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Abstract—In this paper, we propose a simple variant of the original SVRG, called variance reduced stochastic gradient descent

(VR-SGD). Unlike the choices of snapshot and starting points in SVRG and its proximal variant, Prox-SVRG, the two vectors of

VR-SGD are set to the average and last iterate of the previous epoch, respectively. The settings allow us to use much larger learning

rates, and also make our convergence analysis more challenging. We also design two different update rules for smooth and non-

smooth objective functions, respectively, which means that VR-SGD can tackle non-smooth and/or non-strongly convex problems

directly without any reduction techniques. Moreover, we analyze the convergence properties of VR-SGD for strongly convex problems,

which show that VR-SGD attains linear convergence. Different from most algorithms that have no convergence guarantees for non-

strongly convex problems, we also provide the convergence guarantees of VR-SGD for this case, and empirically verify that VR-SGD

with varying learning rates achieves similar performance to its momentum accelerated variant that has the optimal convergence rate

Oð1=T 2Þ. Finally, we apply VR-SGD to solve various machine learning problems, such as convex and non-convex empirical risk

minimization, and leading eigenvalue computation. Experimental results show that VR-SGD converges significantly faster than

SVRG and Prox-SVRG, and usually outperforms state-of-the-art accelerated methods, e.g., Katyusha.

Index Terms—Stochastic optimization, stochastic gradient descent (SGD), variance reduction, empirical risk minimization, strongly convex

and non-strongly convex, smooth and non-smooth

Ç

1 INTRODUCTION

IN this paper, we focus on the following composite optimi-
zation problem:

minx2Rd F ðxÞ ¼def 1
n

Xn
i¼1

fiðxÞ þ gðxÞ; (1)

where fðxÞ ¼ 1
n

Pn
i¼1fiðxÞ, fiðxÞ : Rd!R; i ¼ 1; . . . ; n are the

smooth functions, and gðxÞ is a relatively simple (but possi-
bly non-differentiable) convex function (referred to as a reg-
ularizer). The formulation (1) arises in many places in

machine learning, signal processing, data science, statistics
and operations research, such as regularized empirical risk
minimization (ERM). For instance, one popular choice of the
component function fið�Þ in binary classification problems is

the logistic loss, i.e., fiðxÞ ¼ log ð1þ expð�bia
T
i xÞÞ, where

fða1; b1Þ; . . . ; ðan; bnÞg is a collection of training examples,

and bi2f�1g. Some popular choices for the regularizer

include the ‘2-norm regularizer (i.e., gðxÞ ¼ ð�=2Þkxk2), the
‘1-norm regularizer (i.e., gðxÞ ¼ �kxk1), and the elastic-net

regularizer (i.e., gðxÞ ¼ ð�1=2Þkxk2 þ �2kxk1). Some other

applications include deep neural networks [1], [2], [3], [4],

[5], group Lasso [6], sparse learning and coding [7], [8], [9],

[10], non-negative matrix factorization [11], phase retrieval

[12], matrix completion [13], [14], conditional random fields
[15], generalized eigen-decomposition and canonical corre-

lation analysis [16], and eigenvector computation [17], [18]

such as principal component analysis (PCA) and singular

value decomposition (SVD).

1.1 Stochastic Gradient Descent
We are especially interested in developing efficient algo-
rithms to solve Problem (1) involving the sum of a large
number of component functions. The standard and effec-
tive method for solving (1) is the (proximal) gradient
descent (GD) method, including Nesterov’s accelerated
gradient descent (AGD) [19], [20] and accelerated proxi-
mal gradient (APG) [21], [22]. For the smooth problem
(1), GD takes the following update rule: starting with x0,
and for any k�0
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xkþ1 ¼ xk � hk
1

n

Xn
i¼1

rfiðxkÞ þ rgðxkÞ
" #

; (2)

where hk > 0 is commonly referred to as the learning rate in
machine learning or step-size in optimization. When gð�Þ is
non-smooth (e.g., the ‘1-norm regularizer), we typically intro-
duce the following proximal operator to replace (2)

xkþ1¼ ProxghkðykÞ :¼ argmin
x2Rd

1

2hk
kx� ykk2 þ gðxÞ

� �
; (3)

where yk ¼ xk � ðhk=nÞ
Pn

i¼1rfiðxkÞ: GD has been proven to
achieve linear convergence for strongly convex problems,
and both AGD and APG attain the optimal convergence
rate Oð1=T 2Þ for non-strongly convex problems, where T
denotes the number of iterations. However, the per-iteration
cost of all the batch (or deterministic) methods is OðndÞ,
which is expensive for very large n.

Instead of evaluating the full gradient of fð�Þ at each iter-
ation, an efficient alternative is the stochastic (or incremen-
tal) gradient descent (SGD) method [23]. SGD only
evaluates the gradient of a single component function at
each iteration, and has much lower per-iteration cost, OðdÞ.
Thus, SGD has been successfully applied to many large-
scale learning problems [24], [25], [26], especially training
for deep learning models [2], [3], [27], and its update rule is

xkþ1 ¼ xk � hk½rfikðxkÞ þ rgðxkÞ�; (4)

where hk/1=
ffiffiffi
k

p
, and the index ik can be chosen uniformly

at random from f1; 2; . . . ; ng. Although the expectation of
the stochastic gradient estimator rfikðxkÞ is an unbiased esti-
mation for rfðxkÞ, i.e., E½rfikðxkÞ� ¼ rfðxkÞ, the variance of
rfikðxkÞ may be large due to the variance of random sam-
pling [1]. Thus, stochastic gradient estimators are also called
“noisy gradients”, and we need to gradually reduce its step
size, which leads to slow convergence. In particular, even
under the strongly convex (SC)condition, standard SGD
attains a slower sub-linear convergence rate Oð1=T Þ [28].

1.2 Accelerated SGD
Recently, many SGD methods with variance reduction have
been proposed, such as stochastic average gradient (SAG)
[29], stochastic variance reduced gradient (SVRG) [1], sto-
chastic dual coordinate ascent (SDCA) [30], SAGA [31], sto-
chastic primal-dual coordinate (SPDC) [32], and their
proximal variants, such as Prox-SAG [33], Prox-SVRG [34]
and Prox-SDCA [35]. These accelerated SGD methods can
use a constant learning rate h instead of diminishing step
sizes for SGD, and fall into the following three categories: pri-
malmethods such as SVRG and SAGA, dualmethods such as
SDCA, and primal-dual methods such as SPDC. In essence,
many of the primalmethods use the full gradient at the snap-
shot ex or the average gradient to progressively reduce the
variance of stochastic gradient estimators, as well as the dual
and primal-dual methods, which leads to a revolution in the
area of first-order optimization [36]. Thus, they are also known
as the hybrid gradient descent method [37] or semi-stochas-
tic gradient descent method [38]. In particular, under the
strongly convex condition, most of the accelerated SGD
methods enjoy a linear convergence rate (also known as a
geometric or exponential rate) and the oracle complexity of
O ðnþ L=mÞlog ð1=�Þð Þ to obtain an �-suboptimal solution,

where each fið�Þ is L-smooth, and F ð�Þ is m-strongly convex.
The complexity bound shows that they converge faster than
accelerated deterministic methods, whose oracle complexity
isOðn ffiffiffiffiffiffiffiffiffi

L=m
p

log ð1=�ÞÞ [39], [40].
SVRG [1] and its proximal variant, Prox-SVRG [34], are

particularly attractive because of their low storage require-
ment compared with other methods such as SAG, SAGA
and SDCA, which require storage of all the gradients of
component functions or dual variables. At the beginning of
the sth epoch in SVRG, the full gradient rfðexs�1Þ is com-
puted at the snapshot exs�1, which is updated periodically.

Definition 1. The stochastic variance reduced gradient estimator
is independently introduced in [1], [37] as follows:erfis

k
ðxs

kÞ ¼ rfis
k
ðxskÞ � rfis

k
ðexs�1Þ þ rfðexs�1Þ; (5)

where s is the epoch that iteration k belongs to.

It is not hard to verify that the variance of the SVRG esti-
mator erfis

k
ðxs

kÞ (i.e., Ek erfis
k
ðxs

kÞ � rfðxskÞk2) can be much
smaller than that of the SGD estimator rfikðxs

kÞ (i.e.,
Ekrfikðxs

kÞ � rfðxs
kÞk2). Theoretically, for non-strongly convex

(Non-SC) problems, the variance reduced methods con-
verge slower than the accelerated batch methods such as
FISTA [22], i.e., Oð1=T Þ versus Oð1=T 2Þ.

More recently, many acceleration techniques were pro-
posed to further speed up the stochastic variance reduced
methods mentioned above. These techniques mainly include
the Nesterov’s acceleration techniques in [25], [39], [40], [41],
[42], reducing the number of gradient calculations in early
iterations [36], [43], [44], the projection-free property of the
conditional gradientmethod (also known as the Frank-Wolfe
algorithm [45]) as in [46], the stochastic sufficient decrease
technique [47], and the momentum acceleration tricks
in [36], [48], [49]. [40] proposed an accelerating Catalyst
framework and achieved the oracle complexity of
Oððnþ ffiffiffiffiffiffiffiffiffiffiffiffi

nL=m
p Þlog ðL=mÞlog ð1=�ÞÞ for strongly convex prob-

lems. [48] and [50] proved that the accelerated methods can
attain the oracle complexity of Oðnlog ð1=�Þ þ ffiffiffiffiffiffiffiffiffiffiffi

nL=�
p Þ for

non-strongly convex problems. The overall complexity
matches the theoretical upper bound provided in [51].
Katyusha [48], point-SAGA [52] and MiG [50] achieve the
best-known oracle complexity of Oððnþ ffiffiffiffiffiffiffiffiffiffiffiffi

nL=m
p Þ log ð1=�ÞÞ

for strongly convex problems, which is identical to the upper
complexity bound in [51]. Hence, Katyusha and MiG are the
best-known stochastic optimization method for both SC and
Non-SC problems, as pointed out in [51]. However, selecting
the best values for the parameters in the acceleratedmethods
(e.g., the momentum parameter) is still an open problem. In
particular, most of accelerated stochastic variance reduction
methods, including Katyusha, require at least one auxiliary
variable and one momentum parameter, which lead to com-
plicated algorithm design and high per-iteration complexity,
especially for very high-dimensional and sparse data.

1.3 Our Contributions
From the above discussions, we can see that most of the accel-
erated stochastic variance reduction methods such as [36],
[39], [44], [46], [47], [48], [53], [54] and applications such as [7],
[9], [10], [14], [17], [18], [55], [56], [57] are based on the SVRG
method [1]. Thus, any key improvement on SVRG is very
important for the research of stochastic optimization. In this
paper, we propose a simple variant of the original SVRG [1],
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called variance reduced stochastic gradient descent (VR-SGD). The
snapshot point and starting point of each epoch in VR-SGD
are set to the average and last iterate of the previous epoch,
respectively. This is different from the settings of SVRG and
Prox-SVRG [34], where the two points of the former are set to
be the last iterate, and those of the latter are set to be the aver-
age of the previous epoch. This difference makes the conver-
gence analysis of VR-SGD significantly more challenging than
that of SVRG and Prox-SVRG. Our empirical results show
that the performance of VR-SGD is significantly better than its
counterparts, SVRG and Prox-SVRG. Impressively, VR-SGD
with varying learning rates achieves better or at least com-
parable performance with accelerated methods, such as
Catalyst [40] and Katyusha [48]. The main contributions of
this paper are summarized below.

� The snapshot and starting points of VR-SGD are set
to two different vectors, i.e., exs ¼ 1

m

Pm
k¼1 x

s
k (Option

I) or exs ¼ 1
m�1
Pm�1

k¼1 x
s
k (Option II), and xsþ1

0 ¼ xs
m. In

particular, we find that the settings of VR-SGD allow
us to take much larger learning rates than SVRG, e.g.,
1=L versus 1=ð10LÞ, and thus significantly speed up
its convergence in practice. Moreover, VR-SGD has
an advantage over SVRG in terms of robustness of
learning rate selection.

� Unlike proximal stochastic gradient methods, e.g.,
Prox-SVRG and Katyusha, which have a unified
update rule for the two cases of smooth and non-
smooth objectives (see Section 2.2 for details), VR-
SGD employs two different update rules for the two
cases, respectively, as in (12) and (13) below. Empiri-
cal results show that gradient update rules as in (12)
for smooth optimization problems are better choices
than proximal update formulas as in (10).

� We provide the convergence guarantees of VR-SGD
for solving smooth/non-smooth and non-strongly
convex (or general convex) functions. In comparison,
SVRG and Prox-SVRG do not have any convergence
guarantees, as shown in Table 1.

� Moreover, we also present a momentum accelerated
variant of VR-SGD, discuss their equivalent relation-
ship, and empirically verify that they achieve similar
performance to their variant that attains the optimal
convergence rate Oð1=T 2Þ.

� Finally, we theoretically analyze the convergence
properties of VR-SGD with Option I or Option II for
smooth/non-smooth and strongly convex functions,
which show that VR-SGD attains linear convergence.

2 PRELIMINARY AND RELATED WORK

Throughout this paper, we use k�k to denote the ‘2-norm
(also known as the standard euclidean norm), and k�k1 is

the ‘1-norm, i.e., kxk1 ¼
Pd

i¼1jxij. rfð�Þ denotes the full gra-
dient of fð�Þ if it is differentiable, or @fð�Þ the subgradient if
fð�Þ is only Lipschitz continuous. For each epoch s2½S� and
inner iteration k2f0; 1; . . . ;m� 1g, isk2½n� is the random
chosen index. We mostly focus on the case of Problem (1)
when each fið�Þ is L-smooth,1 and F ð�Þ is m-strongly convex.
The two common assumptions are defined as follows.

2.1 Basic Assumptions

Assumption 1 (Smoothness). Each fið�Þ is L-smooth, that is,
there exists a constant L > 0 such that for all x; y2Rd

krfiðxÞ � rfiðyÞk � Lkx� yk: (6)

Assumption 2 (Strong Convexity). F ðxÞ is m-strongly con-
vex, i.e., there exists a constant m > 0 such that for all x; y2Rd

F ðyÞ � F ðxÞ þ hrF ðxÞ; y� xi þ m

2
kx� yk2: (7)

Note that when gð�Þ is non-smooth, the inequality in (7) needs
to be revised by simply replacing the gradient rF ðxÞ with
an arbitrary sub-gradient of F ð�Þ at x. In contrast, for a non-
strongly convex or general convex function, the inequality
in (7) can always be satisfied with m ¼ 0.

2.2 Related Work
To speed up standard and proximal SGD, many stochastic
variance reduced methods [29], [30], [31], [37] have been
proposed for some special cases of Problem (1). In the case
when each fiðxÞ is L-smooth, fðxÞ is m-strongly convex, and
gðxÞ	0, Roux et al. [29] proposed a stochastic average gra-
dient (SAG) method, which attains linear convergence.
However, SAG, as well as other incremental aggregated
gradient methods such as SAGA [31], needs to store all gra-
dients, so that OðndÞ memory is required in general [43].
Similarly, SDCA [30] requires storage of all dual varia-
bles [1], which uses OðnÞ memory. In contrast, SVRG pro-
posed by Johnson and Zhang [1], as well as Prox-SVRG [34],
has the similar convergence rate to SAG and SDCA, but
without the memory requirements of all gradients and dual
variables. In particular, the SVRG estimator in (5) may be
the most popular choice for stochastic gradient estimators. The
update rule of SVRG for the case of Problem (1) when
gð�Þ	0 is

xs
kþ1 ¼ xs

k � h erfis
k
ðxskÞ: (8)

When the smooth regularizer gð�Þ 6¼0, the update rule in (8)

becomes: xs
kþ1 ¼ xs

k � h½ erfis
k
ðxs

kÞ þ rgðxs
kÞ�. Although the

original SVRG in [1] only has convergence guarantees for

the special case of Problem (1), when each fiðxÞ is L-smooth,

fðxÞ is m-strongly convex, and gðxÞ	0, we can extend SVRG

to the proximal setting by introducing the proximal opera-

tor in (3), as shown in Line 7 of Algorithm 1.
Based on the SVRG estimator in (5), some accelerated algo-

rithms [39], [40], [48] have been proposed. The proximal
update rules of Katyusha [48] are formulated as follows:

TABLE 1
Comparison of Convergence Rates of

VR-SGD and Its Counterparts

SVRG [1] Prox-SVRG [34] VR-SGD

SC, smooth linear rate unknown linear rate
SC, non-smooth unknown linear rate linear rate
Non-SC, smooth unknown unknown Oð1=T Þ
Non-SC, non-smooth unknown unknown Oð1=T Þ

1. In fact, we can extend the theoretical results for the case, when the
gradients of all component functions have the same Lipschitz constant
L, to the more general case, when some component functions fið�Þ have
different degrees of smoothness.
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xs
kþ1¼ w1y

s
k þ w2exs�1 þ ð1� w1 � w2Þzsk; (9a)

yskþ1 ¼ argmin
y2Rd

1

2h
ky� yskk2 þ yT erfis

k
ðxs

kþ1Þ þ gðyÞ
� �

; (9b)

zskþ1 ¼ argmin
z2Rd

3L

2
kz� xs

kþ1k2 þ zT erfis
k
ðxs

kþ1Þ þ gðzÞ
� �

; (9c)

wherew1; w22½0; 1� are two parameters. To eliminate the need
for parameter tuning, h is set to 1=ð3w1LÞ, andw2 is fixed to 0.5
in [48]. In addition, [16], [17], [18] applied efficient stocha-
stic solvers to compute leading eigenvectors of a symmetric
matrix or generalized eigenvectors of two symmetric matri-
ces. The first such method is VR-PCA proposed by Shamir
[17], and the convergence properties of VR-PCA for such a
non-convex problem are also provided. Garber et al. [18] ana-
lyzed the convergence rate of SVRG when fð�Þ is a convex
function that is a sum of non-convex component functions.
Moreover, [4], [5] and [58] proved that SVRG and SAGAwith
minor modifications can converge asymptotically to a station-
ary point of non-convex functions. Some sparse approxima-
tion, parallel and distributed variants [50], [59], [60], [61], [62]
of accelerated SGDmethods have also been proposed.

Algorithm 1. SVRG (Option I) and Prox-SVRG (Option II)

Input: The number of epochs S, the number of iterations m per
epoch, and the learning rate h.

Initialize: ex0.
1: for s ¼ 1; 2; . . . ; S do

2: ems ¼ 1
n

Pn
i¼1rfiðexs�1Þ, xs

0 ¼ exs�1;

3: for k ¼ 0; 1; . . . ;m� 1 do
4: Pick isk uniformly at random from ½n�;
5: erfis

k
ðxs

kÞ ¼ rfis
k
ðxs

kÞ � rfis
k
ðexs�1Þ þ ems;

6: Option I: xs
kþ1¼ xs

k� h erfis
k
ðxs

kÞ þrgðxs
kÞ

h i
,

or xs
kþ1¼ Proxgh xs

k� h erfis
k
ðxs

kÞ
� �

;

7: Option II:
xs
kþ1¼ argminy2Rd gðyÞ þ yT erfis

k
ðxs

kÞ þ 1
2h ky� xs

kk2
n o

;

8: end for
9: Option I: exs ¼ xs

m; == Last iterate for snapshot ex
10: Option II: exs ¼ 1

m

Pm
k¼1x

s
k; == Iterate averaging for ex

11: end for
Output: exS

An important class of stochastic methods is the proximal
stochastic gradient (Prox-SG) method, such as Prox-SVRG [34],
SAGA [31], and Katyusha [48]. Different from standard vari-
ance reduction SGD methods such as SVRG, the Prox-SG
method has a unified update rule for both smooth and non-
smooth cases of gð�Þ. For instance, the update rule of Prox-
SVRG [34] is formulated as follows:

xs
kþ1 ¼ argmin

y2Rd

gðyÞ þ yT erfis
k
ðxs

kÞ þ
1

2h
ky� xs

kk2
� �

: (10)

For the sake of completeness, the details of Prox-SVRG [34]
are shown in Algorithm 1 with Option II. When gð�Þ is the
widely used ‘2-norm regularizer, i.e., gð�Þ ¼ ð�1=2Þk � k2, the
proximal update formula in (10) becomes

xs
kþ1 ¼

1

1þ �1h
xs
k � h erfis

k
ðxs

kÞ
h i

: (11)

3 VARIANCE REDUCED SGD

In this section, we propose an efficient variance reduced sto-
chastic gradient descent (VR-SGD) algorithm, as shown in
Algorithm 2. Different from the choices of the snapshot and
starting points in SVRG [1] and Prox-SVRG [34], the two
vectors of each epoch in VR-SGD are set to the average and
last iterate of the previous epoch, respectively. Moreover,
unlike existing proximal stochastic methods, we design two
different update rules for smooth and non-smooth objective
functions, respectively.

Algorithm 2. VR-SGD for Solving Smooth Problems

Input: The number of epochs S, and the number of iterationsm
per epoch.

Initialize: x1
0 ¼ ex0, and fhsg.

1: for s ¼ 1; 2; . . . ; S do
2: ems ¼ 1

n

Pn
i¼1rfiðexs�1Þ; == Compute the full gradient

3: for k ¼ 0; 1; . . . ;m� 1 do
4: Pick isk uniformly at random from ½n�;
5: erfis

k
ðxs

kÞ ¼ rfis
k
ðxs

kÞ � rfis
k
ðexs�1Þ þ ems;

6: xs
kþ1¼ xs

k � hs½ erfis
k
ðxs

kÞ þrgðxs
kÞ�;

7: end for
8: Option I: exs ¼ 1

m

Pm
k¼1x

s
k; == Iterate averaging for ex

9: Option II: exs ¼ 1
m�1
Pm�1

k¼1 x
s
k; == Iterate averaging for ex

10: xsþ1
0 ¼ xs

m; == Initiate xsþ1
0 for the next epoch

11: end for
Output: bxS ¼ exS , if F ðexSÞ�F ð1S

PS
s¼1exsÞ, and bxS ¼ 1

S

PS
s¼1exs

otherwise.

3.1 Snapshot and Starting Points
Like SVRG, VR-SGD is also divided into S epochs, and each
epoch consists of m stochastic gradient steps, where m is
usually chosen to be QðnÞ, as suggested in [1], [34], [48].
Within each epoch, we need to compute the full gradient
rfðexsÞ at the snapshot exs and use it to define the variance
reduced stochastic gradient estimator erfis

k
ðxs

kÞ in (5). Unlike
SVRG,whose snapshot is set to the last iterate of the previous
epoch, the snapshot exs of VR-SGD is set to the average of the
previous epoch, e.g., exs ¼ 1

m

Pm
k¼1 x

s
k in Option I of Algo-

rithm 2, which leads to better robustness to gradient noise,2

as also suggested in [36], [47], [66]. In fact, the choice of

Option II in Algorithm 2, i.e., exs ¼ 1
m�1
Pm�1

k¼1 xsk, also works

well in practice, as shown in Fig. 2 in the Supplementary
Material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2018.2878765. Therefore, we provide the con-
vergence guarantees for our algorithm with either Option I
or Option II in the next section. In particular, we find that
one of the effects of the choice in Option I or Option II of
Algorithm 2 is to allow taking much larger learning rates or
step sizes than SVRG in practice, e.g., 1=L for VR-SGD versus
1=ð10LÞ for SVRG (see Fig. 1). Actually, a larger learning rate

2. It should be emphasized that the noise introduced by random
sampling is inevitable, and generally slows down the convergence
speed in this sense. However, SGD and its variants are probably the
mostly used optimization algorithms for deep learning [63]. In particu-
lar, [64] has shown that by adding gradient noise at each step, noisy
gradient descent can escape the saddle points efficiently and converge
to a local minimum of the non-convex minimization problem, e.g., the
application of deep neural networks in [65].
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enjoyed by VR-SGDmeans that the variance of its stochastic
gradient estimator goes asymptotically to zero faster.

Unlike Prox-SVRG [34] whose starting point is initialized
to the average of the previous epoch, the starting point of
VR-SGD is set to the last iterate of the previous epoch. That
is, in VR-SGD, the last iterate of the previous epoch becomes
the new starting point, while the two points of Prox-SVRG
are completely different, thereby leading to relatively slow
convergence in general. Both the starting and snapshot
points of SVRG [1] are set to the last iterate of the previous
epoch,3 while the two points of Prox-SVRG [34] are set to
the average of the previous epoch (also suggested in [1]). By
setting the starting and snapshot points in VR-SGD to the
two different vectors mentioned above, the convergence
analysis of VR-SGD becomes significantly more challenging
than that of SVRG and Prox-SVRG, as shown in Section 4.

3.2 The VR-SGD Algorithm
In this part, we propose an efficient VR-SGD algorithm to
solve Problem (1), as outlined in Algorithm 2 for the case
of smooth objective functions. It is well known that the
original SVRG [1] only works for the case of smooth mini-
mization problems. However, in many machine learning
applications, e.g., elastic net regularized logistic regression,
the strongly convex objective function F ðxÞ is non-smooth.
To solve this class of problems, the proximal variant of
SVRG, Prox-SVRG [34], was subsequently proposed. Unlike
the original SVRG, VR-SGD can not only solve smooth objec-
tive functions, but also directly tackle non-smooth ones. That
is, when the regularizer gðxÞ is smooth (e.g., the ‘2-norm
regularizer), the key update rule of VR-SGD is

xs
kþ1 ¼ xs

k � hs½ erfis
k
ðxs

kÞ þ rgðxs
kÞ�: (12)

When gðxÞ is non-smooth (e.g., the ‘1-norm regularizer), the
key update rule of VR-SGD in Algorithm 2 becomes

xs
kþ1 ¼ Prox g

hs
xs
k � hs erfis

k
ðxs

kÞ
� �

: (13)

Unlike the proximal stochastic methods such as Prox-
SVRG [34], all of which have a unified update rule as in (10)
for both the smooth and non-smooth cases of gð�Þ, VR-SGD
has two different update rules for the two cases, as in (12)
and (13). Fig. 1 demonstrates that VR-SGD has a significant
advantage over SVRG in terms of robustness of learning
rate selection. That is, VR-SGD yields good performance
within the range of the learning rate from 0:2=L to 1:2=L,
whereas the performance of SVRG is very sensitive to the
selection of learning rates. Thus, VR-SGD is convenient to
be applied in various real-world problems of machine learn-
ing. In fact, VR-SGD can use much larger learning rates than
SVRG for ridge regression problems in practice, e.g., 8=ð5LÞ
for VR-SGD versus 1=ð5LÞ for SVRG, as shown in Fig. 1b.

3.3 VR-SGD for Non-Strongly Convex Objectives
Although many stochastic variance reduced methods have
been proposed, most of them, including SVRG and Prox-
SVRG, only have convergence guarantees for the case of
Problem (1), when F ðxÞ is strongly convex. However, F ðxÞ
may be non-strongly convex in many machine learning
applications, such as Lasso and ‘1-norm regularized logistic
regression. As suggested in [48], [68], this class of problems
can be transformed into strongly convex ones by adding a

proximal term ðt=2Þkx� xs
0k2, which can be efficiently

solved by Algorithm 2. However, the reduction technique
may degrade the performance of the involved algorithms
both in theory and in practice [44]. Thus, we use VR-SGD to
directly solve non-strongly convex problems.

The learning rate hs of Algorithm 2 can be fixed to a
constant. Inspired by existing accelerated stochastic algo-
rithms [36], [48], the learning rate in Algorithm 2 can be grad-
ually increased in early iterations for both strongly convex
and non-strongly convex problems, which leads to faster
convergence (see Fig. 3 in the SupplementaryMaterial, avail-
able online). Different from SGD and Katyusha [48], where
the learning rate of the former requires to be gradually deca-
yed and that of the latter needs to be gradually increased, the
update rule of hs in Algorithm 2 is defined as follows: h0 is an
initial learning rate, and for any s�1

hs ¼ h0=maxfa; 2=ðsþ 1Þg; (14)

where 0 < a�1 is a given constant, e.g., a ¼ 0:2.

3.4 Extensions of VR-SGD
It has been shown in [38], [39] that mini-batching can effec-
tively decrease the variance of stochastic gradient estimates.
Therefore, we first extend the proposed VR-SGD method to
the mini-batch setting, as well as its convergence results
below. Here, we denote by b the mini-batch size and Isk the
selected random index set Ik
½n� for each outer-iteration
s2½S� and inner-iteration k2f0; 1; . . . ;m� 1g.
Definition 2. The stochastic variance reduced gradient estimator

in the mini-batch setting is defined as

Fig. 1. Comparison of SVRG [1] and VR-SGD with different learning
rates for solving ‘2-norm regularized logistic regression and ridge
regression on Covtype. Note that the blue lines stand for the results of
SVRG, while the red lines correspond to the results of VR-SGD (best
viewed in color).

3. Note that the theoretical convergence of the original SVRG [1]
relies on its Option II, i.e., both exs and xsþ10 are set to xsk, where k is ran-
domly chosen from f1; 2; . . . ;mg. However, the empirical results in [1]
suggest that Option I is a better choice than its Option II, and the con-
vergence guarantee of SVRG with Option I for strongly convex objec-
tive functions is provided in [67].
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erfIs
k
ðxs

kÞ ¼
1

b

X
i2Is

k

rfiðxs
kÞ � rfiðexs�1Þ� �þrfðexs�1Þ; (15)

where Isk
½n� is a mini-batch of size b.

If some component functions are non-smooth, we can use
the proximal operator oracle [68] or the Nesterov’s smooth-
ing [69] and homotopy smoothing [70] techniques to
smoothen them, and thereby obtain their smoothed approx-
imations. In addition, we can directly extend our VR-SGD
method to the non-smooth setting as in [36] (e.g., Algorithm
3 in [36]) without using any smoothing techniques.

Algorithm 3. The Momentum Accelerated Algorithm

Input: S andm.
Initialize: x1

0 ¼ v10 ¼ ex0, fwsg, a > 0, and h0.
1: for s ¼ 1; 2; . . . ; S do

2: ems ¼ 1
n

Pn
i¼1rfiðexs�1Þ, hs ¼ h0=maxfa; 2=ðsþ 1Þg;

3: Option I: vs0 ¼ xs
0, or Option II: xs

0 ¼ wsv
s
0 þ ð1� wsÞexs�1;

4: for k ¼ 0; 1; . . . ;m� 1 do
5: Pick isk uniformly at random from ½n�;
6: erfis

k
ðxs

kÞ ¼ rfis
k
ðxs

kÞ � rfis
k
ðexs�1Þ þ ems;

7: vskþ1 ¼ vsk � hs½ erfis
k
ðxs

kÞ þ rgðxs
kÞ�;

8: xs
kþ1 ¼ exs�1 þ wsðvskþ1 � exs�1Þ;

9: end for
10: exs ¼ 1

m

Pm
k¼1x

s
k;

11: Option I: xsþ1
0 ¼ xs

m, or Option II: vsþ1
0 ¼ vsm;

12: end for
Output: bxS ¼ exS , if F ðexSÞ�F ð1S

PS
s¼1exsÞ, and bxS ¼ 1

S

PS
s¼1exs

otherwise.

Considering that each component function fiðxÞ may
have different degrees of smoothness, picking the random
index isk from a non-uniform distribution is a much better
choice than commonly used uniform random sampling [71],
[72], as well as without-replacement sampling versus with-
replacement sampling [73]. This can be done using the same
techniques in [34], [48], i.e., the sampling probabilities for all
fiðxÞ are proportional to their Lipschitz constants, i.e.,
pi ¼ Li=

Pn
j¼1Lj. VR-SGD can also be combined with other

accelerated techniques used for SVRG. For instance, the
epoch length of VR-SGD can be automatically determined by
the techniques in [44], [74], instead of a fixed epoch length.
We can reduce the number of gradient calculations in early
iterations as in [43], [44], which leads to faster convergence in
general (see Section 5.5 for details). Moreover, we can intro-
duce theNesterov’s acceleration techniques in [25], [39], [40],
[41], [42] and momentum acceleration tricks in [36], [48], [75]
to further improve the performance of VR-SGD.

4 ALGORITHM ANALYSIS

In this section, we provide the convergence guarantees of
VR-SGD for solving both smooth and non-smooth general
convex problems, and extend the results to the mini-batch
setting. We also study the convergence properties of VR-
SGD for solving both smooth and non-smooth strongly con-
vex objective functions. Moreover, we discuss the equiva-
lent relationship between VR-SGD and its momentum
accelerated variant, as well as some of its extensions.

4.1 Convergence Properties: Non-Strongly Convex
In this part, we analyze the convergence properties of VR-
SGD for solving more general non-strongly convex problems.
Considering that the proposed algorithm (i.e., Algorithm 2)
has two different update rules for smooth and non-smooth
cases, we give the convergence guarantees of VR-SGD for the
two cases as follows.

4.1.1 Smooth Objective Functions

We first provide the convergence guarantee of our algo-
rithm for solving Problem (1) when F ðxÞ is smooth. In order
to simplify analysis, we denote F ðxÞ by fðxÞ, that is,
fiðxÞ :¼ fiðxÞ þ gðxÞ for all i ¼ 1; 2; . . . ; n, and then gðxÞ 	 0.

Lemma 1 (Variance bound). Let x� be the optimal solution of
Problem (1). Suppose Assumption 1 holds. Then the following
inequality holds

E k erfis
k
ðxskÞ � rfðxskÞk2

h i
�4L½fðxskÞ � fðx�Þ þ fðexs�1Þ � fðx�Þ�:

The proofs of this lemma, the lemmas and theorems
below are all included in the Supplementary Material, avail-
able online. Lemma 1 provides the upper bound on the
expected variance of the variance reduced gradient estimator
in (5), i.e., the SVRG estimator. For Algorithm 2 with Option
II and a fixed learning rate h, we have the following result.

Theorem 1 (Smooth objectives). Suppose Assumption 1
holds. Then the following inequality holds

E fðbxSÞ� �� fðx�Þ � 2ðmþ 1Þ
½g � 4mþ 2�S ½fðex0Þ � fðx�Þ�

þ bðb� 1ÞL
2½g � 4mþ 2�S kex0� x�k2;

where g ¼ ðb� 1Þðm� 1Þ, and b ¼ 1=ðLhÞ.
From Theorem 1 and its proof, one can see that our con-

vergence analysis is very different from that of existing sto-
chastic methods, such as SVRG [1], Prox-SVRG [34], and
SVRG++ [44]. Similarly, the convergence of Algorithm 2
with Option I and a fixed learning rate can be guaranteed,
as stated in Theorem 6 in the Supplementary Material, avail-
able online. All the results show that VR-SGD attains a con-
vergence rate of Oð1=T Þ for non-strongly convex functions.

4.1.2 Non-Smooth Objective Functions

We also provide the convergence guarantee of Algorithm 2
with Option I and (13) for solving Problem (1) when F ðxÞ is
non-smooth and non-strongly convex, as shown below.

Theorem 2 (Non-smooth objectives). Suppose Assump-
tion 1 holds. Then the following inequality holds

E F ðbxSÞ� �� F ðx�Þ

� 2ðmþ 1Þ
ðb� 5ÞmS

½F ðex0Þ� F ðx�Þ� þ bðb� 1ÞL
2ðb� 5ÞmS

kex0� x�k2:

Similarly, the convergence of Algorithm 2 with Option II
and a fixed learning rate can be guaranteed, as stated in
Corollary 4 in the Supplementary Material, available online.

4.1.3 Mini-Batch Settings

The upper bound on the variance of erfis
k
ðxs

kÞ is extended to
the mini-batch setting as follows.

SHANG ETAL.: VR-SGD: A SIMPLE STOCHASTIC VARIANCE REDUCTION METHOD FOR MACHINE LEARNING 193



Corollary 1 (Variance bound of mini-batch). If each fið�Þ
is convex and L-smooth, then the following inequality holds

E k erfIs
k
ðxs

kÞ � rfðxs
kÞk2

h i
� 4LdðbÞ½F ðxs

kÞ � F ðx�Þ þ F ðexs�1Þ � F ðx�Þ�;
where dðbÞ ¼ ðn� bÞ=½ðn� 1Þb�.
This corollary is essentially identical to Theorem 4 in [38],

and hence its proof is omitted. It is not hard to verify that
0 � dðbÞ � 1. Based on the variance upper bound, we further
analyze the convergence properties of VR-SGD in the mini-
batch setting, as shown below.

Theorem 3 (Mini-batch). If each fið�Þ is convex and
L-smooth, then the following inequality holds

E F ðbxSÞ� �� F ðx�Þ

� 2dðbÞðmþ 1Þ
zmS

E F ðex0Þ � F ðx�Þ� �þ bðb� 1ÞL
2zmS

E kx� � ex0k2
h i

;

where z ¼ b� 1� 4dðbÞ.
From Theorem 3, one can see that when b ¼ n (i.e., the

batch setting), dðnÞ ¼ 0, and the first term on the right-hand
side of the above inequality diminishes. That is, VR-SGD
degenerates to a batch method. When b ¼ 1, we have
dð1Þ ¼ 1, and thus Theorem 3 degenerates to Theorem 2.

4.2 Convergence Properties: Strongly Convex
We also analyze the convergence properties of VR-SGD for
solving strongly convex problems. We first give the following
convergence result for Algorithm 2 with Option II.

Theorem 4 (Strongly convex). Suppose Assumptions 1, 2
and 3 in the Supplementary Material, available online, hold,
andm is sufficiently large so that

r :¼ 2Lhðmþ cÞ
ðm� 1Þð1� 3LhÞ þ

cð1� LhÞ
mhðm� 1Þð1� 3LhÞ < 1;

where c is a constant. Then Algorithm 2 with Option II has the
following geometric convergence in expectation

E F ðbxSÞ � F ðx�Þ� � � rS F ðex0Þ � F ðx�Þ� �
:

We also provide the linear convergence guarantees for
Algorithm 2 with Option I for solving non-smooth and
strongly convex functions, as stated in Theorem 7 in the
Supplementary Material, available online. Similarly, the lin-
ear convergence of Algorithm 2 can be guaranteed for the
smooth strongly-convex case. All the theoretical results
show that VR-SGD attains a linear convergence rate and at
most the oracle complexity of O ðnþ L=mÞlog ð1=�Þð Þ for both
smooth and non-smooth strongly convex functions. In con-
trast, the convergence of SVRG [1] is only guaranteed for
smooth and strongly convex problems.

Although the learning rate in Theorem 4 needs to be less
than 1=ð3LÞ, we can use much larger learning rates in prac-
tice, e.g., h ¼ 1=L. However, it can be easily verified that the
learning rate of SVRG should be less than 1=ð4LÞ in theory,
and adopting a larger learning rate for SVRG is not always
helpful in practice, which means that VR-SGD can use
much larger learning rates than SVRG both in theory and in
practice. In other words, although they have the same theo-
retical convergence rate, VR-SGD converges significantly

faster than SVRG in practice, as shown by our experiments.
Note that similar to the convergence analysis in [4], [5], [58],
the convergence of VR-SGD for some non-convex problems
can also be guaranteed.

4.3 Equivalent to its Momentum Accelerated Variant
Inspired by the success of the momentum technique in our
previouswork [6], [50], [75], we present amomentum acceler-
ated variant of Algorithm 2, as shown in Algorithm 3. Unlike
existing momentum techniques, e.g., [19], [22], [25], [39], [40],
[48], we use the convex combination of the snapshot exs�1 and
latest iterate vsk for acceleration, i.e., exs�1 þ wsðvskþ1 � exs�1Þ ¼
wsv

s
k þ ð1� wsÞexs�1. It is not hard to verify that Algorithm 2

with Option I is equivalent to its variant (i.e., Algorithm 3
with Option I), when ws ¼ maxfa; 2=ðsþ 1Þg and a is suffi-
ciently small (see the Supplementary Material, available
online, for their equivalent analysis). We emphasize that the
only difference between Options I and II in Algorithm 3 is the
initialization of xs

0 and vs0.

Theorem 5. Suppose Assumption 1 holds. Then the following
inequality holds:

E½F ðbxSÞ � F ðx�Þ�

� 4ð1� w1Þ
w2

1ðS þ 1Þ2 ½F ðex0Þ � F ðx�Þ� þ 2

mh0ðS þ 1Þ2 kx
�� ex0k2:

Choosing m ¼ QðnÞ, Algorithm 3 with Option II achieves an
�-suboptimal solution (i.e., E½F ðbxSÞ� � F ðx�Þ � ") using at

most Oðn ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½F ðex0Þ � F ðx�Þ�="p þ ffiffiffiffiffiffiffiffiffiffiffi
nL="

p kex0 � x�kÞ iterations.
This theorem shows that the oracle complexity of

Algorithm 3with Option II is consistent with that of Katyusha
[48], and is better than that of accelerated deterministic meth-
ods (e.g., AGD [20]), (i.e.,Oðn ffiffiffiffiffiffiffiffi

L="
p Þ), which are also verified

by the experimental results in Fig. 2. Our algorithm also
achieves the optimal convergence rate Oð1=T 2Þ for non-
strongly convex functions as in [48], [49]. Fig. 2 shows that
Katyusha andAlgorithm 3withOption II have similar perfor-
mance as Algorithms 2 and 3 with Option I (h0 ¼ 3=ð5LÞ) in
terms of number of effective passes. Clearly, Algorithm 3 and
Katyusha have higher complexity per iteration than Algo-
rithm 2. Thus, we only report the results of VR-SGD (i.e.,
Algorithm 2) in Section 5.

4.4 Complexity Analysis
From Algorithm 2, we can see that the per-iteration cost of
VR-SGD is dominated by the computation of rfis

k
ðxskÞ,

rfis
k
ðexs�1Þ, and rgðxs

kÞ or the proximal update in (13). Thus,
the complexity is OðdÞ, which is as low as that of SVRG [1]

Fig. 2. Comparison of AGD [20], Katyusha [48], Algorithm 3 with Option I
and II, and VR-SGD for solving logistic regression with � ¼ 0.
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and Prox-SVRG [34]. In fact, for some ERMproblems, we can
save the intermediate gradientsrfiðexs�1Þ in the computation
of ems, which generally requiresOðnÞ additional storage. As a
result, each epoch only requires ðnþmÞ component gradient
evaluations. In addition, for extremely sparse data, we can
introduce the lazy update tricks in [38], [76], [77] to our algo-
rithm, and perform the update steps in (12) and (13) only for
the non-zero dimensions of each sample, rather than all
dimensions. In other words, the per-iteration complexity of
VR-SGD can be improved from OðdÞ to Oðd0Þ, where d0 �d
is the sparsity of feature vectors. Moreover, VR-SGD has
a much lower per-iteration complexity than existing acc-
elerated stochastic variance reduction methods such as
Katyusha [48], which have more updating steps for addi-
tional variables, as shown in (9a), (9b), and (9c).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of VR-SGD
for solving a number of convex and non-convex ERM
problems (such as logistic regression, Lasso and ridge
regression), and compare its performance with several
state-of-the-art stochastic variance reduced methods
(including SVRG [1], Prox-SVRG [34], SAGA [31]) and
accelerated methods, such as Catalyst [40] and Katyu-
sha [48]. Moreover, we apply VR-SGD to solve other
machine learning problems, such as ERM with non-convex
loss and leading eigenvalue computation.

5.1 Experimental Setup
We used several publicly available data sets in the experi-
ments: Adult (also called a9a), Covtype, Epsilon, MNIST,
and RCV1, all of which can be downloaded from the
LIBSVM Data website.4 It should be noted that each sample of
these date sets was normalized so that they have unit length as
in [34], [36], which leads to the same upper bound on the Lipschitz
constants Li, i.e., L ¼ Li for all i ¼ 1; . . . ; n. As suggested
in [1], [34], [48], the epoch length is set to m ¼ 2n for the
stochastic variance reduced methods, SVRG [1], Prox-
SVRG [34], Catalyst [40], and Katyusha [48], as well as VR-

SGD. Then the only parameter we have to tune by hand is
the learning rate, h. More specifically, we select learning
rates from f10j; 2:5� 10j; 5� 10j; 7:5� 10j; 10jþ1g, where
j2f�2;�1; 0g. Since Katyusha has a much higher per-
iteration complexity than SVRG and VR-SGD, we compare
their performance in terms of both the number of effective
passes and running time (seconds), where computing a
single full gradient or evaluating n component gradients is
considered as one effective pass over the data. For fair com-
parison, we implemented SVRG, Prox-SVRG, SAGA, Cata-
lyst, Katyusha, and VR-SGD in C++ with a Matlab interface,
as well as their sparse versions with lazy update tricks, and
performed all the experiments on a PC with an Intel i5-4570
CPU and 16GB RAM. The source code of all the methods is
available at https://github.com/jnhujnhu/VR-SGD.

5.2 Deterministic Methods versus Stochastic
Methods

In this section, we compare the performance of stochastic
methods (including SGD, SVRG, Katyusha, and VR-SGD)
with that of deterministic methods such as AGD [19], [20]
and APG [22] for solving strongly and non-strongly convex
problems. Note that the important momentum parameter w

of AGD is w ¼ ð ffiffiffiffi
L

p � ffiffiffiffi
m

p Þ=ð ffiffiffiffi
L

p þ ffiffiffiffi
m

p Þ as in [78], while that

of APG is defined as follows: wk ¼ ðak � 1Þ=akþ1 for all k�1

[22], where akþ1 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2

k

q
Þ=2, and a1 ¼ 1.

Fig. 3 shows the the objective gap (i.e., F ðxsÞ � F ðx�Þ) of
those deterministic and stochastic methods for solving
‘2-norm and ‘1-norm regularized logistic regression problems
(see the Supplementary Material for more results, available
online). It can be seen that the accelerated deterministic meth-
ods and SGD have similar convergence speed, and APG
usually performs slightly better than SGD for non-strongly
convex problems. The variance reduction methods (e.g.,
SVRG, Katyusha and VR-SGD) significantly outperform the
accelerated deterministic methods and SGD for both strongly
and non-strongly convex cases, suggesting the importance of
variance reduction techniques. Although accelerated deter-
ministic methods have a faster theoretical speed than SVRG
for general convex problems, as discussed in Section 1.2, APG
converges much slower in practice. VR-SGD consistently out-
performs the other methods (including Katyusha) in all the
settings, which verifies the effectiveness of VR-SGD.

5.3 Different Choices for Snapshot and
Starting Points

In the practical implementation of SVRG [1], both the snap-
shot exs and starting point xsþ1

0 in each epoch are set to the
last iterate xs

m of the previous epoch (i.e., Option I in Algo-
rithm 1), while the two vectors in [34] are set to the average
point of the previous epoch, 1

m

Pm
k¼1x

s
k (i.e., Option II in

Algorithm 1). In contrast, exs and xsþ1
0 in our algorithm are

set to 1
m

Pm
k¼1x

s
k and xs

m (denoted by Option III, i.e., Option I5

in Algorithm 2), respectively.

We compare the performance of the algorithms with the
three settings (i.e., the Options I, II and III listed in Table 2) for
solving ridge regression and Lasso problems, as shown in
Fig. 4 (see the Supplementary Material for more results,

Fig. 3. Comparison of deterministic and stochastic methods on Adult.

4. https://www.csie.ntu.edu.tw/
cjlin/libsvm/
5. As Options I and II in Algorithm 2 achieve very similar perfor-

mance, we only report the results of our algorithm with Option I.
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available online). Except for the three different settings for
snapshot and starting points, we use the update rules in (12)
and (13) for ridge regression and Lasso problems, respec-
tively. We can see that the algorithm with Option III (i.e.,
Algorithm 2 with Option I) consistently converges much
faster than the algorithms with Options I and II for both
strongly convex and non-strongly convex cases. This indicates
that the setting of Option III suggested in this paper is a better
choice thanOptions I and II for stochastic optimization.

5.4 Common SG Updates versus Prox-SG Updates

In this section, we compare the original Katyusha algorithm
in [48] with the slightly modified Katyusha algorithm
(denoted by Katyusha-I). In Katyusha-I, only the following
two update rules are used to replace the original proximal
stochastic gradient update rules in (9b) and (9c)

yskþ1 ¼ ysk � h½ erfikðxskþ1Þ þ rgðxs
kþ1Þ�;

zskþ1 ¼ xs
kþ1 � ½ erfikðxs

kþ1Þ þ rgðxs
kþ1Þ�=ð3LÞ:

(16)

Similarly, we also implement the proximal versions6 for the
original SVRG (called SVRG-I) and VR-SGD (denoted by
VR-SGD-I) methods, and denote their proximal variants by
SVRG-II and VR-SGD-II, respectively. In addition, the origi-
nal Katyusha is denoted by Katyusha-II.

Fig. 5 shows the performance of Katyusha-I and
Katyusha-II for solving ridge regression on the two popular
data sets: Adult and Covtype. We also report the results of
SVRG, VR-SGD, and their proximal variants. It is clear that
Katyusha-I usually performs better than Katyusha-II (i.e.,
the original Katyusha [48]), and converges significantly
faster in the case when the regularization parameter is 10�4

or 10�6. This seems to be the main reason why Katyusha has
inferior performance when the regularization parameter is
relatively large, as shown in Section 5.6.1. In contrast, VR-
SGD and its proximal variant have similar performance,
and the former slightly outperforms the latter in most cases
(similar results are also observed for SVRG versus its proxi-
mal variant). This suggests that stochastic gradient update
rules as in (12) and (16) are better choices than proximal
update rules as in (10), (9b) and (9c) for smooth objective
functions.We also believe that our new insight can help us to
design accelerated stochastic optimizationmethods.

Both Katyusha-I and Katyusha-II usually outperform
SVRG and its proximal variant, especially when the regulari-
zation parameter is relatively small, e.g., � ¼ 10�6. Moreover,
it can be seen that both VR-SGD and its proximal variant
achieve much better performance than the other methods

in most cases, and are also comparable to Katyusha-I and
Katyusha-II in the remaining cases. This further verifies that
VR-SGD is suitable for various large-scalemachine learning.

5.5 Growing Epoch Size Strategy in Early Iterations

In this section, we present a general growing epoch size strat-
egy in early iterations (i.e., Ifms < 2n,msþ1 ¼ brmscwith the
factor r > 1. Otherwise, msþ1 ¼ ms). Different from the dou-
bling-epoch technique used in SVRG++ [44] (i.e., msþ1 ¼
2ms), we gradually increase the epoch size in only the early
iterations. Similar to the convergence analysis in Section 4,
VR-SGD with the growing epoch size strategy (called VR-
SGD++) can be guaranteed to converge. As suggested in [44],
we set m1 ¼ bn=4c for both SVRG++ and VR-SGD++, and
r ¼ 1:75 for VR-SGD++. Note that they use the same initial
learning rate. We compare their performance for solving
‘2-norm regularized logistic regression, as shown in Fig. 6
(see the Supplementary Material for more results, available
online). All the results show that VR-SGD++ converges faster
than VR-SGD, which means that reducing the number of gra-
dient calculations in early iterations can lead to faster conver-
gence as discussed in [43]. Moreover, both VR-SGD++ and
VR-SGD significantly outperform SVRG++, especially when
the regularization parameter is relatively small, e.g., � ¼ 10�6.

5.6 Real-World Applications
In this section, we apply VR-SGD to solve a number of
machine learning problems, e.g., logistic regression, non-
convex ERM and eigenvalue computation.

5.6.1 Convex Logistic Regression

In this part, we focus on the following generalized logistic
regression problem for binary classification

min
x2Rd

1

n

Xn
i¼1

log ð1þ expð�bia
T
i xÞÞ þ

�1

2
kxk2 þ �2kxk1; (17)

where fðai; biÞg is a set of training examples, and �1; �2�0
are the regularization parameters. Note that when �2 > 0,
fiðxÞ ¼ log ð1þ expð�bia

T
i xÞÞ þ ð�1=2Þkxk2. The formulation

(17) includes the ‘2-norm (i.e., �2 ¼ 0), ‘1-norm (i.e., �1 ¼ 0),
and elastic net (i.e., �1 6¼0 and �2 6¼0) regularized logistic
regression problems. Fig. 7 shows how the objective gap
decreases for the ‘2-norm, ‘1-norm, and elastic-net regular-
ized logistic regression problems, respectively (see the Sup-
plementary Material for more results, available online).
From all the results, we make the following observations.

� When the problems are well-conditioned (e.g., �1 ¼
10�4 or �2 ¼ 10�4), Prox-SVRG usually converges fast-
er than SVRG for both strongly convex (e.g., ‘2-norm
regularized logistic regression) and non-strongly con-
vex (e.g., ‘1-norm regularized logistic regression) cases.
On the contrary, SVRG often outperforms Prox-SVRG,
when the problems are ill-conditioned, e.g., �1 ¼ 10�6

or �2 ¼ 10�6 (see Figs. 11 and 12 in the Supplementary
Material, available online). The main reason is that
they have different initialization settings, i.e., exs ¼ xs

m

and xsþ1
0 ¼ xs

m for SVRG versus exs ¼ 1
m

Pm
k¼1x

s
k and

xsþ10 ¼ 1
m

Pm
k¼1x

s
k for Prox-SVRG.

� Katyusha converges much faster than SAGA, SVRG,
Prox-SVRG, and Catalyst in the cases when the

TABLE 2
The Three Choices of Snapshot and Starting Points for

Stochastic Variance Reduction Optimization

Option I Option II Option IIIexs¼ xs
m and

xsþ1
0 ¼ xs

m

exs¼ 1
m

Pm
k¼1x

s
k and

xsþ1
0 ¼ 1

m

Pm
k¼1x

s
k

exs¼ 1
m

Pm
k¼1x

s
k and

xsþ1
0 ¼ xsm

6. Here, the proximal variant of SVRG is different from Prox-
SVRG [34], and their main difference is the choices of both the snapshot
point and starting point. That is, the two vectors of the former are set to
the last iterate xsm, while those of Prox-SVRG are set to the average point
of the previous epoch, i.e., 1

m

Pm
k¼1x

s
k.
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problems are ill-conditioned, e.g., �1 ¼ 10�6, whereas
it often achieves similar or inferior performance
when the problems are well-conditioned, e.g.,
�1 ¼ 10�4 (see Figs. 11, 12 and 13 in the Supplemen-
tary Material, available online). Note that we imple-
mented the original algorithm with Option I in [48]
for Katyusha. Obviously, the above observation
matches the convergence properties of Katyusha pro-
vided in [48], that is, only if mm=L�3=4, Katyusha
attains the oracle complexity of Oððnþ ffiffiffiffiffiffiffiffiffiffiffiffi

nL=m
p Þ

log ð1=�ÞÞ for strongly convex problems.

� VR-SGD converges significantly faster than SAGA,
SVRG, Prox-SVRG and Catalyst, especially when the
problems are ill-conditioned, e.g., �1 ¼ 10�6 or
�2 ¼ 10�6 (see Figs. 11 and 12 in the Supplementary
Material, available online). The main reason is that
VR-SGD can use much larger learning rates than them
(e.g., 1=L for VR-SGD versus 1=ð10LÞ for SVRG),
which leads to faster convergence. This further verifies
that the settings of both snapshot and starting points in
our algorithm (i.e., Algorithm 2) are better choices
thanOptions I and II inAlgorithm 1.

� In particular, VR-SGD consistently outperforms the
best-known stochastic method, Katyusha, in terms of

the number of passes through the data, especially
when the problems are well-conditioned, e.g., 10�4

and 10�5 (see Figs. 11 and 12 in the Supplementary
Material, available online). Since VR-SGD has a
much lower per-iteration complexity than Katyusha,
VR-SGD has more obvious advantage over Katyusha
in terms of running time, especially in the case of
sparse data (e.g., RCV1), as shown in Fig. 7b. From
the algorithms of Katyusha proposed in [48], we can
see that the learning rate of Katyusha is at least set to
1=ð3LÞ. Similarly, the learning rate used in VR-SGD
is comparable to that of Katyusha, which may be the
main reason why the performance of VR-SGD is
much better than that of Katyusha. This also implies
that the algorithms (including VR-SGD) that enjoy
larger learning rates can converge faster in general.

5.6.2 ERM with Non-Convex Loss

In this part, we apply VR-SGD to solve the following regu-
larized ERM problem with non-convex sigmoid loss

min
x2Rd

1

n

Xn
i¼1

fiðxÞ þ �

2
kxk2; (18)

where fiðxÞ ¼ 1=½1þ expðbiaTi xÞ�. Some work [4], [79] has
shown that the sigmoid function usually generalizes better
than some other loss functions (such as squared loss, logistic
loss and hinge loss) in terms of test accuracy especially when
there are outliers. Here, we consider binary classification on
the four data sets: Adult, MNIST, Covtype and RCV1. Note
that we only consider classifying the first class inMNIST.

We compare the performance (including training objective
value and function suboptimality, i.e., F ðxsÞ � F ðx�Þ) of VR-
SGD with that of SAGA [58], SVRG [4], and SVRG++ [44], as
shown in Fig. 8 (more results are provided in the Supplemen-
tary Material, available online), where x� denotes the best
solution obtained by running all those methods for a large
number of iterations and multiple random initializations.

Fig. 4. Comparison of the algorithms with Options I, II, and III for solving ridge regression and Lasso on Covtype. In each plot, the vertical axis shows
the objective value minus the minimum, and the horizontal axis denotes the number of effective passes.

Fig. 5. Comparison of SVRG [1], Katyusha [48], VR-SGD, and their proximal versions for solving ridge regression problems. In each plot, the vertical
axis shows the objective value minus the minimum, and the horizontal axis is the number of effective passes over data.

Fig. 6. Comparison of SVRG++ [44], VR-SGD, and VR-SGD++ for
solving logistic regression problems on Epsilon.
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Note that both SAGA and SVRG are two variants of the origi-
nal SAGA [31] and SVRG [1]. The results show that our VR-
SGD method has faster convergence than the other methods,
and its objective value is much lower. This implies that VR-
SGD can yield much better solutions than the other methods
including SVRG++. Furthermore, we can see that VR-SGD
has much greater advantage over the other methods in the
cases when the smaller � is, which means that the objective
function becomesmore “non-convex”.

Moreover, we report the classification testing accuracies
of all those methods on the test sets of Adult and MNIST in
Fig. 9, as the number of effective passes over datasets
increases. Note that the regularization parameter is set to
� ¼ 10�4. It can be seen that our VR-SGD method obtains
higher test accuracies than the other methods with much
shorter running time, suggesting faster convergence.

5.6.3 Eigenvalue Computation

Finally, we apply VR-SGD to solve the following non-
convex leading eigenvalue computation problem

min
x2Rd:xTx¼1

�xT 1

n

Xn
i¼1

aia
T
i

 !
x: (19)

We plot the performance of the classical Power iteration
method, VR-PCA [17], and VR-SGD on Epsilon and RCV1
in Fig. 10, where the relative error is defined as in [17], i.e.,
log 10ð1� kATxk2=ðmaxu:uT u¼1kATuk2ÞÞ, and A 2 Rd�n is the
data matrix. Note that the epoch length is set to m ¼ n for
VR-PCA and VR-SGD, as suggested in [17], and both of
them use a constant learning rate. The results show that the
stochastic variance reduced methods, VR-PCA and VR-
SGD, significantly outperform the traditional method,
Power. Moreover, our VR-SGD method often converges
much faster than VR-PCA.

6 CONCLUSIONS

Weproposed a simple variant of the original SVRG [1], called
variance reduced stochastic gradient descent (VR-SGD).
Unlike the choices of snapshot and starting points in SVRG

Fig. 7. Comparison of SAGA [31], SVRG [1], Prox-SVRG [34], Catalyst [40], Katyusha [48], and VR-SGD for solving ‘2-norm (the first row), ‘1-norm
(c), and elastic net (d) regularized logistic regression problems. In each plot, the vertical axis shows the objective value minus the minimum, and the
horizontal axis is the number of effective passes (left) or running time (right).

Fig. 8. Comparison of SAGA [58], SVRG [4], SVRG++ [44], and VR-SGD for solving non-convex ERM problems with sigmoid loss: � ¼ 10�5 (top) and
� ¼ 10�6 (bottom). Note that x� denotes the best solution obtained by running all those methods for a large number of iterations and multiple random
initializations.
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and Prox-SVRG [34], the two points of each epoch in VR-SGD
are set to the average and last iterate of the previous epoch,
respectively. This setting allows us to use much larger learn-
ing rates than SVRG, e.g., 1=L for VR-SGD versus 1=ð10LÞ for
SVRG, and also makes VR-SGD much more robust to learn-
ing rate selection. Different from existing proximal stochastic
methods such as Prox-SVRG andKatyusha [48], we designed
two different update rules for smooth and non-smooth prob-
lems, respectively, which makes VR-SGD suitable for non-
smooth and/or non-strongly convex problemswithout using
any reduction techniques as in [68]. Our empirical results
also showed that for smooth problems stochastic gradient
update rules as in (12) are better choices than proximal
update formulas as in (10).

On the practical side, the choices of the snapshot and
starting points make VR-SGD significantly faster than its
counterparts, SVRG and Prox-SVRG. On the theoretical
side, the setting also makes our convergence analysis more
challenging. We analyzed the convergence properties of
VR-SGD for strongly convex objective functions, which
show that VR-SGD attains a linear convergence rate. More-
over, we provided the convergence guarantees of VR-SGD
for non-strongly convex functions, and our experimental
results showed that VR-SGD achieves similar performance
to its momentum accelerated variant that has the optimal
convergence rate Oð1=T 2Þ. In contrast, SVRG and Prox-
SVRG cannot directly solve non-strongly convex func-
tions [44]. Various experimental results show that VR-SGD
significantly outperforms state-of-the-art variance reduction
methods such as SAGA [58], SVRG [1] and Prox-SVRG [34],
and also achieves better or at least comparable perform-
ance with recently-proposed acceleration methods, e.g.,
Catalyst [40] and Katyusha [48]. Since VR-SGD has a much
lower per-iteration complexity than accelerated methods
(e.g., Katyusha), it has more obvious advantage over them
in terms of running time, especially for high-dimensional
sparse data. This further verifies that VR-SGD is suitable for
various large-scale machine learning. Furthermore, as the
update rules of VR-SGD are much simpler than existing
accelerated stochastic variance reduction methods such as
Katyusha, it is more friendly to asynchronous parallel and
distributed implementation similar to [59], [60], [62].
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