedding framework is a general
framework in that different definitions of the within-class
affinity graph Ga and the between-class penalty graph Gp

can be employed. For example, we could (1) customize the
weights in Wa and Wp according to the similarities between
items; (2) employ maximum margin style definitions [22];
(3) incorporate data manifolds [41], [46], [47] to better con-
nect labeled items and unlabeled items; etc. However, the
focus of this work was to propose a conceptual latent space
learning algorithm based on multi-view data and demon-
strate its effectiveness. We leave these possible improve-
ments to future work.
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