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Abstract—Learning with streaming data has attracted much attention during the past few years. Though most studies consider data

stream with fixed features, in real practice the features may be evolvable. For example, features of data gathered by limited-lifespan

sensors will change when these sensors are substituted by new ones. In this article, we propose a novel learning paradigm: Feature

Evolvable Streaming Learning where old features would vanish and new features would occur. Rather than relying on only the current

features, we attempt to recover the vanished features and exploit it to improve performance. Specifically, we learn a mapping from the

overlapping period to recover old features and then we learn two models from the recovered features and the current features,

respectively. To benefit from the recovered features, we develop two ensemble methods. In the first method, we combine the

predictions from two models and theoretically show that with the assistance of old features, the performance on new features can be

improved and we provide a tighter bound when the loss function is exponentially concave. In the second approach, we dynamically

select the best single prediction and establish a better performance guarantee when the best model switches. Experiments on both

synthetic and real data validate the effectiveness of our proposal.

Index Terms—Machine learning, supervised learning, learning with streaming data, evolvable features

Ç

1 INTRODUCTION

IN many real tasks, data are accumulated over time, and
thus, learning with streaming data has attracted much

attention during the past few years. Many effective
approaches have been developed, such as hoeffding tree [1],
Bayes tree [2], evolving granular neural network (eGNN) [3],
Core Vector Machine (CVM) [4], etc. Though these
approaches are effective for certain scenarios, they have a
common assumption, i.e., the data stream comes with a fixed
stable feature space. In other words, the data samples are
always described by the same set of features. Unfortunately,
this assumption does not hold in many streaming tasks. For
example, for ecosystem protection one can deploymany sen-
sors in a reserve to collect data, where each sensor corre-
sponds to a feature. Due to its limited-lifespan, after some
periods many sensors will wear out, whereas some new sen-
sors can be spread. Thus, features corresponding to the old
sensors vanish while features corresponding to the new sen-
sors appear, and the learning algorithm needs to work well
under such evolving environment. Note that the ability of
adapting to environmental change is one of the fundamental
requirements for learnware [5], where an important aspect is
the ability of handling evolvable features.

A straightforward approach is to rely on the new features
and learn a newmodel to use. However, this solution suffers
from some deficiencies. First, when new features just
emerge, there are few data samples described by these fea-
tures, and thus, the training samples might be insufficient to
train a strong model. Second, the old model of vanished

features is ignored,which is a bigwaste of our data collection
efforts. To address these limitations, in this paper we pro-
pose a novel learning paradigm: Feature Evolvable Streaming
Learning (FESL). We formulate the problem based on a key
observation: in general, features do not change in an arbi-
trary way; instead, there are some overlapping periods in
which both old and new features are available. Back to the
ecosystem protection example, since the lifespan of sensors
is known to us, e.g., how long their battery will run out is a
prior knowledge, we usually spread a set of new sensors
before the old ones wear out. Thus, the data stream arrives in
a way as shown in Fig. 1, where in period T1, the original set
of features are valid and at the end of T1, period B1 appears,
where the original set of features are still accessible, but
some new features are included; then in T2, the original set of
features vanish, only the new features are valid but at the
end of T2, period B2 appears where newer features come.
This process will repeat again and again. Note that the T1

and T2 periods are usually long, whereas the B1 andB2 peri-
ods are short because, as in the ecosystem protection exam-
ple, theB1 andB2 periods are just used to switch the sensors
and we do not want to waste a lot of lifetime of sensors for
such overlapping periods.

In this paper, we propose to solve the FESL problem by
utilizing the overlapping period to discover the relationship
between the old and new features, and exploiting the old
model even when only the new features are available. Spe-
cifically, we try to learn a mapping from new features to old
features through the samples in the overlapping period. In
this way, we are able to reconstruct old features from new
ones and thus the old model can still be applied. To benefit
from additional features, we develop two ensemble meth-
ods, one is in a combination manner and the other in a
dynamic selection manner. In the first method, we combine
the predictions from two models and theoretically show
that with the assistance of old features, the performance on
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new features can be improved and we find that if the loss
function is exponentially concave, the corresponding bound
will be tighter. In the second approach, we dynamically
select the best single prediction and establish a better per-
formance guarantee when the best model switches at an
arbitrary time. Experiments on synthetic and real datasets
validate the effectiveness of our proposal.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 presents the formulation
of FESL. Our proposed approaches with corresponding
analyses are presented in section 4. Section 5 provides the
detailed proofs of our theorems. Section 6 reports experi-
mental results. Finally, Section 7 concludes our paper.

2 RELATED WORK

Our work is most related to data stream classification task.
Existing techniques for data stream classification can be
divided into two categories, one only considers a single clas-
sifier and the other considers ensemble classifiers.

For the former, several methods have been proposed, for
examples, hoeffding tree that is a decision tree classifier has
been proposed for data streams [1]; Bayes tree [2] gives a
novel index-based classifier; evolving granular neural
network (eGNN) [3] supported by granule-based learning
algorithms is used to classify data streams; Core Vector
Machine (CVM) [4] corresponding with a one-pass ver-
sion [6] is inspired by SVM; On-Demand-Stream [7] pro-
poses a k-nearest-neighbor data stream classifier. For the
latter, various ensemble methods have been proposed
which are as follows: Online Bagging & Boosting [8] is an
online version of the batch Bagging and Boosting algorithm
that tackles the problem when data arrive in stream without
the need for storage and reprocessing; Ensemble Classi-
fiers [9], [10] mines concept-drifting data streams using
weighted ensemble technique; Adapted One-vs-All Deci-
sion Trees (OVA) [11] proposes a new OVA scheme that is
adapted for data stream classification; Meta-knowledge
Ensemble [12] explores shared patterns among all the base
classifiers in a spatial database. For more details, please
refer to [13], [14], [15], [16].

These traditional streaming data algorithms often assume
that the data samples are described by the same set of fea-
tures, while in many real streaming tasks feature often
changes. We want to emphasize that though concept-drift
happens in streaming data where the underlying data

distribution changes over time [17], [18], [19], the number of
features in concept-drift never changes which is different
from our problem.Most studies correlated to features chang-
ing are focusing on feature selection and extraction [20], [21]
and to the best of our knowledge, none of them consider the
evolving of feature set during the learning process.

Data stream mining is a hot research direction in data
mining while online learning [22], [23] is a related topic
from machine learning. Yet online learning can also tackle
the streaming data problem since it assumes that the data
come in a streaming way. Online learning has been exten-
sively studied under different settings, such as learning
with experts [24] in which the forecaster predicts by exploit-
ing the prediction of experts and online convex optimiza-
tion [25], [26] which faces a sequence of convex problems.
There are strong theoretical guarantees for online learning,
and it usually uses regret or the number of mistakes to mea-
sure the performance of the learning procedure. However,
most of existing online learning algorithms are limited to
the case that the feature set is fixed.

Other related topics involving multiple feature sets
include multi-view learning [27], [28], transfer learning [29],
[30] and incremental attribute learning [31]. Although both
our approaches and multi-view learning exploit the relation
between different sets of features, there exists a fundamental
difference: multi-view learning assumes that every sample is
described by multiple feature sets simultaneously, whereas
in FESL only few samples in the feature switching period
have two sets of features, and no matter how many periods
there are, the switching part involves only two sets of fea-
tures. Transfer learning usually assumes that data are in
batch mode, and few of them consider the streaming cases
where data arrives sequentially and cannot be stored
completely. One exception is online transfer learning [32] in
which data from both sets of features arrive sequentially.
However, they assume that all the feature spaces must
appear simultaneously during the whole learning process
while such an assumption is not true in FESL. Another trans-
fer learning work that is in an online manner is called online
heterogeneous transfer (OHT) [33]. The feature spaces of the
source and target domains of OHT are different. Neverthe-
less, although they assume the target data of interest arrive
in an online manner, the source data and auxiliary co-occur-
rence data are from offline sources while in our scenario both
the data from old and new feature spaces come in a stream-
ing or online manner and the feature space continues evolv-
ing instead of only two invariant feature spaces shown in
OHT. Furthermore, transfer learning often assumes that the
label spaces of the source domain and target domain could be
different while the label spaces in our setting are the same.
When it comes to incremental attribute learning [31], old sets
of features do not vanish or do not vanish entirely while in
FESL, old ones will vanish thoroughly when new sets of fea-
tures come. There were studies about incremental optimiza-
tion under non-stationary environment [34], whereas our
concerned setting has not been touched yet.

The most related work is OPID [35]. It also handles evolv-
able streams. Different to our setting where there are over-
lapping periods, OPID handles situations where there are no
overlapping periods but there are overlapping features.
Thus, the technical challenges and solutions are different.

Fig. 1. Illustration that how data stream comes.
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3 PRELIMINARIES

We focus on both classification and regression tasks. On
each round of the learning process, the algorithm observes
an instance and gives its prediction. After the prediction has
been made, the true label is revealed and the algorithm suf-
fers a loss which reflects the discrepancy between the pre-
diction and the groundtruth. We define “feature space” in
our paper by a set of features. That the feature space
changes means both the underlying distribution of the fea-
ture set and the number of features change. Consider the
process with three periods: in the first period large amount
of data streams come from the old feature space; then in the
second period named as overlapping period, few of data
come from both the old and the new feature space; soon
afterwards in the third period, data streams only come from
the new feature space. We call this whole process a cycle.
As can be seen from Fig. 1, each cycle merely includes two
feature spaces. Thus, we only need to focus on one cycle
and it is easy to extend to the case with multiple cycles.
Besides, we assume that the old features in one cycle will
vanish simultaneously by considering the example of eco-
system protection where all the sensors share the same
expected lifespan and thus they will wear out at the same
time. We will study the case where old features do not van-
ish simultaneously in the future work.

Based on the above discussion, we only consider two fea-
ture spaces denoted by S1 and S2, respectively. Suppose
that in the overlapping period, there are B rounds of instan-
ces both from S1 and S2. As can be seen from Fig. 2, the pro-
cess can be summarized as follows.

� For t ¼ 1; . . . ; T1 �B, in each round, the learner

observes a vector xS1
t 2 Rd1 sampled from S1 where

d1 is the number of features of S1, T1 is the number of

total rounds in S1.
� For t ¼ T1 �Bþ 1; . . . ; T1, in each round, the learner

observes two vectors xS1
t 2 Rd1 and x

S2
t 2 Rd2 from S1

and S2, respectivelywhere d2 is the number of features
ofS2.

� For t ¼ T1 þ 1; . . . ; T1 þ T2, in each round, the learner

observes a vector xS2
t 2 Rd2 sampled from S2 where

T2 is the number of rounds in S2. Note thatB is small,
so we can omit the streaming data from S2 on rounds
T1 �Bþ 1; . . . ; T1 since they have minor effect on
training themodel in S2.

We use kxk to denote the ‘2-norm of a vector x 2
Rdi ; i ¼ 1; 2. The inner product is denoted by h�; �i. Let

V1 � Rd1 and V2 � Rd2 be two sets of linear models that
we are interested in. We define the projection PVi

ðbÞ ¼
argmina2Vi

ka� bk; i ¼ 1; 2. We restrict our prediction func-

tion in ith feature space and tth round to be linear which

takes the form hwi;t;x
Si
t i where wi;t 2 Rdi ; i ¼ 1; 2. The loss

function ‘ðw>x; yÞ is convex in its first argument. For exam-

ple, in classification task, we have logistic loss‘ðw>x; yÞ
¼ lnð1þ expð�yðw>xÞÞÞ; hinge loss ‘ðw>x; yÞ ¼ maxð0; 1� y

ðw> xÞÞ; etc., while in regression task, we usually use square
loss, namely ‘ðw>x; yÞ ¼ ðy�w>xÞ2:

The most straightforward or baseline algorithm is to
apply online gradient descent [22] on rounds 1; . . . ; T1 with

streaming data x
S1
t , and invoke it again on rounds T1 þ

1; . . . ; T1 þ T2 with streaming data x
S2
t . The models are

updated according to:

wi;tþ1 ¼ PVi
wi;t � ttr‘ðw>

i;tx
Si
t ; ytÞ

� �
; i ¼ 1; 2; (1)

where tt is a varied step size.

4 OUR PROPOSED APPROACH

In this section, we first introduce the basic idea of the solu-
tion to FESL, then present two different kinds of approaches
with the corresponding analyses.

4.1 Basic Idea With Linear and Nonlinear Mapping

The major limitation of the baseline algorithm mentioned
above is that the model learned on rounds 1; . . . ; T1 is
ignored on rounds T1 þ 1; . . . ; T1 þ T2. The reason is that
from rounds t > T1, we cannot observe data from feature
space S1, and thus themodelw1;T1 , which operates in S1, can-
not be used directly. To address this challenge, we assume

there exists certain relationship c : Rd2 ! Rd1 between the
two feature spaces, and try to discover it in the overlapping
period. There are several methods to learn a relationship
between two sets of features including multivariate regres-
sion [36], streamingmulti-label learning [37], etc.

We choose to use the popular and effective method —
least squares [38] which can be formulated as follows.

min
c:Rd2!Rd1

XT1

t¼T1�Bþ1

1

2
kxS1

t � cðxS2
t Þk22:

If the overlapping period is very short, it is unrealistic to
learn a complex relationship between the two spaces.
Instead, we can use a linear mapping to approximate c.
Assume the coefficient matrix of the linear mapping is MM,
then during rounds T1 �Bþ 1; . . . ; T1, the estimation of MM
can be learnt by linear least squares

min
MM2Rd2�d1

XT1

t¼T1�Bþ1

1

2
kxS1

t �MM>xS2
t k22:

Fig. 2. Illustration of setting where the feature space may evolve over
time. Here, we only consider the case with two feature spaces. Note that
T1 and T2 are large while B is very small.
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The optimal solutionMM� to the above problem is given by

MM� ¼
XT1

t¼T1�Bþ1

x
S2
t x

S2
t

>
 !�1 XT1

t¼T1�Bþ1

x
S2
t x

S1
t

>
 !

: (2)

Note that we do not need a budget to store instances from
the overlapping period because during the period from
T1 �Bþ 1 to T1, MM� can be calculated in an online way, i.e.,
we first iteratively calculateM1 andM2,

M1 ¼ M1 þ x
S2
t x

S2
t

>
andM2 ¼ M2 þ x

S2
t x

S1
t

>
;

then,

MM� ¼ M�1
1 M2:

On the other hand, if the period is not very short, we can
learn a more complex nonlinear relationship than the linear
one. A corresponding complicated one compared to the lin-
ear least squares is the kernel least squares

min
Q

XT1

t¼T1�Bþ1

1

2
kxS1

t �QðfðxS2
t ÞÞk22

where f : Rd2 ! H is a nonlinear feature mapping from fea-
ture space Rd2 to a Reproducing Kernel Hilbert Space H.

Q : H ! Rd1 is a linear function from H to feature space

Rd1 . Thus, c ¼ Q � f.
We still expect that during the overlapping period, we

can learn a mapping in an online way rather than a budget
to store instances. Thus we prefer online gradient descent
approach [39] to solve the kernel least square problem.

Let ‘ðQtÞ ¼ 1=2kxS1 �QtðfðxS2ÞÞk22: At each iteration of

gradient descent, given the training example ðxS2
t ;x

S1
t Þ, we

update the current classifier Qt�1 by

Qt ¼ Qt�1 � mrQ‘ðQt�1Þ;
where m is the step size. rQ denotes the gradient with
respect to Q and is given by

rQ‘ðQt�1Þ ¼ �‘0ðQt�1ÞkðxS2
t ; �Þ

where ‘0ðQt�1Þ ¼ x
S1
t �Qt�1ðfðxS2

t ÞÞ and kðx1;x2Þ ¼ fðx1Þ>
fðx2Þ; 8x1;x2 2 Rd2 is the kernel function. Let et ¼ ‘0ðQt�1Þ,
we have

Qt ¼ m
Xt

i¼T1�Bþ1
eikðxS2

i ; �Þ:
Thus,

et ¼ x
S1
t � m

Xt�1

i¼T1�Bþ1
eikðxS2

i ;x
S2
t Þ:

We know that c ¼ Q � f, so the approximate solution can be

obtained by

cðxS2Þ ¼ m
XT1

t¼T1�Bþ1
etkðxS2

t ;xS2Þ; (3)

where xS2 is a test instance from feature space S2.

Then if we only observe an instance x
S2
t 2 Rd2 from S2,

we can recover an instance in S1 by cðxS2Þ 2 Rd1 , to which
w1;T1 can be applied. Based on this idea, we will make two
changes to the baseline algorithm:

� During rounds T1 �Bþ 1; . . . ; T1, we will learn a rela-

tionshipc from ðxS1
T1�Bþ1, x

S2
T1�Bþ1Þ, . . . ; ðxS1

T1
;x

S2
T1
Þ.

� From rounds t > T1, we will keep on updating w1;t

using the recovered data cðxS2
t Þ and predict the tar-

get by utilizing the predictions ofw1;t andw2;t.
In round t > T1, the learner can calculate two base predic-

tions based on models w1;t and w2;t: f1;t ¼ w>
1;tðcðxS2

t ÞÞ and
f2;t ¼ w>

2;tx
S2
t : By utilizing the two base predictions in each

round, we propose two methods, both of which are able to
follow the better base prediction empirically and theoreti-
cally. The process to obtain the relationship mapping c and
w1;T1 during rounds 1; . . . ; T1 are concluded inAlgorithm 1.

4.2 Weighted Combination

We first propose an ensemble method by combining predic-
tions with weights based on exponential of the cumulative
loss [24]. The prediction at time t is the weighted average of
all the base predictions:

bpt ¼P2
i¼1 ai;tfi;tP2
i¼1 ai;t

; i ¼ 1; 2; (4)

where ai;t is the weight of the ith base prediction. With the
previous loss of each base model, we can update the
weights of the two base models as follows:

ai;t ¼ e�hLi;tP2
j¼1 e

�hLj;t�1
; (5)

where h is a tuned parameter and Li;t is the cumulative loss
of the ith base model until time t:

Li;t ¼
Xt
s¼1

‘ðfi;s; ysÞ; i ¼ 1; 2:

We can also rewrite (5) in an incremental way, which can be
calculated more efficiently:

ai;tþ1 ¼ ai;te
�h‘ðfi;t;ytÞP2

j¼1 aj;te
�h‘ðfj;t;ytÞ

; i ¼ 1; 2: (6)

The updating rule of the weights shows that if the loss of
one of the models on previous round is large, then its
weight will decrease in next round, which is reasonable and
can derive a good theoretical result shown in Theorem 1.
Algorithm 2 summarizes our first approach for FESL named
as FESL-c(ombination). We first learn a model w1;T1 using
online gradient descent on rounds 1; . . . ; T1, during which,
we also learn a relationship c for t ¼ T1 �Bþ 1; . . . ; T1. For

Algorithm 1. Initialize

1: Initializew1;1 2 V1 randomly;
2: for t ¼ 1; 2; . . . ; T1 do

3: Receive xS1
t 2 Rd1 and predict ft ¼ w>

1;tx
S1
t 2 R;

4: Receive the target yt 2 R, and suffer loss ‘ðft; ytÞ;
5: Updatew1;t using (1) where tt ¼ 1=

ffiffi
t

p
;

6: if t > T1 �B then
7: Learn c using (2) or (3);
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t ¼ T1 þ 1; . . . ; T1 þ T2, we learn a model w2;t on each round

and keep updating w1;t on the recovered data cðxS2
t Þ shown

in (7) where tt is a varied step size:

w1;tþ1 ¼ PVi
w1;t � ttr‘ðw>

1;tðcðxS2
t ÞÞ; ytÞ

� �
: (7)

Then we combine the predictions of the two models by
weights calculated in (6).

Analysis. In this paragraph, we borrow the regret from
online learning to measure the performance of FESL-c. Spe-
cifically, we give a loss bound as follows which shows that
the performance will be improved with assistance of the old
feature space.We define thatLS1 andLS2 are two cumulative
losses suffered by basemodels on rounds T1 þ 1; . . . ; T1 þ T2,

LS1 ¼
XT1þT2

t¼T1þ1

‘ðf1;t; ytÞ; LS2 ¼
XT1þT2

t¼T1þ1

‘ðf2;t; ytÞ; (8)

and LS12 is the cumulative loss suffered by our methods:

LS12 ¼PT1þT2
t¼T1þ1 ‘ðbpt; ytÞ: Then we have:

Theorem 1. Assume that the loss function ‘ is convex in its first
argument and that it takes value in [0, 1]. For all T2 > 1 and

for all yt 2 Y with t ¼ T1 þ 1; . . . ; T1 þ T2, L
S12 with parame-

ter h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðln 2Þ=T2

p
satisfies

LS12 	 minðLS1 ; LS2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT2=2Þ ln 2

p
: (9)

Remarks. This theorem implies that the cumulative lossLS12

of Algorithm 2 over rounds T1 þ 1; . . . ; T1 þ T2 is compara-
ble to the minimum of LS1 and LS2 . Furthermore, we

defineC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT2=2Þ ln 2
p

. IfLS2 � LS1 > C, it is easy to ver-

ify that LS12 is smaller than LS2 . In summary, on rounds
T1 þ 1; . . . ; T1 þ T2, when w1;t is better than w2;t to certain
degree, the model with assistance from S1 is better than
that without assistance.

A loss function ‘ is exponentially concave (exp-concave) for
a certain h > 0 if the function F ðzÞ ¼ e�h‘ðz;yÞ is concave for
all y 2 Y. For example, logistic loss and square loss are both
exp-concave. If the loss function is exp-concave, we can
have a tighter bound than that in Theorem 1 as follows.

Theorem 2. Assume that the loss function ‘ is exp-concave in its
first argument and that it takes value in [0, 1]. For all T2 > 1
and for all yt 2 Y with t ¼ T1 þ 1; . . . ; T1 þ T2, LS12 satisfies

LS12 	 minðLS1 ; LS2Þ þ ln 2

h
; (10)

where h is set by 1 for logistic loss and 1
2 for square loss.

Remarks. We can see that the second item on the right side
of (10) is a constant and converges to 0 at the rate of 1=T2

when considering the average of the cumulative loss
whereas the one in (9) is not a constant and converges to
0 at the rate of 1=

ffiffiffiffiffi
T2

p
.

4.3 Dynamic Selection

The combination approach mentioned in the above subsec-
tion combines several base models to improve the overall
performance. Generally, combination of several classifiers
performs better than selecting only one single classifier [40].
However, in ensemble learning, although diversity is impor-
tant, it requires that the performance of base models should
not be too bad [41], for example, in Adaboost the accuracy of
the base classifiers should be no less than 0.5 [42]. Neverthe-
less, in our FESL problem, on rounds T1 þ 1; . . . ; T1 þ T2,w2;t

cannot satisfy the requirement in the beginning due to insuf-
ficient training data and w1;t may become worse when more
and more data come causing a cumulation of recovered
error. Thus, it may not be appropriate to combine the two
models all the time, whereas dynamically selecting the best
single one could be a better choice. Hence we propose a
method based on a new strategy, i.e., dynamic selection, sim-
ilar to the Dynamic Classifier Selection [40] that only uses the
best single model rather than combining both of them in
each round. Note that, thoughwe only select one of themod-
els, we retain and utilize both of them to update their
weights. So it is still an ensemble method. The basic idea of
dynamic selection is to select themodel of larger weight with
higher probability. Algorithm 3 summarizes our second
approach for FESL named as FESL-s(election). Specifically,
the steps in Algorithm 3 on rounds 1; . . . ; T1 is the same as
that in Algorithm 2. For t ¼ T1 þ 1; . . . ; T1 þ T2, we still
update weights of each model. However, when doing pre-
diction, we do not combine all the models’ prediction, we
adopt the result of the “best” model’s according to the distri-
bution of their weights

pi;t ¼ ai;t�1P2
j¼1 aj;t�1

i ¼ 1; 2: (11)

Algorithm 3. FESL-s(election)

1: Initialize c andw1;T1 during 1; . . . ; T1 using Algorithm 1;
2: a1;T1 ¼ a2;T1 ¼ 1

2;
3: Initialize w2;T1þ1 randomly andw1;T1þ1 byw1;T1 ;

4: for t ¼ T1 þ 1; T1 þ 2; . . . ; T1 þ T2 do

5: Receive x
S2
t 2 RS2 ;

6: Predict f1;t ¼ w>
1;tðcðxS2

t ÞÞ and f2;t ¼ w>
2;tx

S2
t ;

7: Draw a modelwi;t according to the distribution (11);
8: Predict bpt ¼ fi;t according to the model drawn above;
9: Receive the target yt 2 R, and suffer loss ‘ðbpt; ytÞ;
10: Update the weights using (12).
11: Updatew1;t using (7) where tt ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� T1

p
;

12: Updatew2;t using (1) where tt ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� T1

p
;

Algorithm 2. FESL-c(ombination)

1: Initialize c andw1;T1 during 1; . . . ; T1 using Algorithm 1;
2: a1;T1 ¼ a2;T1 ¼ 1

2;
3: Initializew2;T1þ1 randomly andw1;T1þ1 byw1;T1 ;

4: for t ¼ T1 þ 1; T1 þ 2; . . . ; T1 þ T2 do

5: Receive x
S2
t 2 RS2 ;

6: Predict f1;t ¼ w>
1;tðcðxS2

t ÞÞ and f2;t ¼ w>
2;tx

S2
t ;

7: Predict bpt 2 R using (4);
8: Receive the target yt 2 R, and suffer loss ‘ðbpt; ytÞ;
9: Update weights using (6);
10: Updatew1;t using (7) where tt ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� T1

p
;

11: Updatew2;t using (1) where tt ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� T1

p
;
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To track the best model, we have a different way of updat-
ing weights which is given as follows [24].

vi;t ¼ ai;t�1e
�h‘ðfi;t;ytÞ; i ¼ 1; 2;

ai;t ¼ d
Wt

2
þ ð1� dÞvi;t; i ¼ 1; 2;

(12)

where we define Wt ¼ v1;t þ v2;t, d ¼ 1=ðT2 � 1Þ, h ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=T2 2 ln 2þ ðT2 � 1ÞHð1=ðT2 � 1ÞÞð Þp

and HðxÞ ¼ �x lnx�
ð1� xÞ lnð1� xÞ is the binary entropy function defined for

x 2 ð0; 1Þ.
Analysis. From rounds t > T1, the first model w1;t would

become worse due to the cumulative recovered error while
the second model will become better by the large amount of
coming data. Since w1;t is initialized by w1;T1 which is learnt
from the old feature space and w2;t is initialized randomly,
it is reasonable to assume that w1;t is better than w2;t in the
beginning, but inferior to w2;t after sufficient large number
of rounds. Let s be the round after which w1;t is worse than
w2;t. We define Ls ¼Ps

t¼T1þ1 ‘ðf1;t; ytÞ þ
PT2

t¼sþ1 ‘ðf2;t; ytÞ;
we can verify that

min
T1þ1	s	T1þT2

Ls 	 min
i¼1;2

LSi : (13)

Then amore ambitious goal is to compare the proposed algo-
rithm against w1;t from rounds T1 þ 1 to s, and against the
w2;t from rounds s to T1 þ T2, which motivates us to study
the following performance measure LS12 � Ls: Because the
exact value of s is generally unknown, we need to bound the
worst-case LS12 �minT1þ1	s	T1þT2L

s: An upper bound of
LS12 is given as follows.

Theorem 3. For all T2 > 1, if the model is run with parameter

d ¼ 1=ðT2 � 1Þ and h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8=T2 2 ln 2þ ðT2 � 1ÞHð1=T2 � 1Þð Þp

,
then

LS12 	 min
T1þ1	s	T1þT2

Ls þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

2
2 ln 2þHðdÞ

d

� �s
; (14)

whereHðxÞ ¼ �x lnx� ð1� xÞ lnð1� xÞ is the binary entropy
function.

Remarks. According to Theorem 3 we know that LS12 is
comparable tominT1þ1	s	T1þT2L

s. Due to (13), we can con-

clude that the upper bound of LS12 in Algorithm 3 is
tighter than that of Algorithm 2.

5 DETAILED PROOFS OF THEOREMS

In this section, we will give the detailed proofs of the three
theorems in Section 4. The three theorems are the special
cases of Theorem 2.2, Proposition 3.1 and Corollary 5.1
respectively in [24].

5.1 Proof of Theorem 1

To prove Theorem 1, we propose to bound the related quan-
tities ð1=hÞ lnðAt=At�1Þwhere

At ¼
X2
i¼1

ai;t ¼
X2
i¼1

e�hL
Si
t ;

for t 
 T1 þ 1, and AT1 ¼ 2. LSi
t is the cumulative loss at time

t of the ith base learner, namely L
Si
t ¼Pt

s¼T1þ1 ‘ðfi;s; ysÞ.
Note that here ai;t has not been normalized. In the proof we
use the following classical inequality due to Hoeffding [43].

Lemma 1. LetX be a random variable with a 	 X 	 b. Then for
any s 2 R,

lnE½esX� 	 sEX þ s2ðb� aÞ2
8

:

The detailed proof of Lemma 1 can be found in Section
A.1 of the Appendix in [24].

Proof of Theorem 1. First observe that

ln
AT1þT2

AT1

¼ ln
X2
i¼1

e
�hL

Si
T1þT2

 !
� ln 2


 ln max
i¼1;2

e
�hL

Si
T1þT2

� �
� ln 2

¼ �hmin
i¼1;2

L
Si
T1þT2

� ln 2:

(15)

On the other hand, for each t ¼ T1 þ 1; . . . ; T1 þ T2,

ln
At

At�1
¼ ln

P2
i¼1 e

�h‘ðfi;t;ytÞe�hL
Si
t�1P2

j¼1 e
�hL

Sj
t�1

¼ ln

P2
i¼1 ai;t�1e

�h‘ðfi;t;ytÞP2
j¼1 aj;t�1

:

Now using Lemma 1, we observe that the quantity above
may be upper bounded by

�h

P2
i¼1 ai;t�1‘ðfi;t; ytÞP2

j¼1 aj;t�1

þ h2

8

	 �h‘

P2
i¼1 ai;t�1fi;tP2
j¼1 aj;t�1

; yt

 !
þ h2

8

¼ �h‘ðbpt; ytÞ þ h2

8
;

where we used the convexity of the loss function in its
first argument and the way how the weight updates.
Summing over t ¼ T1 þ 1; . . . ; T1 þ T2, we get

ln
AT1þT2

AT1

	 �hLS12 þ h2

8
T2: (16)

Combining this with the lower bound (15) and solving
for LS12 , we find that

LS12 	 minðLS1 ; LS2Þ þ ln 2

h
þ h

8
T2;

as desired. In particular, with h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2=T2

p
, the upper

bound becomesminðLS1 ; LS2Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT2=2Þ ln 2
p

. tu
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5.2 Proof of Theorem 2

It is convenient to introduce the potential function F : RN !
R of the form

FðuuÞ ¼ c
XN
i¼1

fðuiÞ
 !

;

where f : R ! R is any nonnegative, increasing, and twice
differentiable function, and c : R ! R is any nonnegative,
strictly increasing, concave, and twice differentiable auxil-
iary function. Here we use the exponential potential

FhðuuÞ ¼ 1

h
ln

XN
i¼1

ehui

 !
:

We define ri;t ¼ ‘ðbpt; ytÞ � ‘ðfi;t; ytÞ as the instantaneous

regret with respect to base model i 2 f1; 2g at time t and

Ri;t ¼ Lt � Li;t as the cumulative regret with respect to base

model i 2 f1; 2g until time twhereLt ¼
Pt

s¼T1þ1 ‘ðbps; ysÞ and
Li;t ¼

Pt
s¼T1þ1 ‘ðfi;s; ysÞ; i ¼ 1; 2. Then RRt ¼ ðR1;t; R2;tÞ 2 R2

is a two dimensional vector. Recall that a loss function ‘ is

exp-concave for a certain h > 0 if the function F ðzÞ ¼ e�h‘ðz;yÞ

is concave for all y 2 Y. Thenwe have the following lemma:

Lemma 2. If the loss function ‘ is exp-concave for h > 0, then
the regret of FESL-c (used with the same value of h) satisfies,
for all y1; . . . ; yn 2 Y; FhðRnÞ 	 Fhð00Þ.
The detailed proof of Lemma 2 can be found in Section 3.3

in [24].

Proof of Theorem 2. Using FhðRnÞ 	 Fhð00Þ in Lemma 2
we immediately get

LS12 �minðLS1 ; LS2Þ ¼ maxfR1;n; R2;ng

	 1

h
ln
X2
j¼1

ehRj;n ¼ FhðRRnÞ 	 Fhð00Þ ¼ ln 2

h
;

where n ¼ T1 þ T2. The logistic loss and square loss that
we use in our work are both exp-concave when h ¼ 1
and h 	 1

2 respectively [24]. tu

5.3 Proof of Theorem 3

To prove Theorem 3, we first give some definitions. Since
we only choose one base learner’s prediction in FESL-s as
our final prediction in each round, we use It 2 f1; 2g to
denote the index of the base learners in tth round for
t ¼ T1 þ 1; . . . ; T1 þ T2. We call It an action. So the loss in
round t can be denoted as ‘ðIt; ytÞ. Thus, randomly choosing
one base learner in each round is a randomized version of
FESL-c, so we call it randomized FESL-c. Denote the distri-
bution according to which the random action It is drawn at

time t by ppt ¼ ðp1;t; p2;tÞ, and �‘ðppt; ytÞ ¼
P2

i¼1 pi;t‘ðIt; ytÞ is

the expected loss of randomized FESL-c at time t. Then we
have the following lemma:

Lemma 3. Let T2 > 1 and d 2 ð0; 1Þ. The randomized FESL-c

with h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2=n

p
satisfies, with probability at least 1� d

XT1þT2

t¼T1þ1

‘ðIt; ytÞ �min
i¼1;2

XT1þT2

t¼T1þ1

‘ði; ytÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 ln 2

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

2
ln
1

d

r
:

Proof. The random variables ‘ðIt; ytÞ � �‘ðppt; ytÞ, for
t ¼ T1 þ 1 . . . ; T1 þ T2, form a sequence of bounded
martingale differences. With a simple application of the
Hoeffding-Azuma inequality and combining the results
of Theorem 1, we yield the result of this lemma. tu
In addition, iT1þ1; . . . ; is; isþ1; . . . ; iT1þT2 is defined as the

sequence of the base learner’s index such that we can study a

more ambitious goal g ¼ LS12 � Ls where Ls ¼PT1þT2
t¼T1þ1 ‘

ðit; ytÞ. It is not difficult to modify the randomized FESL-c in
order to achieve this goal. Specifically, we associate a com-
pound action with each sequence which only switches once.
Thenwe can run our randomized FESL-c over the set of com-
pound actions: at any time t the randomized FESL-c draws a
compound action ðIT1þ1; . . . ; IT1þT2Þ and plays action It.
Denote by M the number of all compound actions. Then, in
FESL-c, we only have 2 base learners while in randomized
FESL-c, we have M base learners. Then Lemma 3 implies

that g is bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT2 lnMÞ=2p

. Hence, it suffices to count
the number of compound actions: for each k ¼ 0; . . . ; 1 there
areCk

T2�1 ways to pick k time steps t ¼ T1 þ 1; . . . ; T1 þ T2 � 1

where a switch it 6¼ itþ1 occurs, and there are 2ð2� 1Þk ways
to assign a distinct action to each of the kþ 1 resulting blocks.
This gives

M ¼
Xm
k¼0

Ck
T2�12 	 4 exp ðT2 � 1ÞH 1

T2 � 1

� �� �
:

where HðxÞ ¼ �x lnx� ð1� xÞ lnð1� xÞ is the binary
entropy function defined for x 2 ð0; 1Þ. Substituting this

bound in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT2 lnMÞ=2p

, we find that g satisfies

g 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

2
2 ln 2þ ðT2 � 1ÞHð 1

T2 � 1
Þ

� �s

on any action sequence iT1þ1; . . . ; is; isþ1; . . . ; iT1þT2 . However,
the randomized FESL-c is required to explicitly manage an
exponential number of compound actions in its straightfor-
ward implementation. Then we propose FESL-s which can
efficiently implement a generalized version of randomized
FESL-c that is able to achieve g. Specifically, FESL-s is derived
from a variant of randomized FESL-c where the initial weight
distribution is not uniform. We have the following results.

Lemma 4. For all T2 > 1, if the randomized FESL-c is run using
initial weights a1;T1 ;a2;T1 
 0 such that AT1þT2 ¼ a1;T1þ
T2 þ a2;T1þT2 	 1, then

XT1þT2

t¼T1þ1

�‘ðppt; ytÞ 	
1

h
ln

1

AT1þT2

þ h

8
T2;

where

AT1þT2 ¼
X2
i¼1

ai;T1þT2 ¼
X2
i¼1

ai;T1e
�h
PT1þT2

t¼T1þ1
‘ði;ytÞ;

is the sum of the weights after T2 rounds.
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Proof. From Equation (16), we know that

ln
AT1þT2

AT1

	 �h
XT1þT2

t¼T1

�‘ðppt; ytÞ þ
h2

8
T2;

where At ¼
P2

i¼1 ai;t ¼
P2

i¼1 e
�hL

Si
t . Since AT1 	 1, then

we have

XT1þT2

t¼T1þ1

�‘ðppt; ytÞ 	
1

h
lnAT1 �

1

h
lnAT1þT2 þ

hT2

8

¼ 1

h
ln

1

AT1þT2

þ hT2

8
� 1

h
ln

1

AT1

	 1

h
ln

1

AT1þT2

þ hT2

8
:

tu
We write a0

tðiT1þ1; . . . ; iT1þT2Þ to denote the weight
assigned at time t by the randomized FESL-c to the com-
pound action ðiT1þ1; . . . ; iT1þT2Þ. For any fixed choice of the

parameter d 2 ð0; 1Þ, the initial weights of the compound

actions are defined by

a0
T1
ðiT1þ1; . . . ; iT1þT2Þ ¼

1

2

d

2

� �
1� dþ d

2

� �T2�1

:

Then the way of updating weight is as follows:

a0
tðiT1þ1; . . . ; iT1þT2Þ

¼ a0
T1
ðiT1þ1; . . . ; iT1þT2Þ exp �h

Xt
s¼1

‘ðis; ysÞ
 !

:

Introducing the “marginalized” weights

a0
T1
ðiT1þ1; . . . ; iT1þT2Þ

¼
X

itþ1;...;iT1þT2

a0
T1
ðiT1þ1; . . . ; it; itþ1; . . . ; iT1þT2Þ;

for all t ¼ T1 þ 1; . . . ; T1 þ T2, we obtain that FESL-s draws

action i at time tþ 1 with probability a0
i;t=A

0
t, where

A0
t ¼ a0

1;t þ a0
2;t and

a0
i;t ¼

X
i1;...;it;itþ2;...;in

a0
tðiT1þ1; . . . ; it; i; itþ2; . . . ; iT1þT2Þ;

for t 
 T1 þ 1 and a0
i;T1

¼ 1=2.
The initial weights are recursively computed as follows

a0
T1
ði1Þ ¼ 1=2; a0

T1
ðiT1þ1; . . . ; itþ1Þ

¼ a0
T1
ðiT1þ1; . . . ; itÞ d

2
þ ð1� dÞIfitþ1¼itg

� �
:

Then we have a general result for FESL-s.

Theorem 4. For all n 
 T1 þ 1, the goal of the FESL-s g satisfies

g ¼
Xn

t¼T1þ1

�‘ðppt; ytÞ �
Xn

t¼T1þ1

‘ðit; ytÞ 	 2

h
ln 2

þ 1

h
ln

1

ðd=2Þð1� dÞn�2
þ h

8
n;

for all action sequences iT1þ1; . . . ; iT1þT2 .

Proof. For a compound action iT1þ1; . . . ; iT1þT2 we have ln

a0
T1þT2

ðiT1þ1; . . . ; iT1þT2Þ ¼ lna0
T1
ðiT1þ1; . . . ; iT1þT2Þ � h

PT1þT2
t¼T1þ1

‘ðit; ytÞ: By definition of a0
T1
,

a0
T1
ðiT1þ1; . . . ; iT1þT2Þ ¼

1

N

d

2

� �
d

2
þ ð1� dÞ

� �T1þT2�2


 1

2

d

2

� �
ð1� dÞT1þT2�2:

Therefore, using this in the bound of Lemma 4 we get, for

any sequence ðiT1þ1; . . . ; iT1þT2Þ,Xn
t¼1

�‘ðppt; ytÞ 	
1

h
ln

1

A0
T1þT2

þ h

8
T2

	 1

h
ln

1

a0
T1þT2

ðiT1þ1; . . . ; iT1þT2Þ
þ h

8
T2

	
Xn
t¼1

‘ðit; ytÞ þ 1

h
ln 2þ 1

h
ln
2

d

� T2 � 2

h
lnð1� dÞ þ h

8
T2;

which concludes the proof. tu
With Lemma 4 and Theorem 4, we give the proof of

Theorem 3 as follows.

Proof of Theorem 3. First, note that for d ¼ 1=ðT2 � 1Þ

ln
1

dð1� dÞT2�2
¼ � ln

1

T2 � 1
� ðT2 � 2Þ lnT2 � 2

T2 � 1

¼ ðT2 � 1ÞH 1

T2 � 1

� �
:

Using h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
T2

2 ln 2þ ðT2 � 1ÞHð 1
T2�1Þ

� �r
in the bound of

Theorem 4 we obtain that

XT1þT2

t¼T1þ1

�‘ðppt; ytÞ �
XT1þT2

t¼T1þ1

‘ðit; ytÞ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

2
2 ln 2þ ðT2 � 1ÞHð 1

T2 � 1
Þ

� �s
;

for all action sequences iT1þ1; . . . ; iT1þT2 , namely,

LS12 	 min
T1þ1	s	T1þT2

Ls þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

2
2 ln 2þHðdÞ

d

� �s
:

tu
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6 EXPERIMENTS

In this section, we first introduce the compared methods
and settings. Then we present the results on synthetic data,
Reuter data and real data.

6.1 Compared Approaches and Settings

We compare our FESL-c and FESL-s with three approaches.
One is mentioned in Section 3, where once the feature space
changed, the online gradient descent algorithm will be
invoked from scratch, named as NOGD (Naive Online Gra-
dient Descent). The other two approaches utilize the model
learned from feature space S1 by online gradient descent to
do predictions on the recovered data. The difference
between them is that one keeps updating with the recovered
data while the other does not. The one that keeps updating
is called Updating Recovered Online Gradient Descent
(ROGD-u) and the other which keeps fixed is called Fixed
Recovered Online Gradient Descent (ROGD-f). Note that in
Section 4.2, we mention that from rounds t > T1, we will
keep on updating w1;t using the recovered data xS1

t and pre-
dict the target by combining the predictions of w1;t and w2;t.
Here, w1;t corresponds to the Updating Recovered Online
Gradient Descent. It is reasonable to conjecture that the
ROGD-u will be better than ROGD-f if the recovered data is
beneficial, and conversely ROGD-f will be better than
ROGD-u when the recovering is not appropriate so as to
degenerate the performance of ROGD-u. It is noteworthy
that we do not compare our methods to multi-view meth-
ods, transfer learning methods or other methods that
involve multiple feature sets since we have mentioned in
Section 2 that multi-view methods and transfer learning
methods always possess multiple feature sets while ours do
not. Thus these methods do not meet our condition.
OPID [35] is the most related work to ours. However, they
handles situations where there is no overlapping period
which also does not satisfy our settings and thus we do not
compare our methods with it.

We conduct our experiments on 27 datasets consisting of
9 synthetic datasets, 16 Reuter datasets and 2 real dataset.
The details of all the datasets are summarized in Table 1.
For the synthetic and Reuter data, we learn linear mappings
from the overlapping period. As for synthetic data, we want
to verify the effectiveness of our theorem which shows that
our methods are always comparable to the best baseline

method. Thus we only conduct the synthetic experiments
by learning linear mapping which is easy and effective to
verify our theorem. On the Reuter data, which are multi-
view data containing two feature spaces, although we do
not know the relationship between the two feature spaces,
we assume the relationship between them is linear. The rea-
son is that Reuter data possess large scale of sparse features
(e.g., for EN-FR data, it possesses 21,531 and 24,892 features
and the ratio of nonzero elements is only 0.0035). For large-
scale number of features, learning linear mapping is more
efficient than nonlinear one; for sparse features, [44] shows
that linear mapping can achieve promising performance.
Thus for the large scale and sparse Reuter data, we only
consider linear relationship between two feature spaces to
achieve a high-efficient as well as well-performed mapping.
For the real datasets that we collect by ourselves, we learn
both linear and nonlinear mapping since we do not have
any prior knowledge whether the relationship between the
old feature space and the new one is linear or not. Besides,
the real datasets neither have large number of features nor
is sparse. So it is valuable to test which mapping is better.

We evaluate the empirical performances of the pro-
posed approaches on classification and regression tasks on
rounds T1 þ 1; . . . ; T1 þ T2. We use logistic loss in classifica-
tion task and square loss in regression task. To verify that
our analysis is reasonable, we present the trend of average
cumulative loss. Concretely, at each time t0, the loss �‘t0 of
every method is the average of the cumulative loss over
1; . . . ; t0, namely

average cumulative loss �‘t0 ¼ ð1=t0Þ
Xt0

t¼1
‘t: (17)

We also present the classification performance over all instan-
ces on rounds T1 þ 1; . . . ; T1 þ T2 on synthetic and Reuter
data. The performances of all approaches are obtained by
average results over 10 independent runs on synthetic data.
Due to the large scale of Reuter data, we only conduct 3 inde-
pendent runs on Reuter data and report the average results.
The parameters we need to set are the number of instances in
overlapping period, i.e., B, the number of instances in S1 and
S2, i.e., T1 and T2 and the step size, i.e., tt where t is time. For
all baseline methods and our methods, the parameters are the
same. The details of the parameter setting for three kinds of
datasets (e.g., synthetic datasets, Reuter datasets and real
datasets) are described in the corresponding section.

TABLE 1
Detailed Description of Datasets: Let n be the Number of Examples, and d1 and d2 Denote the

Dimensionality of the First and Second Feature Space, Respectively

Dataset n d1 d2 Dataset n d1 d2 Dataset n d1 d2

Australian 690 42 29 r.EN-FR 18,758 21,531 24,892 r.GR-FR 29,953 34,279 24,892
Credit-a 653 15 10 r.EN-GR 18,758 21,531 34,215 r.GR-IT 29,953 34,279 15,505
Credit-g 1,000 20 14 r.EN-IT 18,758 21,531 15,506 r.GR-SP 29,953 34,279 11,547
Diabetes 768 8 5 r.EN-SP 18,758 21,531 11,547 r.IT-EN 24,039 15,506 21,517
DNA 940 180 125 r.FR-EN 26,648 24,893 21,531 r.IT-FR 24,039 15,506 24,892
German 1,000 59 41 r.FR-GR 26,648 24,893 34,287 r.IT-GR 24,039 15,506 34,278
Kr-vs-kp 3,196 36 25 r.FR-IT 26,648 24,893 15,503 r.IT-SP 24,039 15,506 11,547
Splice 3,175 60 42 r.FR-SP 26,648 24,893 11,547 RFID 940 78 72
Svmguide3 1,284 22 15 r.GR-EN 29,953 34,279 21,531 Amazon 23,025 567 463

The first 9 datasets in the left column are synthetic datasets, “r.EN-GR” means the dataset EN-GR comes from Reuter and “RFID” and “Amazon” are
the real datasets.
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6.2 Experiments on Synthetic Data

We first conduct our experiments on 9 synthetic datasets. To
generate synthetic data, we randomly choose some datasets
from different domains including economy and biology, etc1

whose scales vary from 690 to 3,196. They only have one fea-
ture space at first. We artificially map the original datasets
into another feature space by random Gaussian matrices,
then we have data both from feature space S1 and S2. Since
the original data are in batch mode, we manually make
them come sequentially. In this way, synthetic data are
completely generated. The details of synthetic datasets are
presented in Table 1. The number of rounds in the overlap-
ping period B is flexible. The larger, the more effective the
recovered data. Here, we set the size of it by 5 or 10. And
we set both T1 and T2 to be half of the number of instances.
We set the step size tt to be 1=ðc ffiffi

t
p Þ where c is searched in

the range f1; 10; 50; 100; 150g. Specifically, we set c

� 1 for australian, credit-a, credit-g and svmguide3;
� 10 for diabetes and splice; 50 for german;
� 100 for kr-vs-kp; 150 for dna.
Table 2 shows the accuracy results on synthetic datasets.

We can see that for synthetic datasets, FESL-s outperforms
other methods on 8 datasets, FESL-c gets the best on 5 data-
sets and ROGD-u also gets 5. NOGD performs worst since it
starts from scratch. ROGD-u is better than NOGD and
ROGD-f because ROGD-u exploits the old better-trained
model from old feature space and keep updating with
recovered instances. Our two methods are based on NOGD

and ROGD-u. We can see that our methods can follow the
best baseline method or even outperform it.

Fig. 3 gives the trend of average cumulative loss. The
smaller the average cumulative loss, the better. From the
experimental results, we have the following observations.
First, all the curves with circle marks representing NOGD
decrease rapidly which conforms to the fact that NOGD on
rounds T1 þ 1; . . . ; T1 þ T2 becomes better and better with
more and more data coming. Besides, the curves with star
marks representing ROGD-u also decline but not very
apparent since on rounds 1; . . . ; T1, ROGD-u already
learned well and tend to converge, so updating with more
recovered data could not bring too much benefits. More-
over, the curves with plus marks representing ROGD-f does
not drop down but even go up instead, which is also reason-
able because it is fixed and if there are some recovering
error, it will perform worse. Lastly, our methods are based
on NOGD and ROGD-u, so their average cumulative loss
also decrease. As can be seen from Fig. 3, the average cumu-
lative loss of our methods is comparable to the best of base-
line methods on all synthetic datasets and are smaller than
them on 6 datasets. And FESL-s exhibits slightly smaller
average cumulative loss than FESL-c.

6.3 Experiments on Reuter Data

Then we conduct our experiments on 16 datasets from
Reuter [45]. They are multi-view datasets which have large
scale varying from 18,758 to 29,953. Each dataset has two
views which represent two different kinds of languages,
respectively. We regard the two views as the two feature

TABLE 2
Accuracy With Its Variance on Synthetic Datasets by Linear Mapping

Dataset australian credit-a credit-g diabetes dna german kr-vs-kp splice svmguide3

NOGD .767 � .009 .811�.006 .659 � .010 .650 � .002 .610 � .013 .684 � .006 .612 � .005 .568 � .005 .680 � .010
ROGD-u .849 � .009 .826 � .018 .733 � .006 .652 � .009 .610 � .023 .700 � .002 .621 � .036 .612 � .022 .779 � .010
ROGD-f .809 � .025 .785 � .051 .716 � .011 .651 � .006 .608 � .064 .700 � .002 .538 � .024 .567 � .057 .748 � .012
FESL-c .849 � .009 .827 � .014 .733 � .006 .652 � .007 .691 � .023 .700 � .001 .626 � .028 .612 � .022 .779 � .010
FESL-s .849 � .009 .831 � .009 .733 � .006 .652 � .009 .692 � .021 .703 � .004 .630 � .016 .612 � .022 .778 � .010

The best ones among all the methods are bold.

Fig. 3. The trend of loss with three baseline methods and the proposed methods on synthetic data by linear mapping. The smaller the cumulative loss
is, the better. All the average cumulative loss at any time of our methods is comparable to the best of baseline methods and 8 of 9 are smaller.

1. Datasets can be found in http://archive.ics.uci.edu/ml/.
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spaces. Now they do have two feature spaces but the origi-
nal data is in batch mode, so we will artificially make them
come in a streaming way. The details of the Reuter datasets
are presented in Table 1. Here, we set the number of rounds
in the overlapping period to be 50. We set both T1 and T2 to
be the half of the number of instances. We set the step size
tt to be 1=ðc ffiffi

t
p Þ where c is searched in the range

f1; 10; 50; 100; 150g. Specifically, we set c

� 10 for r.GR-IT, r.GR-SP;
� 50 for r.EN-FR, r.EN-IT, r.EN-SP, r.FR-GR, r.FR-IT, r.

FR-SP, r.GR-EN, r.IT-EN, r.IT-FR, r.IT-GR, r.IT-SP;
� 100 for r.FR-EN; 150 for r.EN-GR, r.GR-FR.
When drawing the figures, to clearly see what is going on

in the beginning, we only keep the first one-fifth of the
results since the last four-fifths of the results tend to con-
verge and vary a little.

TABLE 3
Accuracy With Its Variance on Reuter Datasets

Dataset r.EN-FR r.EN-GR r.EN-IT r.EN-SP r.FR-EN r.FR-GR r.FR-IT r.FR-SP

NOGD .902 � .004 .867 � .005 .858 � .014 .900 � .002 .858 � .007 .869 � .004 .874 � .005 .872 � .001
ROGD-u .849 � .003 .836 � .007 .847 � .014 .848 � .002 .776 � .009 .774 � .019 .780 � .022 .778 � .022
ROGD-f .769 � .069 .802 � .036 .831 � .018 .825 � .001 .754 � .012 .753 � .021 .744 � .040 .735 � .013
FESL-c .903 � .003 .870 � .002 .861 � .010 .901 � .001 .858 � .007 .870 � .004 .874 � .005 .872 � .001
FESL-s .902 � .005 .870 � .003 .863 � .013 .899 � .002 .858 � .007 .868 � .003 .873 � .005 .871 � .002

Dataset r.GR-EN r.GR-FR r.GR-IT r.GR-SP r.IT-EN r.IT-FR r.IT-GR r.IT-SP

NOGD .907 � .000 .898 � .001 .847 � .011 .902 � .001 .854 � .003 .863 � .002 .849 � .004 .839 � .006
ROGD-u .850 � .007 .827 � .009 .851 � .017 .845 � .003 .760 � .006 .753 � .012 .736 � .022 .753 � .014
ROGD-f .801 � .035 .802 � .023 .816 � .006 .797 � .012 .730 � .024 .730 � .020 .702 � .012 .726 � .005
FESL-c .907 � .001 .898 � .001 .850 � .018 .902 � .001 .856 � .002 .864 � .002 .849 � .004 .839 � .007
FESL-s .906 � .000 .898 � .000 .851 � .017 .902 � .001 .854 � .003 .862 � .003 .846 � .004 .839 � .006

The larger the better. The best ones among all the methods are bold.

Fig. 4. The trend of loss with three baseline methods and the proposed methods on Reuter data by linear mapping. The smaller the cumulative loss
is, the better. The average cumulative loss at any time of our methods is smaller than the best of baseline methods.

2612 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 6, JUNE 2021

Authorized licensed use limited to: Nanjing University. Downloaded on May 13,2021 at 06:35:25 UTC from IEEE Xplore.  Restrictions apply. 



Table 3 gives the accuracy results on Reuter datasets. For
Reuter datasets, we can see that FESL-c outperforms other
methods on 14 datasets, FESL-s gets the best on 7 datasets
and NOGD gets 6 while ROGD-u gets 1. In Reuter datasets,
the period on new feature space is longer than that in syn-
thetic datasets so that NOGD can update itself to a good
model. Whereas ROGD-u updates itself with recovered
data, so the model will become worse when recovered error
accumulates. ROGD-f does not update itself, thus it per-
forms worst. Our two methods can take the advantage of
NOGD and ROGD-f and perform better than them.

As can be seen from Fig. 4, the average cumulative loss at
any time of our methods is comparable to the best of baseline
methods. Specifically, at first, ROGD-u is better than NOGD
and our methods is comparable to ROGD-u. Afterwards, with
more and more data coming, NOGD becomes better, then our
methods is comparable to NOGD. Youmay notice that NOGD
is always worse than ROGD-u in the experiments on synthetic
data while on Reuter data NOGD becomes better than ROGD-
u after a few rounds. This is because on synthetic data, we do
not have enough rounds to let all methods converge while on
Reuter data, large amounts of instances ensure the conver-
gence of every method. So when all the methods converge, we
can see that NOGD is better than other baseline methods since
it always receives the real instances while ROGD-u and
ROGD-f receive the recovered instances which may contain
recovered error. Moreover, FESL-s performsworse than FESL-
c in the beginning while afterwards, it becomes slightly better
than FESL-c. Lastly, ROGD-f always performs the worst
among all the approaches.

6.4 Experiments on Real Data

Finally, we conduct the experiments on two real datasets
that satisfy our assumptions. We want to emphasize that we
collected the real datasets by ourselves since our setting of
feature evolving is relatively novel so that the required data-
sets are not widely available yet. We name the two real data-
sets as “RFID” and “Amazon”.

For “RFID”, we use the RFID technique to collect the
real data. RFID technique is widely used to do moving
goods detection [46]. In our case, we want to utilize the
RFID technique to predict the location of the moving goods
attached by RFID tag. Concretely, we arranged several
RFID aerials which are used to receive the tag signals
around the indoor area. In each round, each RFID aerial
received the tag signals, then the goods with tag
moved (only on the horizontal direction), at the same time,
we recorded the goods’ coordinate. Before the aerials

expired, we arranged new aerials beside the old ones to
avoid the situation without aerials. Therefore, in this over-
lapping period, we have data from both old and new fea-
ture spaces. After the old aerials expired, we continue to
use the new ones to receive signals. Then we only have
data from feature space S2. Therefore, the RFID data we
collect totally satisfy our assumptions. We have released
this dataset for our community to use. One can find it in
http://www.lamda.nju.edu.cn/data_RFID.ashx.

For “Amazon”, we generate it based on the Amazon
product-user review datasets [47], [48] over Movies and TV
(original data description can be found in http://jmcauley.
ucsd.edu/data/amazon/links.html). We want to predict
each product’s quality from year 2006 to 2008 according to
the ratings of its users. Therefore, each instance represents a
product and each feature of this instance is its users’ rating.
The label of each product is its quality that is calculated by
the weighted combination of each user’s rating. The weight
of each rating is calculated by the quality of its user and the
quality of each user is calculated by the “helpfulness” (one
of the attribute of the dataset) of the user’s reviews. As time
goes on, some users disappear, e.g., they signed out of their
accounts, and some new users join. Thus, the features will
evolve, which means old features will disappear and new
feature will emerge. We find some period where old and
new features both exist and make this dataset satisfy our
assumption.

For “RFID”, the rounds number B in the overlapping
period is 40. Due to the time and device limitations, we only
collect 450 instances from feature space S1 and 450 instances
from feature space S2, so in this case, T1 is 490 and T2 is 450.
We set c to be 1 in step size 1=ðc ffiffi

t
p Þ. For “Amazon”,B is 50, T1

is 12,118, T2 is 10,907 and c is 0.5.
Table 4 shows the loss comparison between the methods

by using linear and nonlinear mapping. We learn nonlinear
mapping according to Section 4 by RBF kernel kðui; ujÞ ¼
expð�akui � ujk2Þ where a is set by 1=20 and the step size m
in (3) is set by 1 for both “RFID” and “Amazon”. As can be
seen from Table 4, all the average cumulative losses at time
T1 þ T2 of the four methods (except NOGD) when learning
nonlinear mapping is better than that when learning linear
mapping, which indicates that in the real data, the relation-
ship between the two feature spaces tend to be nonlinear.
We then present the loss tendency in Fig. 5. As can be seen
from Fig. 5, in the two real datasets, our methods are always
comparable to the best baselines at each time step. The
trends when learning nonlinear mapping are similar to
those when learning linear mapping, thus we do not
show them.

TABLE 4
Average Cumulative Loss at the Last Round (i.e., at time T1 þ T2) With Its Variance

(Comparison Between Methods by Using Linear and Nonlinear Mapping) on RFID and Amazon

Dataset NOGD ROGD-u ROGD-f FESL-c FESL-s

RFID-L 2.212 � .111 1.311 � .084 1.640 � .136 1.322 � .084 1.319 � .087
RFID-K 2.212 � .111 1.272 � .142 1.637 � .217 1.284 � .142 1.281 � .142
Amaz-L .0062 � .0000 .0064 � .0000 .0063 � .0001 .0062 � .0000 .0062 � .0000
Amaz-K .0062 � .0000 .0063 � .0001 .0058 � .0002 .0059 � .0001 .0060 � .0001

The less the better. The best ones are bold. Note that no mapping is used in NOGD. “-L” means using linear mapping, “-K” means using non-linear
mapping with RBF kernel.
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7 CONCLUSION

In this paper, we focus on a new setting: feature evolvable
streaming learning, which extends our preliminary
research [49]. Our key observation is that in learning with
streaming data, old features could vanish and new ones
could occur. To make the problem tractable, we assume
there is an overlapping period that contains samples from
both feature spaces. Then, we learn a mapping from new
features to old features, and in this way both the new and
old models can be used for prediction. In FESL-c, we ensem-
ble two predictions by learning weights adaptively. Theo-
retical results show that the assistance of the old feature
space can improve the performance of learning with stream-
ing data. Furthermore, we propose FESL-s to dynamically
select the best model with better performance guarantee.

Actually, the assumption about overlapping period does
not always hold in reality since the old features sometimes
do not vanish simultaneously. Thus, a more realistic
assumption is that the old features vanish in an arbitrary
way, for example, different lifespans of sensors will cause
different vanishing of features. This is an interesting work
for future study. Another interesting future issue is to incor-
porate an FESL-like approach into the recently proposed
abductive learning [50], a new paradigm which encompasses
machine learning and logical reasoning, to enable it handle
changing features and predicates.
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