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Graph Regularized Feature Selection
with Data Reconstruction

Zhou Zhao, Xiaofei He, Deng Cai, Lijun Zhang, Wilfred Ng, and Yueting Zhuang

Abstract—Feature selection is a challenging problem for high dimensional data processing, which arises in many real applications
such as data mining, information retrieval, and pattern recognition. In this paper, we study the problem of unsupervised feature
selection. The problem is challenging due to the lack of label information to guide feature selection. We formulate the problem of
unsupervised feature selection from the viewpoint of graph regularized data reconstruction. The underlying idea is that the selected
features not only preserve the local structure of the original data space via graph regularization, but also approximately reconstruct
each data point via linear combination. Therefore, the graph regularized data reconstruction error becomes a natural criterion for
measuring the quality of the selected features. By minimizing the reconstruction error, we are able to select the features that best
preserve both the similarity and discriminant information in the original data. We then develop an efficient gradient algorithm to solve
the corresponding optimization problem. We evaluate the performance of our proposed algorithm on text clustering. The extensive
experiments demonstrate the effectiveness of our proposed approach.

Index Terms—Feature selection, similarity preserving, data reconstruction

1 INTRODUCTION

IN many areas such as data mining and information
retrieval, one is often confronted with high dimensional
data. Given such high dimensional data, the time and space
cost for data processing can be significantly huge [19]. Fur-
thermore, the learning algorithm is likely to be over-fitting
for the data and the result becomes less interpretable due to
the curse of dimensionality [37]. To overcome this problem,
feature selection [11], [18], [35] and feature extraction [26],
[31], [44] techniques are designed to reduce the dimension-
ality by finding a meaningful feature subset or a set of
feature combinations.

Feature selection methods can be classified as super-
vised feature selection method or unsupervised feature
selection method. Supervised feature selection meth-
ods [9], [11], [25], [35], [36] utilize the correlation between
feature and label information to guide the selection of the
important features. However, in this big data era, there is
no shortage of data but their labels are still very expen-
sive. Hence, it is of great value to study the the problem
of unsupervised feature selection in order to make full
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use of the data. In this paper, we focus on the problem of
unsupervised feature selection which is particularly chal-
lenging due to the lack of label information to guide the
selection of features.

Currently, the unsupervised feature selection algorithms
have been widely used in text clustering [30]. In text cluster-
ing, a text or a document is always represented as a bag of
words, which gives rise to the high dimensionality of the
word space. The unsupervised feature selection methods
choose a subset of the words from the original word space
according to some criteria. There are two main categories of
the unsupervised feature selection algorithms, which are
similarity preserving [8], [18], [19], [56] and clustering per-
formance maximization [3], [12], [40], [46], [49]. The similar-
ity preserving approaches select the representative features
that best preserve the local structure of the original data
space. For example, if the data points are close in intrinsic
geometry of the data distribution, then these data points are
also close to each other on the selected features. On the other
hand, the clustering performance maximization approaches
select the discriminant features that can maximize certain
clustering criterion. For example, Tang et al. [40] and Yang
et al. [49] employ the concept of pseudo labels to select
the discriminative features that maximize the clustering
performance of the data points.

In this paper, we formulate the problem of unsupervised
feature selection from the perspective of graph regularized
data reconstruction. Our objective is to select the features
that best preserve both the local structure of the original
data space and the discriminant information in the original
data. The underlying idea of graph regularized data recon-
struction for feature selection is that each data point should
be approximated by the linear combination of the selected
features and the original structure of the data points is also
preserved on the selected features. Thus, the graph regular-
ized data reconstruction error becomes a natural criterion
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for measuring the quality of the selected features. We then
propose a gradient algorithm to solve the composite objec-
tive function of graph regularized data reconstruction for
feature selection.

It is worthwhile to highlight several aspects of the pro-
posed approach here:

e We formulate the problem of unsupervised feature
selection from the viewpoint of graph regularized
data reconstruction. By minimizing the graph
regularized reconstruction error, we can select the
features that preserve both the structure and dis-
criminant information of the original data space.

e We consider the process of feature selection via
sparse learning over the composite objective func-
tion. We introduce the sparsity induced norm
li-norm for the feature selection matrix. The sparsity
of the feature selection matrix reduces the redundant
or noisy features.

e We propose an iterative gradient algorithm to solve
the proposed optimization problem for feature
selection. We evaluate the effectiveness of our pro-
posed approach using extensive experiments on
text clustering.

The rest of the paper is organized as follows: Section 2
surveys the related work. We present the problem of feature
selection from the viewpoint of graph regularized data
reconstruction in Section 3. We next propose the composite
objective function for discriminant and similarity preserv-
ing feature selection in Section 4. We then provide an itera-
tive gradient method for solving the optimization problem
in Section 5. A variety of experimental results are presented
in Section 6. Finally, we provide the concluding remarks in
Section 7.

2 RELATED WORK

The problem of feature selection is to choose a subset of the
original features based on a certain criterion. According to
the way of utilizing label information, feature selection algo-
rithms can be divided into two categories: supervised fea-
ture selection algorithms [23], [29], [39], [45], [48], [52], [59]
and unsupervised feature selection algorithms [6], [8], [10],
[13], [14], [17], [18], [20], [28], [33], [34], [38], [40], [41], [42],
[46], [49], [53]. In this section, we focus more on the unsu-
pervised features selection algorithms, which are mainly
based on the criteria of similarity preserving and clustering
performance maximization.

2.1 Similarity Preserving Based Feature Selection
The feature selection algorithms in the category of similarity
preserving have been widely studied in [8], [18], [34], [53],
which select the features that best preserve the local struc-
ture of the original data. The similarity preserving criteria
for feature selection are unified in [58], which is reformu-
lated as

min
F
sub fEF,quh

T Kf,

where f is the feature vector of the data matrix and K is the
predefined affinity matrix of data points in the original data

space. Thus, the features which are consistent with the man-
ifold structure are considered to be important.

Laplacian score [18] and its extension [47], [54], [55], [56]
are the typical similarity preserving methods for feature
selection. The idea of Laplacian score is to evaluate the
importance of the feature according to its similarity preserv-
ing power, which is based on graph model. Some other
similarity preserving algorithms are proposed based on dif-
ferent criteria of similarity preserving. Cai et al. [8] propose
the multi-cluster structure preserving method for unsuper-
vised feature selection called MCFS. MCFS is based on the
spectral analysis of the data and L1-regularized regression
model for feature selection. Zhao et al. [53] propose a mani-
fold-based maximum margin method for unsupervised
feature selection.

2.2 Clustering Based Feature Selection
The feature selection algorithms in the category of cluster-
ing performance maximization have been studied in [10],
[12], [15], [28], [34], [38], [40], [41], [42], [43], [46], [49], [57],
which aim to select the discriminant features. The clustering
based feature selection methods utilize the concept of
pseudo-labels, and then jointly perform the feature selection
and generate pseudo-labels for data instances. Li et al. [28]
perform spectral clustering to learn the pseudo-labels of the
data instances, during which the feature selection is per-
formed simultaneously. Yang et al. [49] incorporate discrim-
inative analysis and [;-norm minimization into a joint
framework for unsupervised feature selection, under the
assumption that the pseudo-label of input data instances
can be predicted by a linear classifier. Dy and Brodley [13]
select the features based on the clustering quality. Tang
et al. [40] incorporate the discriminant analysis and pesudo-
label generation into a joint framework for unsupervised
feature selection. Qian and Zhai [38] learn the pseudo clus-
ter labels via local learning regularized robust nonnegative
matrix factorization, where ly; norm minimization is
employed on processes of both label learning and feature
learning. Tang et al. [41], [42], [43] propose the unsuper-
vised feature selection framework for social media data by
considering both instance selection and multi-view of the
data. Wolf and Shashua [46] select the features based on
least-squares optimization process, which measures the
clusterability of the data points on selected features. Masaeli
et al. [32] introduce the concept of projection matrix to
eliminate the redundancy of selected features and Farahat
et al [15] devise an efficient recursive algorithm for that.
Du et al. [10] integrate the regression model to detect the
cluster structure and perform feature selection. Li et al. [27]
leverage both cluster analysis and sparse structure for unsu-
pervised feature selection. Hu et al. [21] develop the unsu-
pervised feature selection method for indexing photo.
Currently, the probabilistic model has been used to
tackle the problem of unsupervised feature selection [6],
[12], [14], [17]. We consider that the latent variable is the
pseudo-label of the data and classify these approach in the
category of clustering based feature selection. Dy and Brod-
ley [12] propose a wrapper approach based on expectation
maximization. Boutemedjet et al. [6] propose a generative
model that clusters the visual features and users into sepa-
rate classes. Guan et al. [17] propose a unified probabilistic
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TABLE 1
Summary of Notation

Notation Notation Description

XeRrRmm a data matrix of data points

F e R™" a feature matrix of data points
AeR™" a feature selection matrix of features

S a selected feature set

A e R™" a reconstruction coefficient matrix
W e RV a similarity matrix of data points
D e R™™" a diagonal matrix of data points
LeR"" a Laplacian matrix of data points
g1(:)y ooy 9n(4) a set of reconstruction functions

o a l;-norm regularization term

B a Laplacian regularization term

model for global and local unsupervised feature selection.
Fan et al. [14] propose a variational inference framework for
unsupervised non-Gaussian feature selection.

Unlike the previous studies, we formulate the problem as
unsupervised graph regularized feature selection with data
reconstruction. We aim to select the features that best pre-
serve both the similarity and discriminant information in
the original data.

3 THE PROBLEM OF GRAPH REGULARIZED
FEATURE SELECTION WITH DATA
RECONSTRUCTION

In this section, we first introduce the notation used in our
subsequence discussion, which includes data matrix X, fea-
ture matrix F, feature selection matrix A, selected feature set
S and reconstruction coefficient matrix A. We then present
the problem of unsupervised feature selection from the per-
spective of data reconstruction.

We consider that the data matrix is X = (x1,...,X»)
where m is the number of data points and each data point x;
is represented by an n-dimensional vector (i.e., x; € R").
That is, there are n features for all the data points in X. Then
we denote the row vectors of X by f/ € R™, (i = 1,...,n),
each of which corresponds to a feature, and define the fea-
ture matrix F = (f;,....f,) (e, F= XT). We consider that
the vector f; = (x;1, ... ,xim)T is the projection of all data
points on the ith feature. We consider that the feature selec-
tion indicator is defined as A; = 1 if and only if the ith fea-
ture is selected. We next denote the selected feature set
S ={i|l <i<n,\ =1}. We let the feature selection vector
A= (M, ..., \,) and then denote the feature selection matrix

A1
A =
An

which is an n xn diagonal matrix of vector A (e,
A = diag(X)). Thus, FA (i.e., the transpose of AX € R™*™) is
the projection of the data matrix X on the selected features.
The reconstruction coefficient matrix A = (aj,...,a,) €
R™ ™ is used to reconstruct the original data matrix X from
the projection AX, where vector a; is the coefficient for
reconstruct the ith feature of the data points. The notation is
summarized in Table 1.

Feature Selection
Matrix

Reconstruction

Coefficient Matrix Data Matrix

Data Matrix

X | =] A | AN |l X

I Graph
Regularization

L

Laplacian Matrix

Data
Reconstruction  ——

——— Feature Selection

Fig. 1. The framework of graph regularized feature selection with data
reconstruction: The red block illustrates the data reconstruction process
while the green block illustrates the graph regularized process. The
entries in data matrix X and laplacian matrix L are known and the entries
in reconstruction coefficient matrix A and feature selection matrix A
are for the optimization. The learning of the feature selection matrix A
preserves both the data reconstruction process and the graph regular-
ized process.

Using the notation above, we define the problem of unsu-
pervised feature selection as follows. Given a data matrix X
and a feature matrix F, we aim to choose the optimal feature
set S of size k from the n features such that the local struc-
ture and the discriminant information in the original data
space can be best preserved.

4 THE OBJECTIVE FUNCTION

The goal of feature selection is to reduce the dimension of
the data points on the number of features for high dimen-
sional data processing. Following the principle of dimen-
sional reduction, we want to have a compact representation
of the original data points on the selected features. That is,
we aim to learn the feature selection matrix A for projecting
the original data matrix X = (x,...,X;,), where the infor-
mation loss is minimized and the local structure of the origi-
nal data space is also preserved. We now present the
composite objective function of the graph regularized data
reconstruction for feature selection.

The Principle Component Analysis (PCA) [22] is a well-
known feature extraction algorithm which extracts the dis-
criminant features based on information loss. Inspired from
the idea of the PCA algorithm, we propose a new feature
selection criteria based on data reconstruction. That is, we
consider that each data point x; can be reconstructed via the
linear combination from its projected values on the selected
features Ax; (and the original data X can be reconstructed
from its compact representation AX = (Axy,...,Ax,,)). We
then learn the feature selection matrix A with the minimum
reconstruction error.

We first introduce the data reconstruction criteria from
the viewpoint of data features and then present the details
of the graph regularized data reconstruction for the data
points in the original space. We illustrate the framework of
graph regularized data reconstruction for feature selection
in Fig. 1.

Consider a set of selected features S = {j|1 < j<n,\j =
1} of size k and the corresponding compact representation
of the original data FA. Given the ith feature of all the data

points f; = (z;1, ... ,xim)T, we present the data reconstruc-
tion for the ith feature from S. We denote the data
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reconstruction function for the ith feature by g,,(S) where
a; € R" is the reconstruction coefficient. Thus, the informa-
tion loss of the data reconstruction for the ith feature based
on § is given by

L(fi,94,(5)) = lIfi — 9a,(S)II", 1)

and the total data reconstruction error for all the features is
given by
n

L(F,ga(S8) =Y Ifi = 9a, (S, @)

1=1

where || - || is the ly-norm and A € R™*" is the reconstruction
coefficient matrix.

In this paper, we consider that the original data X is
approximately constructed from S via linear function. For
example, the reconstruction function for the data points on
the ith feature is given by

9ai(S) = aify = > ay(f0) =Y Nayf;,
1 =1

JES J=

which is the linear combination of the selected features in

the set S. By doing so, the data points on the ith feature can

be approximately reconstructed by f; ~ > Aja;f;.
Therefore, the total reconstruction error is given by

2
n

LFga(S) =Y

i=1

fi - Z /\jaijfj
=1

= [IX — AAX])% )
m 9
= Ik — AAX,
=1
where || - || is the Frobenius norm and each data point x; is

linearly reconstructed from its compact representation on
the selected features Ax;. By minimizing the reconstruction
error, we can learn the new features S such that the original
data X can be well reconstructed from its compact represen-
tation AX.

We illustrate the framework of data reconstruction in
Fig. 1. Given the set of selected features S and reconstruc-
tion coefficient matrix A, we give the example of data recon-
struction for the jth data point x; = (21, 2, 3, 4j, Ts5j, T,
x7;, x5;)" . Suppose that the first, third and fifth feature is
selected for all the data points in X, then the set of selected
features is S = {1,3,5} where the feature selection matrix
A = diag(1,0,1,0,1,0,0,0). The projection of the jth data
point is Ax; = (z1;, 0, 35, 0, 55, 0, 0, O)T. The data point x;
can be reconstructed by x; = AAx; where its second feature
value can be reconstructed by xo; ~ apAX; = agxi;+
a93T3; + assxs;. Thus, the data reconstruction process for the
data matrix X is given by X ~ AAX, which is illustrated by
the red block in Fig. 1. The feature selection for data recon-
struction is to learn the diagonal matrix A such that the
reconstruction error ||X — AAX||7 is minimized.

We further want to select the features that also preserve
the intrinsic structure in the original data space. A natural
assumption is that if two data points x; and x; are close in

intrinsic geometry in the original data space, then the pro-
jection of two points on the selected features Ax; and Ax;,
are also close to each other. This assumption is based on the
theory of local invariance [4], which has been widely used in
various kinds of algorithms including dimensionality
reduction [4], semi-supervised learning [5] and matrix
factorization [7].

Recent studies in spectral graph theory and manifold
learning theory have demonstrated that the local geometric
structure can be effectively modeled through a nearest
neighbor graph on a scatter of data points [7], [18]. Consider
a graph with m vertices where each vertex corresponds to a
data point. For each data point x;, we find its nearest neigh-
bor and put edges between x; and its neighbor. We consider
the 0-1 weighting to build the weight matrix W on the graph
where the weight w;; = 1 if and only if nodes ¢ and j are
connected by an edge.

Let D be the diagonal matrix with D;; = Z/ Wij, and
L = D — W be the Laplacian matrix. Thus, the local geomet-
rical information of the data on the selected features can be
best preserved by minimizing [4]:

1 m 9
5D 1A% — Ax,[1PW

ig—=1

1 n
b Z [Zl Wij(Apip — Apxﬂ’)Q}
P Lij=
= Z (Z )\pxipDiimip/\p - Z )\pl'ipvvijx'ip)‘p> 5)
P i )
= Z Ap (Z TipDiixipy — Z mipWijmip> Ap
P 7 2]

=> A(XLXT)A,
p
= tr(AXLX"A).

The process of graph regularization is illustrated in the
green block in Fig. 1. The feature selection for graph regular-
ized data reconstruction is to learn the diagonal matrix A
such that both the reconstruction error and graph regulari-
zation are minimized.

We then obtain the following optimization problem on
the feature selection matrix A and the reconstruction coeffi-
cient matrix A, given by

ming o [|X — AAX||7 + Btr(AXIXTA)
s.t. A = diag(\), Card(\) = k (6)
A € {0,1},@ =1,...,n,

where trace tr(-) represents the graph regularization for the
data matrix X projected on the selected features, and g > 0
is a tradeoff parameter. The cardinality of the feature selec-
tion vector is k (i.e., Card(\) = k).

However, we observe that Problem 6 is computationally
intractable, since it requires branch-and-bound procedure
to optimize integer variables A. We thus relax the constraint
of the variables in integer vector A to allow them to take real
numbers. This relaxation is commonly used in the area of
sparse learning [51]. Then, A; corresponds to a scaling factor
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indicating how significantly the jth feature contributes to
the minimization of the graph regularized data recon-
struction error. We also notice that forcing the diagonal
matrix A to have more zeros implies that fewer features
would be selected. Therefore, we enforce the sparsity of
the diagonal matrix A by employing the [;-norm regular-
ization condition on it. Then, the objective function can
also be written as

ming A[|X — AAX||% + Btr (AXLXTA) + «|| A, (7

where the [;-norm regularization on the feature selection
vector ||Al|; controls the size of the selected features and
also ensures the selection matrix A is suitable for feature
selection (i.e., by reducing the redundant or even noisy fea-
tures). The regularization coefficient g is employed to bal-
ance the objectives of preserving discriminant information
and similarity in the original data space. The similarity is
preserved with a large value of g while the discriminant
information is preserved on the other hand. With a large
value of g, Equation (7) can be considered as similarity pre-
serving based feature selection. The regularization coeffi-
cient « is used to control the number of the selected
features. With a larger value of «, the vector A becomes
more sparse.

5 THE OPTIMIZATION

In this section, we design a gradient method to solve
Problem 7. Following the iterative optimization method
in [24], we divide the gradient method into two steps:
learning the feature selection matrix A while fixing the
reconstruction coefficient matrix A, and learning recon-
struction coefficient matrix A while fixing the feature
selection matrix A.

5.1 Learning Feature Selection Matrix A

In this section, we discuss how to solve the optimization
Problem (7) by fixing the reconstruction coefficients A.
Then, the Problem (7) can be reduced as follows:

miny X — AAX]|[3 + Btr(AXLXTA) +a|| A, ®)

which is a lj-norm regularized optimization problem.
Unfortunately, we observe that Problem (8) is nondifferen-
tiable when the feature selection vector A contains values
of 0. Therefore, the standard unconstrained optimization
methods cannot be applied to solve this problem. In this
work, we introduce an optimization method based on coor-
dinate descent to solve this problem. It is easy to verify that
Problem (8) is convex, thus, the global minimum can be
achieved.

We notice that the reconstruction error || X — AAX||fr can
be rewritten as follows:

X~ AAX[E = 3 x; — AAx|?

)

2
(:m] Z)\a,/,xu).

j=1 k=1

We then denote the matrix Y = XLX”, thus the Laplacian
regularizer tr(AXLX" A) can be rewritten as follows:

tr(AXLXTA) = tr(AYA)
=tr (Z Y?:MM{)
i=1
= STV,
i=1

where A is a diagonal matrix.
Combing Equations (9) and (10), Problem (8) can be
rewritten as:

min ZZ(;% Zxalk%) +a2m

j=1 k=1

(10)

(11)
+ B § Yihii.
i—1

When we infer the variable )\, for the pth feature, we
keep other variables {);}, , fixed. Thus, we get the follow-

ing optimization problem:

min /() ZZ( 1= Npiy) ol
j=1 k= (12)
+ BLppApAp,
where r;f’ = Tk — Dz, Niikij. The residue 7’,;” is the

reconstruction error for kth feature of jth data without con-
sidering the pth feature.

However, we notice that the regularizer «|\,| of Prob-
lem (11) is not differentiable at 0. To tackle this non-differen-
tial problem, we follow the sub-gradient strategy of the

m

feature-sign search algorithm [24]. We define h(\,) = i
S 1(7"k, A a,,kﬂcm) + BLyyApA,, and then let f(\,) =

(Ap) + a|Ay|. We define M to be the sub-differential value

Al
7 AN

of |),|. Based on the def1n1t10n of sub-gradients [24] isa

sub-gradient of || if and only if

(13)

(\XI* [Ap])-

We can observe that when |\, | > 0, the sub-gradient of the
d‘/\p ) (1 e.

3‘/\[:

absolute value function [),| is given by == = sign(\

BW e {—1, 41D If Ap = 0, then the sub- gradlent value -

in the set [-1,1] (e, [N > iﬁi‘ |A,D)- Thus, the Condltlons
for obtaining the optimal value of f(

into the following expression:

is

Ap) can be translated

{Bf’\”h()\p)+asign(>\p) =0 if |\ >0 a

|7 h(\)] <@ if A, = 0.

Then, we consider how to select the optimal feature selec-
tion variables A\, when the conditions for obtaining the
optimal value are violated (i.e., |%h(Ap)‘ > «, if A, =0).
Suppose in the case that 55~ h()\ ) > « >0, we aim to search

the new value of ), in order to satisfy the conditions (i.e.,
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ﬁph()\p) + asign(),) = 0, if |\,| > 0) such that the value of

f(Xp) can be decreased. Thus, we let the sign of A\, be nega-
tive (i.e., sign(),) = —1) and compute the value of \,. Simi-
larly, if 53-h(),) < —a <0, we let the sign of \, be positive.
In this way, we can replace the /;-norm of A\, by X\, if
sign(X,) = 1, by =\, if sign(),) = —1 or by 0. Thus, Prob-
lem (11) can be reduced to an unconstrained quadratic pro-
gramming problem which can be solved by the existing
optimization methods.

Algorithm 1. Computing Feature Selection Matrix

Input: A data set of m data points X = [xi,...,X,), the coeffi-
cient matrix A, the graph Laplacian matrix L, the parameters «
and B
1: Initialize step:
2: A= 0,60= 0, and active set S = (J, where 6, € {—1,0,1}
denotes sign(),).

: Activate step:

: From zero coefficient of A, select A, = arg max,_ | %h()\,,ﬂ.
Active )\, only if it locally improves the objective function,
namely:

s If%-h(\,) > o, thensetf, =—1,5={p}US.

: If%h()\p) < —a,thensetf,=1,5={p}uUS.

: Feature-sign step:

: (a) Compute the solution to the resulting unconstrained QP
corresponding to the active set S:

m n 2
miny E Z xkjfg ApQpTpj

> W

0
Wy

X3 o U1

j=1 k=1 pes
A AN Yl
peS pes

9: Let & f(Ap) =0, we can get the optimal value of ), under
the current active set S:

-1
m n
= (S5 o

=1 k=1

m n ae
= b
X E Z Tjkpa[,k$pj - 7 .

j=1 k=1

10: (b) Perform a discrete line search on the closed line seg-
ment from A to A"*“: Check the objective value at A" and
all points where any coefficient changes sign, and update
A to the point with the lowest objective value.

11: (c) Remove zero coefficients of A from the active set and
update 6 = sign(A).

12: Check the optimality conditions step:

13: Condition (a): Optimal condition for nonzero coefficients:
Zh(X) + asign(A) =0

14: If condition (a) is not satisfied, go to Feature-sign step; else
check condition (b).

15: Condition (b): Optimal condition for zero coefficients:
[PV < @

16: If condition (b) is not satisfied, go to Active step; otherwise
return A as the solution.

17: return the optimal feature selection matrix A.

We outline the procedure of computing the feature selec-
tion matrix A in Algorithm 1. We keep an active set S for

the potentially nonzero feature selection variables {p|\, =
0, \&h()\pﬂ > o} and their corresponding signs {6, ...,
Or}. At each iteration, Algorithm 1 selects the variable X
whose violation is the largest (i.e., A, = arg max, | %h()\pﬂ,

|&ph()\p)| > «) and adds it to S. The optimization of the

variables in S can be done as follows: First, the new analytic
solution to unconstrained quadratic programming is com-
puted as A", then, an efficient line search between the cur-
rent value and the new value X\"*** is invoked. The feature
selection matrix A is returned when all variables satisfy the
optimality conditions. The algorithmic procedure of learn-
ing feature selection matrix is as follows:

1)  For each variable for the pth feature A\, € A, search
for its sign 0, € 6;

2)  Solve the reduced unconstrained Problem (8) to get
the optimal A* which minimizes the objective func-
tion of graph regularized data reconstruction error;

3) Return the optimal feature selection matrix A* =
diag(\")

Convergence analysis. We show the convergence of
Algorithm 1 by verifying that the solutions to the optimiza-
tion in feature-sign step will strictly decrease the objective
function. Suppose X"“ is a new solution for the feature
selection variable A. If the sign of A" is same with the vari-
able )\ in the active set, then the solution A"*“’ is consistent
with the objective function and definitely decreases the
value of the objective function. On the other hand, if the
sign of A"® is different with the variable A, then we carry
out the line search from A to A"* and find a consistent solu-
tion A° whose sign is the same with A. Thus, it also makes
the value of the objective function decrease.

5.2 Learning Reconstruction Coefficient Matrix A
We now describe the method of learning the coefficient
matrix A, while fixing the diagonal feature selection matrix
A (.e., A = diag(\)). Thus, Problem (8) becomes an uncon-
strained least squares problem given by

ming  [|[X — AAX|% (15)
and the solution to this problem is as follows
A = XX"AAXXTA) (16)

Note that the /;-norm of )\ enforces some elements to be
zeros. If the jth diagonal entry of feature selection matrix L
is zero (i.e., A\; = 0), then all ay;, ..., a,; must be zero which
means the jth feature is not selected.

Our graph regularized feature selection with data recon-
struction is presented in Algorithm 2. The algorithm selects
the features that minimize the graph regularized data recon-
struction error, computes the feature selection matrix A in
Step 1 and reconstruction coefficient matrix A in Step 2
alternatively, and terminates when the feature selection
matrix becomes convergent.

6 EXPERIMENTAL RESULTS

In this section, we study the effectiveness of our proposed
unsupervised feature selection method. The experiments
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are conducted by using Matlab, tested on machines
with Linux OS Intel(R) Core(TM2) Quad CPU 2.66 Hz, and
32 GBRAM.

Algorithm 2. Graph Regularized Data Reconstruction for
Feature Selection (GRFS)

Input: A data matrix of m data points X =[x, ..
graph Laplacian matrix L, the parameters « and j

.y Xp), the

1: Initialize reconstruction coefficient matrix A,, and feature
selection matrix Ay, k=1
repeat
Step 1. Update A;, — Algorithm 1
Step 2. Update A;, — XXTA(AXXTA) ™"
k—k+1
until HAk — A HF < e€
return feature selection matrix A;,

6.1 Data Preparation
We evaluate the performance of the algorithms using the
TDT2 and the Routers document corpora.

The TDT2 corpus [1] consists of data collected from the
first half of 1998 and taken from the following six sources,
including two newswires (APW, NYT), two radio programs
(VOA, PRI) and two television programs (CNN, ABC). The
dataset consists of 11,201 on-topic documents which are
classified into 96 semantic categories. In this experiment,
those documents appearing in two or more categories are
removed, and the categories with more than 10 documents
are kept, thus leaving with 10,021 documents in total.

The Reuters corpus [2] contains 21,578 documents which
are grouped into 135 clusters. Compared with TDT2 corpus,
the Reuters corpus is more difficult for clustering. In TDT2,
the content of each cluster is narrowly defined, whereas in
Reuters, documents in each cluster have a broader variety
of content. Moreover, the Reuters corpus is much more
unbalanced, with some large clusters more than 300 times
larger than some small ones. In our study, we discard the
documents having multiple category labels, and only select
the categories with more than 10 documents. This results in
8,213 documents in total.

In both of the two corpora, the stop words are removed
and each document is represented as a tf-idf vector. We rank
the words based on their tf-idf score and choose the top
1,000 words as the feature of each document.

In this following sections, we will evaluate our approach
in two aspects. First, we compare our method with popular
unsupervised feature selection approaches for tackling text
clustering by varying the number of selected features. Then,
we study the robustness of our algorithm by varying both
the graph regularizer § and [;-norm regularizer «.

6.2 Evaluation Criteria

Following the previous unsupervised feature selection
work [18], [50], we evaluate the performance of our method
in terms of clustering.

The clustering algorithm generates a cluster label for
each data point. The clustering performance is evaluated by
comparing the generated class label and the ground truth.
In our experiments, the accuracy (AC) and the normalized

mutual information metric (NMI) are used to measure the
clustering performance. Given a data point z;, let r; and [;
be the obtained cluster label and the label provided by the
ground truth. The AC is defined as follows:

AC = > ic1 8(li, map(r:))

m

)

where m is the total number of samples and §(z, y) is equal 1
if z =y and 0 otherwise. The map(r;) is the permutation
mapping function that maps each cluster label r; to the
equivalent label from the data set. The best mapping can be
found by using the Kuhn-Munkres algorithm [16].

Let C denote the set of clusters obtained from the ground
truth and C” obtained from our algorithm. Their mutual
information metric M1(C, C") is defined as follows:

p(Civ C;)

MI(C.C) = p(e) - p()

I

Y pleid)log,

(1i€C,(/jEC'

where p(c;) and p(c)) are the probabilities that a sample
point arbitrarily selected from the data set belongs to the
cluster ¢; and ¢}, respectively. The p(c;, ¢}) is the joint proba-
bility that the arbitrarily selected data point belongs to the
cluster ¢; as well as ¢} at the same time. In our experiments,
we use the normalized mutual information as follows:

MI(C,C")
max(H(C), H(C"))

NMI(C,C") =

where H(C) and H(C') are the entropies of C' and (',
respectively. It is easy to check that NMI(C, C") ranges from
0 to 1. In particular, we have that NMI = 1, if the two sets of
clusters are identical, and NMI = 0, if the two sets are
independent.

To check whether the difference between GRFS and other
approaches is significant, we perform the paired t-test on
both the accuracy and normalized mutual information eval-
uation criteria between the result of GRFS and that of other
approaches.

6.3 Performance Evaluations and Comparisons

In this section, we demonstrate the effectiveness of our pro-
posed method (GRFS) by performing k-means text cluster-
ing by using only the selected features. The following four
unsupervised feature selection algorithms are used for the
comparison:

AllFea: All original features are adopted.

LapScore: Laplacian Score [18] selects the features
that best preserve the similarity of the original data
space.

e SPFS: Spectral Feature Selection method [56] selects
the features according to the structures of the graph
induced from the pairwise instance similarity.

e UDFS: Unsupervised Discriminative Feature Selec-
tion method [50] selects the features that preserve
the discriminative information and feature correla-
tions simultaneously.

e MCFS: Multi-cluster feature selection method [8]
selects the features that preserve the multi-cluster
structure of the data.
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TABLE 2
Clustering Performance by Using 50 Features on the TDT2 Corpus
5 clusters 7 clusters 9 clusters average
AC NMI AC NMI AC NMI AC NMI
UDFS 0.5907 +£0.1444 0.4517 £0.1296 0.4804 +0.1369 0.3522 £ 0.1521 0.3924 £ 0.1444 0.3016 £0.1521 0.4878 0.3685
SPFS 0.7508 £ 0.1369 0.6391 +0.1444 0.6138 +0.1521 0.5609 £+ 0.1444 0.5771 £ 0.1521 0.5649 £ 0.1369 0.6472 0.5883
MCFS 0.7133 £ 0.1444 0.6234 +0.2025 0.61254+0.1936 0.5603 £+ 0.1444 0.5665 + 0.1521 0.5849 +0.1024 0.6308 0.5895
LapScore 0.7282 £0.2116  0.628 £0.25  0.5866 4 0.2025 0.5446 +0.2401 0.5718 £0.1849 0.5649 +0.2116 0.6288 0.5792
GRFS 0.7581 + 0.1444 0.6858 + 0.1444 0.6312 4 0.1369 0.5871 £+ 0.1521 0.582 +-0.1444  0.63 +=0.1444 0.6571 0.6343
AllFea 0.681+0.16  0.6044 +0.1521 0.5739 +0.1521 0.5448 +0.1521 0.5246 + 0.1444 0.5043 £ 0.1521 0.5932 0.5511
TABLE 3
Clustering Performance by Using 50 Features on the Reuters Corpus
5 clusters 7 clusters 9 clusters average
AC NMI AC NMI AC NMI AC NMI

UDFS 0.5155 £ 0.1296 0.3135 +0.1444 0.4384 +0.1369 0.2656 £+ 0.2025 0.3541 £0.1369 0.1984 +0.1024 0.436 0.2591
SPFS 0.5571 £0.1156 0.3965 + 0.1296 0.4662 4+ 0.1225 0.3628 £+ 0.1296 0.3757 £0.1225 0.2975 £0.1369 0.4663 0.3523
MCFS 0.5542 +0.1444 0.3888 +0.1764 0.4491 +£0.1936 0.3448 +£0.1369 0.3859 £ 0.1156 0.312 £ 0.1521 0.4631 0.3485
LapScore 0.54640.1849  0.39 +£0.2116  0.4602 4 0.1764 0.3573 £0.2209 0.3753 £0.1369 0.2962 +0.2116 0.4605 0.3478
GRFS 0.6075 + 0.1369 0.4741 +0.1369 0.465 +0.1444  0.39 £ 0.1369 0.39 +0.1444 0.3166 + 0.1444 0.4875 0.3936
AllFea 0.5501 + 0.0961 0.3803 +0.1024 0.4681 +0.1156 0.3811 £0.1156 0.3696 £+ 0.1089 0.303 £ 0.1156 0.4626 0.3548
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Fig. 2. Effect of the number of features on mutual information on the TDT2 corpus.

The methods LapScore and SPFS are in the category of
similarity preserving based feature selection while the
method UDFS and MCFS are in the category of clustering
based feature selection.

For each data set, the evaluations were conducted by
using different number of clusters (k). For performing the
text clustering on both TDT2 and Reuters corpus, we choose
k=5,6,7,8,9,10. For each given cluster number £, 10 test
runs were conducted on different randomly chosen clusters,
and the final performance score were computed by averag-
ing the score from the 10 tests. We also record the standard
deviation of the error rate of clustering performance. For
each test, we applied the k-means clustering algorithm on
different number of selected features. The k-means algo-
rithm was applied 10 times with different starting points
and the best results in terms of the objective function were
recorded. Table 2 shows the clustering performance, in
terms of normalized mutual information and accuracy for
the TDT2 corpus. Table 3 shows the clustering performance
for the Reuters corpus. The number of clusters is taken to be
5,7 and 9, and the number of selected features is set to 50.
The last two columns of each table record the average

clustering performance for different feature selection meth-
ods. The last row of each table records the clustering perfor-
mance by using all the features.

The objective of feature selection is to reduce the dimen-
sion of the data on the number of features. We thus illustrate
the clustering performance of the feature selection methods
versus the number of selected features. The number of clus-
ters is taken to be 6, 8 and 10, and the number of selected
features is set from 1 to 150. Figs. 2a, 2b and 2c illustrate the
clustering performance of feature selection methods on the
number of selected in terms of normalized mutual informa-
tion for the TDT2 corpus. Figs. 3a, 3b and 3c demonstrate
the clustering performance in terms of accuracy for the
TDT2 corpus. Figs. 4a, 4b, 4c, 5a, 5b and 5c show the cluster-
ing performance on the number of selected features for the
Reuters corpus. We observe that our method converges
faster than other feature selection methods on the number
of features for text clustering.

We show the significant different between GRFS and
other approaches using the paired t-test on both the accu-
racy and normalized mutual information evaluation criteria
between the result of GRFS and that of other approaches.
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We illustrate the associated p-values on five clusters using
Reuters corpus in Table 4. The test at the 99 percent confi-
dence interval demonstrates that our proposed framework o
can obtain very encouraging and promising results com-

Accuracy

K2
O 0 ©-0

-
*-vf*.:_,

0
e_e-e‘o'o

60-

Normalized Mutual Information

Accuracy

50 100 150
Number of Features

(c) 10 Class

n--ﬂ‘
n.,
=y

.
.

.

PY Q
° )
T

]
"
'

o

2.

a-2-A '“""' LRk
._[.’_..-.-o-t-v-*

009_9.9000'9'

oo

=@ = UDFs
=3 =SFPS
=+ = LapScore
= # =MCFS
=H-GRFs

100 150
Number of Features

(c) 10 Class

+
P - \g

. ;,:’

=3
n—ﬂﬁ,nﬂ-n' o
B-8
'ﬂ
. '~
JERPRPEI et b
‘t’~‘__x

» . *
P K . ._.‘O Bty

~
0¢ \ &

= 4 = LapScore
= @ = MCFS
= H = GRFS

50 100 150
Number of Features

(c) 10 Class

TABLE 4
The Associated p-Values of the Paired ¢-Test of GRFS Over other Algorithms on 5 Clusters Using Reuters Corpus
Evaluation criteria UDFS SPFS MCFS LapScore AllFea
NMI 1.59x10~* 5.66x1073 5.61x1073 3.76x1073 2.24><10*i_‘
AC 2.56x107° 5.19x10~* 4.74x1074 7.39x107* 9.36x107°

pared to the others.

These experiments reveal a number of interesting points:

The unsupervised feature selection methods achieve

697

shows that the similarity preserving based feature
selections are effective on text clustering.
In all the cases, our GRFS method achieves the
best performance. This indicates that the graph

regularized feature selection with data reconstruc-

better performance over AllFea method. This sug-

gests that the feature selection improves the perfor-

mance of text clustering.

The similarity preserving based methods, both SPFS
and LapScore outperform the UDFS method, which

6.4 Parameters Selection

tion criteria can further improve the performance
of text clustering.

There are two essential parameters in our approach. One is

the [;-norm regularizer & and another is the graph regular-
izer B. The [;-norm regularizer « controls the sparsity of
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Fig. 6. The performance of GRFS versus parameter «.

the feature selection vector A\. We vary the value of o from
107% to 10%, and show the evaluation results in Figs. 6a
and 6b. We vary the value of g to investigate the benefits
of our method from graph regularization and data recon-
struction. We vary the value of g from 103 to 10°, and
show the evaluation results in Figs. 7a and 7b. The data set
used for this experiment is the TDT2 corpus. We perform
the k-means clustering algorithm on the 50 selected fea-
tures of our method.

We notice that the SPFS method consistently outperforms
other methods in most of the test cases. Thus, we mainly
compare our method with SPFS method on the TDT2 corpus
by varying the values of « and B. The performance trend of
our method by varying these two parameters is similar on
the Reuters corpus.

As we can see, the performance of GRFS is very stable
with respect to @ and B. The GRFS method almost achieve
consistently good performance when « varies from 1072 to
10° and B varies from 10! to 10! in Figs. 6a, 6b, 7a and 7b.

As we have explained in previous sections, the GRFS
method selects the features that preserve the similarity and
discriminant information in the original data space by mini-
mizing the graph regularized data reconstruction error. The
parameter « is used to enforce the sparsity of the feature
selection matrix. When the value of « is appropriate, the fea-
ture selection matrix is able to reduce the redundant or
noisy features. On the other hand, when the value of «
becomes extremely large, the features are randomly selected
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due to the sparsity of the feature selection matrix. The
parameter g is the trade-off parameter for feature selection
between graph regularization for preserving similarity and
data reconstruction for preserving discriminant information
of the original data space. When the value of g is large, our
method GREFS is considered as in the category of similarity
preserving based feature selection method. Thus, its cluster-
ing performance is relatively low, which is similar to the
performance of SPFS and LapScore (based on similarity
preserving). This is the reason why the performance of
GRFS method varies according to the values of « and g in
Figs. 6a, 6b, 7a and 7b.

7 CONCLUSION

We formulate the problem of unsupervised feature selection
from a new perspective of graph regularized data recon-
struction. We consider that the discriminant information
can be preserved by selecting the features that minimizes
the data reconstruction error. We also preserve the similar-
ity of the original data space by graph regularized feature
selection. Our approach integrates both data reconstruction
and graph regularization seamlessly into a common frame-
work that tackles the problem of unsupervised feature selec-
tion. In this way, our approach selects the features that best
preserve the similarity and discriminant information in the
original data space via the minimization of the graph regu-
larized data reconstruction error. We devise a novel gradi-
ent method to solve the optimization problem. We conduct
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several experiments on the text clustering for TDT2 and
Routers corpus. The experimental results demonstrate that
our method achieves higher clustering performance com-
pared with three state-of-the-art feature selection algo-
rithms. On the other hand, our method can also be
extended to the problem of supervised feature selection.
The simplest way is to incorporate the label information for
the graph regularization. For example, if two data points
have the same label, we can assign a relatively larger weight
on the edge connecting them. Thus, our proposed frame-
work of graph regularized feature selection with data recon-
struction can be used for both unsupervised and supervised
feature selection.
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