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Abstract—This paper studies the problem of cHarging tAsk Scheduling for direcTional wireless chargEr networks (HASTE), i.e., given

a set of rotatable directional wireless chargers on a 2D area and a series of offline (online) charging tasks, scheduling the orientations

of all the chargers with time in a centralized offline (distributed online) fashion to maximize the overall charging utility for all the tasks.

We prove that HASTE is NP-hard. Then, we prove that a relaxed version of HASTE falls within the realm of maximizing a submodular

function subject to a partition matroid constraint, and propose a centralized offline algorithm that achieves ð1� rÞð1� 1
eÞ approximation

ratio to address HASTE where r is the switching delay of chargers. Further, we propose a distributed online algorithm and prove it

achieves 1
2 ð1� rÞð1� 1

eÞ competitive ratio. We conduct simulations and field experiments on a testbed consisting of eight off-the-shelf

power transmitters and 8 rechargeable sensor nodes. The results show that our distributed online algorithm achieves 92.97 percent of

the optimal charging utility, and outperforms the comparison algorithms by up to 15.28 percent in terms of charging utility.

Index Terms—Charging task, scheduling, directional wireless chargers

Ç

1 INTRODUCTION

1.1 Motivation and Problem Statement

THE last decade has witnessed the rapid development of
Wireless Power Transfer (WPT) technology, which enjoys

huge advantages such as no contact, reliable power supply,
and ease ofmaintenance compared to traditionalwired power
supply technologies. WPT technology has numerous applica-
tions, including wireless identification and sensing platform
(WISP) [1], wireless rechargeable sensor networks [2], electric
vehicles [3], solar power satellites [4], and wireless powered
drone aircraft [5], etc.As per the record provided by Wireless
Power Consortium, an organization dedicated to promote
standardization ofWPT, the number of registeredWPT prod-
ucts from its 214 member companies, including IT leaders
Samsung, Philips, LG, andHuawei, has surged to 848 [6]. By a
recent report, 35 percent of consumers in the United States
have usedWPT products [7].

Directional wireless charger network, which consists of
static directional wireless chargers, is one of the critical
topics for WPT technology. To begin with, it is well-known
that directional charging is more energy efficient than
omnidirectional charging. Unlike omnidirectional charging
which broadcasts the electromagnetic waves equally in all
directions regardless of the locations of the rechargeable
devices, directional charging concentrates radiated energy
in the directions of the rechargeable devices (i.e., energy
beamforming), and thus enhances the power intensity in

the intended directions [8]. For this reason, directional
antennas for WPT are widely adopted in applications such
as millimeter wave cellular networks [9], [10], [11], [12],
wireless rechargeable sensor networks [13], and wireless
charging systems adopting the simultaneous wireless
information and power transfer technology [14], [15], and
are also studied in [16], [17], [18]. Further, static chargers
are more preferable than mobile chargers in some scenar-
ios. First, using static chargers is a more robust and timely
way to handle unexpected arrived charging tasks in an
online manner, such as urgent charging requests caused by
accidental energy depletion of existing sensor nodes or
new nodes join, than using mobile chargers, because
mobile chargers may need to travel a long distance for han-
dling tasks. Second, static chargers can also serve as data
collectors, which allows fast and efficient data collection
than using mobile chargers. Third, it is more cost-efficient
for some applications where, for example, sensor nodes
form multiple clusters with long distance between them.
Moreover, from a long term view, purchasing wireless
chargers is a one-time investment and can be amortized
over time, while using mobile chargers usually require
much higher energy cost and human cost than maintaining
static chargers, and such cost constantly accumulates over
time. Fourth, there have emerged a lot of on-the-shelf
products based on wireless power transfer technologies
[19], [20], [21], and they offer solutions for popular applica-
tions such as charging at coffee shops, security systems,
smart home, and in-vehicle charging. These applications
require dedicated static chargers.

In this paper, we consider the problem of cHarging tAsk
Scheduling for direcTional wireless chargEr networks
(HASTE) aiming for maximizing the overall charging utility
of offline/online charging tasks. We adopt the directional
charging model for wireless chargers and rechargeable
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devices, which captures the characteristics of power trans-
mitters and receivers equipped with directional antennas.
In this model, the power charging area for a charger and
the power receiving area for a device are modeled as sec-
tors. A rechargeable device can be charged via wireless by
a charger with non-zero power if and only if they are
located in each other’s covered sector. All wireless chargers
can freely adjust its orientation in ½0; 2pÞ while recharge-
able devices cannot. Moreover, a charging task initiated by
a rechargeable device consists of five elements: the position
and orientation of its associated device, the release time
and end time of the task, and its required charging energy.
To evaluate the effectiveness of wireless charging for a
task, we define the task’s charging utility as a linear and
bounded function with its harvested energy from its
release time to its end time.

With these models, we consider two scenarios for charging
task scheduling, i.e., offline and online. In the offline scenario,
information for all charging tasks is known a priori, and
thereby the scheduling policies for all chargers at anymoment
can be determined beforehand. To accommodate practical
concerns, we assume that each charger needs an amount of
time for switching its orientation, which we call switching
delay. In the online scenario, charging tasks stochastically
arrive, and chargers reschedule their orientations in realtime.
Nevertheless, in addition to switching delay, each charger
needs an additional amount of time for recomputing the
scheduling policies with negotiating with neighboring charg-
ers, which we call rescheduling delay. To avoid global manage-
ment effort and reduce update cost, we desire a distributed
and local algorithm which is scalable with network size. For
both scenarios, we want to dynamically schedule the orienta-
tions of chargers as time goes on such that the overall
weighted charging utility for all charging tasks is maximized.
Moreover, we stress that chargers can be either in theworking
mode for the offline scenario or in that for the online scenario,
but cannot switch between these two different statuses. To
sum up, we state our problem HASTE as follows. Given a set
of rotatable directional wireless chargers on a 2D area and a
series of offline (online) charging tasks, scheduling the orien-
tations of all the chargers with time in a centralized offline
(distributed online) fashion to maximize the overall charging
utility for all the tasks.

1.2 Prior Art

On one hand, there exist numerous literatures [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37] studying on the mobile charging case where one
single or multiple chargers travel in a field to charge wire-
less rechargeable devices to guarantee their normal work-
ing. They are fundamentally different from ours as we
consider static chargers.

On the other hand, the other works consider wireless
charger networks consisted of static wireless chargers, but
nearly none of them investigate charging task scheduling.
In particular, most of them focus on scheduling issues in
coarse granularity rather than task levels, such as those
overlooking the harmful effect of high electromagnetic radi-
ation (EMR) [16], [17], [38], [39], [40], [41] and those taking
the EMR safety into consideration [42], [43], [44], [45], [46],

[47], [48]. To the best of our knowledge, there is only one
work [49], [50] investigate wireless charging task schedul-
ing issue for omnidirectional wireless chargers in offline
scenarios, which are fundamentally different from our
paper. In the conference version of this paper [51], we initi-
ated the first study on scheduling wireless charging tasks
for directional wireless chargers and designing online
algorithms.

1.3 Key Technical Challenges

We are faced with three major challenges to address
HASTE. The first challenge is that HASTE is non-linear
and is NP-hard. HASTE is nonlinear because that the ori-
entation of chargers can be freely scheduled; a task can be
either covered by a charger and have a certain constant
power increment or not with no power increment, which
has the flavor of 0-1 integer programming; the charging
utility function is linear but bounded, let alone that we
extend our results to the case where the utility function is
a general concave function. In addition, by reducing from
the classical NP-hard separate assignment problem, we
prove that HASTE is NP-hard.

The second challenge is how to design an efficient cen-
tralized offline algorithm for HASTE in the offline scenario
while considering the switching delay of chargers. The
switching delay happens if and only if a charger’s next
intended orientation is different from its current orientation,
which implies that the switching delay as well as its caused
performance loss is history-dependent. Moreover, the per-
formance loss is difficult to evaluate as there are potentially
multiple tasks are affected by a charger’s switching delay,
and the charging utility function for tasks is non-linear.

The third challenge is how to design an efficient distrib-
uted online algorithm for HASTE in the online scenario
where all chargers are asynchronous and the rescheduling
delay needs to be considered. To the best of our knowledge,
there are neither existing distributed online algorithms
directly applicable to our problem even when the resched-
uling delay is omitted, nor existing online algorithms that
deal with the case in our considered scenario with resched-
uling delay being concerned for which the response is
delayed and the algorithm is not truly “online”.

1.4 Proposed Approach

To address the first challenge, we propose that rather than
considering all possible orientations in ½0; 2pÞ for chargers,
we can safely consider a limited number of orientations for
them without causing performance loss, and therefore,
extract the so-called “dominant task sets” as the corre-
sponding sets of covered tasks. Then, we neglect the
switching delay for wireless chargers, and thus reformulate
the original continuous optimization problem into a dis-
crete optimization problem HASTE-R. Further, we prove
that the reformulated problem is exactly a problem of max-
imizing a submodular function subject to a partition mat-
roid constraint, which greatly facilitates approximation
algorithm design.

To address the second challenge, based on the theoretical
results obtained by addressing the first challenge, we
can either use a simple greedy algorithm that achieves 1

2
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approximation ratio [52] or a randomized algorithm with
the optimal approximation guarantee, namely, 1� 1

e approx-
imation ratio [53]. Nevertheless, as the former is not good
enough and the latter is too computationally demanding,
we tailor the TABULARGREEDY algorithm proposed in
[54], [55] to address HASTE-R as it can achieve an approxi-
mation ratio between 1

2 and 1� 1
e (1� 1

e as default in our set-
ting) depending on the value of a control parameter and
resulting in different time complexity. Further, to bound the
performance loss of switching delay, we exploit the concav-
ity of the utility function and consider all the caused perfor-
mance loss for all impacted tasks in the worst case, and
prove that the switching delay introduces a constant factor
of 1� r in the ultimate achieved approximation ratio, i.e.,
ð1� rÞð1� 1

eÞ, of the proposed algorithm, where r is the
switching delay.

To address the third challenge, we propose a distributed
online algorithm based on the proposed centralized offline
algorithm to HASTE. We prove that if the rescheduling
delay is neglected, as long as the local executions of a char-
ger and its neighbors are in order and repeat regularly
with time, the achieved global charging utility is the same
as that of the centralized offline algorithm. Further, by
leveraging the concavity of the utility function and the sub-
modularity of the objective function in HASTE, we bound
the performance loss of scheduling delay, and prove that
our distributed online algorithm achieves 1

2 ð1� rÞð1� 1
eÞ

competitive ratio.

1.5 Evaluation Results

We conducted simulations and field experiments to evalu-
ate our proposed algorithms. Our simulation results show
that our proposed distributed online algorithm can achieve
92.97 percent of the optimal charging utility which corrobo-
rates our theoretical findings, outperform the other two
comparison algorithms by 10.96 percent. We implemented
our algorithms on a testbed consisting of 8 off-the-shelf
TX91501 power transmitters produced by [19] and 8
rechargeable sensor nodes associated with 8 charging tasks.
Our experimental results show that our distributed online
algorithm outperforms the comparison algorithms by up to
15.28 percent on average, and 29.63 percent at most.

2 RELATED WORK

In this section, we briefly review related works regarding
wireless charging.

First, there exist some literatures focus on mobile charg-
ing scenarios where one single or multiple chargers travel
in a field to charge rechargeable devices deployed there to
make them work perpetually, which are fundamentally dif-
ferent from ours. [22], [23], [24], [25], [26] study the charging
efficiency issues of wireless chargers, e.g., Zhang et al. pre-
sented an optimal scheme for multiple mobile chargers to
charge a linear WSN while the ratio of truly charged energy
to wasted energy is maximized. [27], [28], [29] concentrate
on reducing the service delay of mobile chargers, e.g., Fu
et al. considered the problem of minimizing the overall
charging delay of a single mobile charger by planning its
charging route and charging strategy [27]. [30], [31], [32],
[33], [34], [35], [36], [37] pay attention to the overall network

performance such as data routing, event monitoring, data
collection, and task assignment. For instance, Shi et al. pro-
posed to use a single mobile charger to improve data collec-
tion performance and the charger’s working time in a
charging time period [30], [31]. We refer readers to survey
[56] for more related works.

Second, the other works are dedicated to wireless charger
networks consisted of static wireless chargers, but nearly
none of them consider charging task scheduling. First, most of
them study scheduling issues in coarse granularity rather
than task levels. On one hand, some works (e.g., [16], [17],
[38], [39], [40], [41]) overlook the detrimental effect of the elec-
tromagnetic radiation to human health. For instance, He et al.
considered the triangular deployment problem of wireless
chargers [38]. They attempted to minimize the number of
chargers while rechargeable tags can receive sufficient power.
In addition, we first proposed the directional charging prob-
lem based on empirical experimental results, and investigated
the ominidirectional charging problem using directional
chargers in [16], the wireless charger placement problem for
directional charging in [17], [39], [40], [41]. On the other hand,
other literatures [42], [43], [44], [45], [46], [47], [48] take the
EMR safety into consideration, and guarantee that the EMR
intensity at any point in the area does not exceed a predefined
EMR threshold. For instance, we presented and studied how
to schedule non-adjustable chargers [42], [43] and adjustable
chargers [44], [45] to maximize the charging utility for charg-
ers under the EMR safety constraint. Nikoletseas et al. [46]
consideredmore practical constraints such as the energy limi-
tations of chargers and devices, the non-linear constraints in
the time domain, and their goal is to optimize the amount of
energy transferred from chargers to devices and truly utilized.
Moreover, we reported a wireless charger placement scheme
that ensures EMR safety in [47]. Second, to the best of our
knowledge, there is only one work [49], [50] that study the
wireless charging task scheduling. Nevertheless, [49], [50]
consider omnidirectional wireless chargers whose charging
power is adjustable and focus on offline scenarios, which are
fundamentally different from our paper. Moreover, we
launched the first study on schedulingwireless charging tasks
for directional wireless chargers and designing online algo-
rithms in the conference version of this paper [51].

3 PROBLEM FORMULATION

3.1 Preliminaries

Suppose there is a set of directional wireless chargers
S ¼ fs1; . . . ; sng located in a 2D plane V, which can continu-
ously rotate with orientation angle within ½0 2pÞ. Suppose
there are also some rechargeable devices located in V,
which either keep static or dynamically join or leave the
wireless charger network. These rechargeable devices
launch (wireless) charging tasks and sending them to wire-
less chargers now and then, and the chargers accordingly
schedule their orientations to serve the tasks. Formally,
charging tasks are defined by a five-tuple T j ¼< oj;fj;
tjr; t

j
e; Ej > where oj denotes the position of the recharge-

able device that raises the task, fj is the orientation of the
device, tjr and tje are the release time and end time of the
task, and Ej is required charging energy. We adopt a dis-
crete time model for which the time is divided into multiple
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slots with uniform duration Ts. For simplicity, we assume
that tjr is exactly at the beginning of a time slot while tje is at
the end of a time slot. We summarize the notations used in
this paper in Table 1.

We adopt the general and practical directional charging
model proposed in [16], [17], [18]. As Fig. 1 shows, a charger
si with working orientation denoted by vector rui

�! can only
charge devices in a charging area in the shape of a sector
with charging angle As and radius D. A rechargeable device
oj with orientation denoted by vector rfj

�! can only receive
non-zero power in a receiving area in the shape of a sector
with receiving angle Ao and radius D. The charging power
from si to oj is given by

Prðsi; ui; oj;fjÞ ¼

a

ðjjsiojjjþbÞ2
; 0 � jjsiojjj � D;

sioj
��! � rui�!� ksiojkcosðAs=2Þ � 0;

and ojsi
��! � rfj�!� kojsikcosðAo=2Þ � 0:

0; otherwise

8>>>><
>>>>:

;

where a and b are two known constants determined by
hardware parameters of chargers as well as surrounding
environment [16], [17], [18], jjsiojjj is the distance between si
and oj, As and Ao are respectively the charging angle of

chargers and the receiving angle of devices, rui
�! and rfj

�! are
respectively the unit vectors denoting the orientations of the
charger and the device. Further, if a device oj is covered by
more than one directional wireless chargers, its received
power is the sum of the received power from all chargers
[16], [17]. Note that there is another directional charging
model proposed in [57], which is more practical as it consid-
ers the anisotropic energy receiving property of recharge-
able sensors. We plane to consider it in our future work.

A charger can either keep its orientation unchanged during
the same time slot, or switch its orientation in the starting r

(0 < r < 1) portion of a time slot, which we call switching
delay, and keep static in the rest 1� r portion of the time slot.
We argue that this assumption makes sense because typically
a charging task can last up to tens of minutes or even more
than an hour, the duration of time slots can be set to a few
minutes, and the switching time for commercial rotatable
heads or cradles [58] on which the chargers are mounted or
soft switching of smart antennas of chargers [59], [60] is com-
monly a few seconds or even shorter. We assume that a char-
ger stops emitting power during its switching. For conve-
nience of exposition, we define ui ¼ F for a charger during its
switching process, and further define Prðsi;F; oj;fjÞ ¼ 0. In
the offline case, we assume the information for all charging
tasks are known a prior, then the scheduling policies for all
time slots for each charger are determined beforehand. In the
online case, we assume the charging tasks stochastically
arrive, and chargers recompute their scheduling policies in an
on-the-fly fashion. Especially, we assume each charger needs
t (t 2 Zþ) number of time slots, which we name as reschedul-
ing delay, for negotiation with neighboring chargers and com-
putation to update its future scheduling policies, and then, if
necessary, starts switching with a delay of r time slot. Typi-
cally, the rescheduling delay is expected to be much less than
the duration of charging tasks. In this paper, we assume the
latter is at least two times that of the former, i.e., tje � tjr � 2tTs

for any task T j, where Ts is the duration of a time slot.

3.2 Charging Utility Model

We adopt a linear and bounded charging utility model for
harvested energy for a task, which is similar to the charging
utility model for received power proposed in [17]. That is, the
charging utility for a task is first proportional to the harvested
energy of its associated device, and then reaches a constant if
the harvested energy exceeds a predetermined threshold, i.e.,

UðxÞ ¼
1
Ej
� x; x � Ej

1; x > Ej

�
: (1)

whereEj is the required charging energy of charging task T j.

TABLE 1
Notations and Symbols Used in This Paper

Symbol Description

si The ith directional wireless charger, or its position
n Number of directional wireless chargers
ui (uiðtÞ) Orientation of charger si (its function with time t)
ui;k The value of uiðtÞ at the kth time slot if charger si

is not switching
T j The jth charging task
oj Position of the rechargeable device that raises

charging task T j, or the jth rechargeable device
fj Orientation of the rechargeable device that raises

charging task T j, or the orientation of device oj
tjr (t

j
e) Release time (end time) of charging task T j

Ej Required charging energy of charging task T j

m Number of charging tasks
As Charging angle of chargers
Ao Receiving angle of devices
Ts Duration of a time slot
Prð:Þ Charging power function
a;b Constants in the charging model
D Radius of charging/receiving area
r Switching delay
t Rescheduling delay
Uð:Þ Charging utility function
wj Weight of charging task T j

TT i Set of charging tasks that cover charger si
Gi (G

p
i ) Set of dominant task sets for charger si (the pth

dominant task set in Gi)
Gi;k (G

p
i;k) Set of dominant task sets for charger si at the kth

time slot (the pth dominant task set in Gi;k)
K Number of considered time slots for all tasks
C Number of colors
NðsiÞ Neighbors of charger si (two chargers are

neighbors to each other if and only if they cover at
least one charging task in common)

Ki Number of considered time slots for all tasks
observed by charger si

Fig. 1. Directional charging model (oj can receive power from si while ok
cannot).
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3.3 Problem Formulation and Hardness Analysis

Let uiðtÞ (ui : R�0 7! f½0 2pÞ [Fg) be the function of orienta-
tion for charger si with time t. Suppose the value of uiðtÞ at
the kth time slot is ui;k if charger si is not switching; other-
wise, uiðtÞ is set to F and the charging power of si is zero.
Then, for a charging task T j, its harvested power at time t is
given by

Pn
i¼1 Prðsi; uiðtÞ; oj;fjÞ, and its aggregate harvested

energy during its whole life is
R tje
t
j
r

Pn
i¼1 Prðsi; uiðtÞ; oj;fjÞdt.

And the overall (weighted) charging utility is
Pm

j¼1 wj�
Uð
R tje
t
j
r

Pn
i¼1 Prðsi; uiðtÞ; oj;fjÞdtÞ where wj is the weight of

charging task T j.

Our task is to determine the decision variables ui;k
defined in uiðtÞ for all the chargers so that the overall charg-
ing utility is maximized. With all above, we define the prob-
lem of cHarging tAsk Scheduling for direcTional wireless
chargEr networks as follows.

ðP1Þ max
ui;k

U ¼
Xm
j¼1

wj � U
Z t

j
e

t
j
r

Xn
i¼1

Prðsi; uiðtÞ; oj;fjÞdt
 !

s:t: uiðtÞ ¼
F; kTs < t � ðkþ rÞTs

ui;k; ðkþ rÞTs < t � ðkþ 1ÞTs

�
; ui;k 6¼ ui;k�1

ui;k; kTs < tðkþ 1ÞTs; otherwise

8><
>:

where k 2 Zþ0 ; and uið0Þ ¼ F

0 � ui;k < 2p:

The following theorem shows the complexity of HASTE.

Theorem 3.1. HASTE is NP-hard.

Proof. Due to space limit, we only sketch the proof here.
Suppose r! 0, tjr ¼ 0 and tje ¼ Ts for all charging tasks,
which means each task simply occupies the first time slot
and we only need to consider one round scheduling in
this time slot. Moreover, suppose the required charging
energy for each task Ej is so small that as long as a task is
covered by a charger, it certainly obtains an amount of
energy greater then Ej and therefore achieves a charging
utility of wj in the overall charging utility. Besides,
though the orientation of chargers can be freely chosen in
½0 2pÞ, its covered sets of charging tasks can be enumer-
ated in a fixed number of steps and are limited, as we will
see in Algorithm 1. Consequently, with the above set-
tings, our problem changes to choosing the orientation
for each charger among its candidate choices such that
the overall charging utility of all tasks is maximized. We
can prove this simplified problem is NP-hard by reducing
from the classical NP-hard separate assignment problem
[61], which is defined as follows: given a set of bins and a
set of items to pack in each bin, a value for assigning item
j to bin i, and a separate packing constraint for each bin,
i.e., for bin i, a family Ii of subsets of items that fit in bin i,
packing items into bins to maximize the aggregate value.
Here we can regard each charger as a bin, each task as an
item, each set of covered tasks for a candidate orientation
of charger si as a subset in the family Ii for bin i, the
achieved utility of a task as the value for assigning this
item to a bin, and therefore, we can reduce any instance

of the separate assignment problem to the considered
simplified problem. As the separate assignment problem
is NP-hard [61], HASTE is also NP-hard. tu

4 PROBLEM REFORMULATION

In this section, considering the complexity of the formula-
tion P1 of HASTE, we reformulate HASTE to make it trac-
table. In particular, we first propose a dominant task sets
extraction algorithm for chargers to reduce the continuous
solution space for orientations of chargers to a discrete one
with limited choices. Then, we consider a relaxed version
of HASTE, i.e., HASTE-R, and prove it falls into the realm
of maximizing a submodular function subject to a partition
matroid constraint, which assists the further algorithm
design.

Algorithm 1. Dominant Task Sets Extraction

Input: The wireless charger si, all charging tasks fT jgmj¼1
Output: All dominant task sets
1: Find the subset of charging tasks in fT jgmj¼1 that cover si,

say TT i;
2: Initialize the orientation of the charger to 0;
3: Rotate the charger anticlockwise to cover the tasks in TT i one

by one until there is some covered task is going to be uncov-
ered. During the rotating process, if the rotated angle is
larger than 2p, then terminate;

4: Add the current covered set of tasks to the collection of dom-
inant task sets;

5: Rotate the charger anticlockwise until a new task in TT i is
included in the covered set. During the rotating process, if
the rotated angle is larger than 2p, then terminate. If not,
goto Line 3.

4.1 Extraction of Dominant Task Sets

Though each charger can continuously rotate within ½0 2pÞ,
we do NOT need to consider all possible orientations.
Instead, we only need to care about the possible sets of cov-
ered tasks, whose number is obviously limited for any given
charger. Further, among these sets we only need to consider
the following specific ones.

Definition 4.1 (dominant task set). Given a set of tasks TT 1
i

covered by a charger si with some orientation, if there
doesn’t exist another set of tasks TT 2

i covered by si with
some other orientation such that TT 1

i � TT 2
i , then TT 1

i is a
dominant task set.

We describe our algorithm for extracting dominant task
sets in Algorithm 1. Basically, the considered charger rotates
for 2p and extracts the dominant task sets one by one. We
use a toy example for illustration. As shown in Fig. 2a, the
charger first covers task T 1, then rotates to cover tasks T 2

and T 3 sequentially. Further, T 4 cannot be added in the cur-
rent covered set as otherwise fT 1; T 2g will be missed, and
therefore, fT 1; T 2; T 3g is a dominant task set. Then, the
charger continues to cover T 4 by removing T 1 and T 2 from
the current set, as shown in Fig. 2b. Similarly, as T 5 cannot
be covered by the charger without missing T 3, fT 3; T 4g is
added as a dominant task set. Algorithm 1 proceeds until
the charger rotates for 2p, as depicted in Figs. 2c and 2d.
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After all, the obtained dominant task sets are fT 1; T 2;
T 3g; fT 3; T 4g; fT 4; T 5g and fT 6; T 1g.

4.2 Problem Relaxation and Reformulation

As the switching delay is hard to be analyzed for optimiza-
tion, we first consider a relaxed version of HASTE, HASTE-
R for short, by neglecting the switching delay of all charg-
ers, and then analyze HASTE. We will bound the perfor-
mance loss for the relaxation in our proposed algorithms.

Suppose the obtained set of dominant task sets for char-
ger si is Gi, the pth dominant task set in Gi is G

p
i . Let x

p
i;k be a

binary indicator denoting whether the pth dominant task set
in Gi in the kth time slot is selected or not. For convenience
of expression, we define

Prðsi; ojÞ ¼
a

ðjjsiojjjþbÞ2
; 0 � jjsiojjj � D;

0; otherwise:

�

Moreover, we abuse the notation slightly by defining Gp
i 3 oj

as 9T j0 2 Gp
i jT j0 :oj0 ¼ oj. That is, there exists a charing task

T j0 in Gp
i and its associated position of rechargeable device

is oj. Then, the problem HASTE-R can be formulated as

ðRP1Þ

max
x
p
i;k

UR ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i
3oj;

i2½n�; p2½jGi j�

xpi;kPrðsi; ojÞTs

!

s:t:
XjGij
p¼1

xpi;k ¼ 1; ðxpi;k 2 f0; 1gÞ;

where xp
i;ks are the decision variables, Gp

i is the pth dominant
task set in Gi.

Clearly, RP1 is a combinatorial optimization problem. To
facilitate further analysis, we first give the following
definitions.

Definition 4.2 [62] (submodular set function). Let S be a
finite ground set. A real-valued set function f : 2S ! R is nor-
malized, monotonic and submodular if and only if it satisfies
the following conditions, respectively:

1) fð;Þ ¼ 0;
2) fðA [ fegÞ � fðAÞ � 0 for any A 	 S and e 2 SnA;
3) fðA [ fegÞ � fðAÞ � fðB [ fegÞ � fðBÞ for any

A 	 B 	 S and e 2 SnB.

Definition 4.3 [62] (matroid). A matroid M is a strategy
M¼ ðS; LÞ where S is a finite ground set, L 	 2S is a collec-
tion of independent sets, such that

1) ; 2 L;
2) ifX 	 Y 2 L, thenX 2 L;
3) if X; Y 2 L, and jXj < jY j, then 9y 2 Y nX,

X [ fyg 2 L.

Definition 4.4 [62] (partition matroid). Given S ¼
S k

i¼1S
0
i

is the disjoint union of k sets, l1; l2; . . . ; lk are positive integers,
a partition matroid M¼ ðS; IÞ is a matroid where I ¼
fX � S : jX \ S0ij � li for i 2 ½k�g.

We will show that the problem RP1 fits perfectly in the
realm of maximizing a monotone submodular function sub-
ject to a partition matroid. First, we define Gi;k ¼ Gi (k 2 ½K�)
as the set of dominant task sets for charger si at the kth time
slot, where K is the total number of time slots and the nota-
tion ½n� ¼ f1; 2; . . . ; ng. Then, we define Qp

i;k as the corre-
sponding scheduling policy for Gp

i;k, i.e., the orientation that
covers Gp

i;k ¼ Gp
i , for charger si at the kth time slot, define

QQi;k ¼ fQp
i;kgp2½jGi;kj� as the set of scheduling policies for si at

the kth time slot, and define a ground set of all scheduling
policies S ¼ fQQi;kgi2½n�;k2½K�. Further, we define the schedul-
ing policies for all chargers at all K time slots as X, which is
subject to jX \QQi;kj � 1. Therefore, as QQi;ks are disjoint sets,
we write the independent sets as

I ¼ fX 	 S : jX \QQi;kj � 1 for i 2 ½n�; k 2 ½K�g: (2)

Besides, it can be easily proved thatM¼ fS; Ig is a matroid
by verifying the three properties proposed in Definition 4.3.
Thus we have the following lemma.

Lemma 4.1. The constraint in the scheduling problem RP1 can
be written as a partition matroid on the ground set S.

Accordingly, problem RP1 can be rewritten as

ðRP2Þ

max
X

fðXÞ ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!

s:t: X 2 I ;

where X is the decision variable, and fðXÞ (f : 2S ! R�0) is
the objective function. Note that we abuse the notation
slightly, and here Gp

i;k 3 oj means 9T j0 2 Gp
i;kjT j0 :oj0 ¼ oj.

For RP2, we have the following critical lemma.

Fig. 2. A toy example of dominant task sets extraction.
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Lemma 4.2. The objective function fðXÞ in RP2 is a monotone
submodular set function.

Proof. By Definition 4.2, we need to check whether fðXÞ
satisfies the three listed conditions.

First, when there are no active scheduling policies, i.e.,
X ¼ ? , the received energy for any task is zero, then we
have fðXÞ ¼ 0.

Second, let A be a set of scheduling strategies in S and
e 2 SnA. For simplicity, define

gðX; jÞ ¼ U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!
;

(3)

as the achieved utility for task T j. It is easy to see that
gðA [ feg; jÞ � gðA; jÞ � 0 because there are possibly more
chargers cover task T j as all possible dominant task sets
that cover T j, i.e., Gp

i;k (i 2 ½n�, p 2 fpjQp
i;k ¼ A \QQi;kg)

would be enlarged as A becomes A [ feg, and the utility
function Uð:Þ is non-decreasing. Hence we have

fðA [ fegÞ � fðAÞ ¼
Xm
j¼1

wj � ½gðA [ feg; jÞ � gðA; jÞ� � 0:

(4)

Third, let A and B be two sets such that A 	 B 	 S
and element e 2 SnB. On one hand, it is easy to see that

XtjeTs
k¼ t

j
r
Ts
þ1

X
G
p
i;k
3oj;

i2½n�; p2P1

Prðsi; ojÞTs �
XtjeTs

k¼ t
j
r
Ts
þ1

X
G
p
i;k
3oj;

i2½n�; p2P2

Prðsi; ojÞTs

¼
XtjeTs

k¼ t
j
r
Ts
þ1

X
G
p
i;k
3oj;

i2½n�; p2P3

Prðsi; ojÞTs �
XtjeTs

k¼ t
j
r
Ts
þ1

X
G
p
i;k
3oj;

i2½n�; p2P4

Prðsi; ojÞTs; (5)

where P1 ¼ fpjQp
i;k ¼ fA [ eg \QQi;kg, P2 ¼ fpjQp

i;k ¼ A\
QQi;kg, P3 ¼ fpjQp

i;k ¼ fB [ eg \QQi;kg, and P4 ¼ fpjQp
i;k

¼ B \QQi;kg. On the other hand, it is clear that

ðUðx1 þ DxÞ � Uðx1ÞÞ � ðUðx2 þ DxÞ � Uðx2ÞÞ � 0; (6)

for any x2 � x1 � 0 and Dx � 0 due to the concavity of
the charging utility function Uð:Þ.

Consequently, we have ½gðA [ feg; jÞ � gðA; i; qÞ��
½gðB [ feg; jÞ � gðB; jÞ� � 0, and therefore,

½fðA [ fegÞ � fðAÞ� � ½fðB [ fegÞ � fðBÞ�

¼
Xm
j¼1

wj � f½gðA [ feg; jÞ � gðA; jÞ� � ½gðB [ feg; jÞ � gðB; jÞ�g

�0:
(7)

In summary, we conclude that fðXÞ is a monotone
submodular set function. This completes the proof. tu

5 CENTRALIZED OFFLINE ALGORITHM

In this section, we propose a centralized offline algo-
rithm to address HASTE in the offline scenario. We note

that in this case, the information for all charging tasks is
known beforehand, and thereby the scheduling policies
for all chargers at any time can be determined a priori.

5.1 Algorithm Description

After proved that HASTE-R is a problem of maximizing
a submodular function under a partition matroid con-
straint, we can resort to existing schemes to address
HASTE-R. For example, we can use a simple greedy
algorithm to find a solution that achieves 1

2 approxima-
tion ratio according to the classical results presented in
[52]. Moreover, [53] proposes a randomized algorithm
with optimal approximation guarantees, namely, 1� 1

e

approximation ratio. Nevertheless, it is too computation-
ally demanding to practically implement. In this paper,
we tailor the TABULARGREEDY algorithm proposed in
[54], [55] to address HASTE-R as it can achieve an
approximation ratio between 1

2 and 1� 1
e depending on

the value of a control parameter and resulting in differ-
ent time complexity, which provides flexibility in practi-
cal applications.

Algorithm 2. Centralized Offline Algorithm to HASTE

Input: Integer C, set of scheduling policies QQi;k for charger si
(i 2 ½n�, k 2 ½K�), objective function fð:Þ

Output: Scheduling policies for all chargersX
1: Q ? ;
2: for all c 2 ½C� do
3: for all i 2 ½n�, k 2 ½K� do
4: ei;k;c  argmaxx2QQi;k
fcgFðQþ xÞ;
5: Q Q [ ei;k;c;
6: for all i 2 ½n�, k 2 ½K� do
7: Choose ci;k uniformly at random from ½C�;
8: X  sample~cðQÞ, where~c ¼ ðc1;1; . . . ; cn;1; . . . ; c1;K; . . . ; cn;KÞ.
9: returnX

We first propose some useful concepts in our context,
which also capture the essential elements in the TABU-
LARGREEDY algorithm, to facilitate understanding our
algorithm.

� S-C tuple. An S-C tuple is a tuple of a scheduling pol-
icy for a charger at a time slot and a color from a pal-
ette ½C� of C colors (note that here color and palette
have no concrete meaning, and they are only used to
assist sampling). A set Q 	 S 
 ½C� consists of S-C
tuples which can be regarded as labeling each sched-
uling policy for a charger with one or more colors.

� S-C tuple sampling function. We associate with each
partition QQi;k a color ci;k. For any set Q 	 S 
 ½C� and
vector ~c ¼ ðc1;1; . . . ; cn;1; . . . ; c1;K; . . . ; cn;KÞ, we define
S-C tuple sampling function as

sample~cðQÞ ¼
[

i2½n�;k2½K�
fx 2 QQi;k : ðx; ci;kÞ 2 Qg: (8)

In other words, sample~cðQÞ returns a set containing
each item x that is exactly labeled with the color ci;k
assigned by~c to the partition QQi;k that contains x.

� Expected charging utility function after S-C tuple sam-
pling. It is defined as FðQÞ ¼ Eðfðsample~cðQÞÞÞ as the
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expected value of fðsample~cðQÞÞ when each color ci;k
in~c is selected uniformly at random from ½C�.

We present our centralized offline algorithm inAlgorithm2.
We can see that at each step in the two-level loop, Algorithm 2
greedily optimizesFðQÞ.

5.2 Theoretical Analysis

Following Theorem 2 in [55], we have the following lemma.

Lemma 5.1. Algorithm 2 achieves 1� ð1� 1
CÞ

C � nK
2

� �
C�1

approximation ratio for HASTE-R.

Obviously, when C ! þ1, the approximation ratio
approaches 1� 1

e. Further, when C ¼ 1, there is only one
possible choice for ~c, and TABULARGREEDY is simply
the locally greedy algorithm that achieves 1

2 approxima-
tion ratio [52]. For simplicity, we assume C ! þ1 and
say Algorithm 2 achieves 1� 1

e approximation ratio for
HASTE-R.

Theorem 5.1. Algorithm 2 achieves ð1� rÞð1� 1
eÞ approxima-

tion ratio for HASTE, and its time complexity is OðCðnmKÞ2Þ
where r is the switching delay, C, n, and m are the color num-
ber, charger number, and task number, respectively, K is the
number of considered time slots for all tasks.

Proof. Suppose the optimal charging utility for HASTE is
U�, and that for HASTE-R is U�R. Apparently, we have

U�R � U
�
: (9)

Further, suppose the output X of Algorithm 2 achieves
overall charging utility UR for HASTE-R, i.e.,

UR ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!
;

and achieves U (U � UR) for HASTE by taking the
switching delay into consideration. Consider the worst
case, i.e., every charger needs to rotate at the begin-
ning of each time slot and lead to switching delay,
which results in a time duration of ð1� rÞTs for effec-
tive charging in each time slot for all tasks, then we
have

U �
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞð1� rÞTs

!

� ð1� rÞ
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!

¼ ð1� rÞUR:

(10)

Note that the second inequality in the above formula
is due to the concavity of the charging utility function.
Following Lemma 5.1 and letting C ! þ1, we have

UR � 1� 1

e

� �
U�R: (11)

Combining Equs. (9), (10), and (11) we obtain

U � ð1� rÞð1� 1

e
ÞU�; (12)

which indicates that Algorithm 2 achieves ð1� rÞð1� 1
eÞ

approximation ratio.
For time complexity, it is clear that the computation

for Q is the dominating part. The computation inside
the two-level loop involves testing all possible sched-
uling policies, which is OðmÞ in the worst case when
the considered charger covers all m tasks. Moreover,
computing FðQþ xÞ needs OðnmKÞ computational
cost. Thus, considering all CnK loops, the overall
time complexity for computing Q is OðCðnmKÞ2Þ, so
does the time complexity of Algorithm 2. This com-
pletes the proof. tu

6 DISTRIBUTED ONLINE ALGORITHM

In this section, we propose a distributed online algorithm to
address HASTE in the online scenario. Note that in this
case, charging tasks stochastically arrive, and chargers
reschedule their orientations in realtime. Moreover, charg-
ers can be either in the working mode for the offline sce-
nario or in that for the online scenario, and cannot switch
between these two different statuses.

We face two main challenges. First, we need to adapt
the centralized offline algorithm to HASTE, whose relaxed
version HASTE-R is a submodular function maximization
problem, to cater to the distributed online scenario where
all chargers are asynchronous and charging tasks ran-
domly arrive. Nevertheless, to the best of our knowledge,
there are no distributed online schemes for maximizing a
submodular function with or without constraints. Second,
the response of each charger has a delay of up to t þ r

time slots, that is, t number of time slots for computation
and negotiation with neighboring chargers and, possibly,
plus r time slot for switching delay. This setting is funda-
mentally different from existing ones of online scheduling
problems and invalidates traditional online algorithms.
We address these challenges by proposing a distributed
online algorithm that achieves 1

2 ð1� rÞð1� 1
eÞ competitive

ratio.

6.1 Algorithm Description

We design our distributed online algorithm for HASTE based
on our proposed centralized offline algorithm, and partially
borrow the idea of the distributed algorithm in [63].

First, we present some concepts to assist analysis.

� Neighbors of a charger. We say two chargers are neigh-
bors to each other if and only if they cover at least
one charging task in common. We assume that the
communication range of wireless chargers is at least
twice of their charging range, and therefore, the
neighboring wireless chargers can communicate
with each other. The set of neighbors of charger si is
denoted as NðsiÞ.
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� Local charging utility function. The local charging util-
ity function for charger si is defined as the aggre-
gated charging utility of all charging tasks that can
be charged by si, i.e., TT i. Denote by Xi as the set of
scheduling policies of si, and X i the set of scheduling
polices of si and its neighbors NðsiÞ, we can formally
express the local charging utility function for
HASTE-R as fi : [si0 2fsig[NðsiÞ;k2½Ki�QQi0;k 7! R�0 as

fiðXiÞ ¼
X
T j2TT i

wjU
� Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; si0 2fsig[NðsiÞ;

p2fpjQp
i;k
¼X i\QQi;kg

Prðsi0 ; ojÞTs

�
;

where Ki is the number of considered time slots for
all tasks TT i observed by charger si.

� Local expected charging utility function after S-C tuple sam-
pling. Similar to the expected charging utility function
after S-C tuple sampling defined in Section 5.1, we
define FiðQiÞ ¼ Eðfiðsample~cðQiÞÞÞ as the expected
value of fiðsample~cðQiÞÞ when each color ci;k in ~c is
selected uniformly at random from ½C�.

� Control message. The control message exchanged
between wireless chargers is expressed as
msgðID; TIM;COL; CMD;DF�i ðQiÞ; ek�i Þ. The field
ID is the charger ID; TIM is the index of the time
slots; COL is an integer between 1 and C, which
stands for the parameter c in the centralized off-
line algorithm; CMD can be UPD which indicates
an update command; and DFk�

i ðQiÞ is the
“maximum” marginal increment for the local
expected charging utility function after S-C tuple
sampling for charger si for all possible scheduling
policies at the kth time slot, and ek�i is the corre-
sponding scheduling policy.

We show our distributed online algorithm in
Algorithm 3, which is invoked at charger si upon arrival
of new charging tasks that can be charged by si. Each
charger accordingly updates the set of charging tasks TT i,
all possible scheduling policies in all Ki time slots QQi;k,
and the local charging utility function fið:Þ. Then, each
charger si enumerates all C colors in all Ki time slots. For
each color c at the kth time slot, si computes DFk�

i ðQiÞ and
the corresponding scheduling policy ek�i , and broadcasts
them to its neighbors. Note that DFk�

i ðQiÞ for charger si is
obtained by greedily choosing the scheduling policies that
yield the maximum additional local expected charging
utility in all Ki time slots in an increasing order, and
therefore, ek�i is a set of Ki scheduling policies. Mean-
while, si receives the control messages sent from its neigh-
bors. If it collects the messages from all its neighbors and
finds that it has the maximum value of DFk�

i ðQiÞ (if there
are two or more chargers have the same value of DFk�

i ðQiÞ
which leads to a tie, we break it based on the IDs of these
chargers), si adds the S-C tuple ðek�i ; cÞ to its global S-C
tuple set Qi, and broadcasts the update command to its
surrounding neighbors. Otherwise, if it receives an update
command from one of its neighbors, si updates the stored
scheduling policy for the neighbor, recomputes DFk�

i ðQiÞ
and ek�i , and repeats the above negotiation procedure.
After traversing all C colors for all Ki time slots,

Algorithm 3 obtains a set of S-C tuples Qi, and applies a
sampling function on Qi to get a solution Xi.

Algorithm 3. Distributed Online Algorithm to HASTE
(at each wireless charger si)

Input:Neighbor setNðsiÞ
Output: Scheduling policyXi

1: Update the set of charging tasks that can cover charger si,
i.e., TT i to include the new arrived tasks;

2: Compute the dominant task sets and determine all possible
scheduling policies QQi;k;

3: Exchange the information of dominant task sets and sched-
uling policies with the neighbors, and thus derive the local
charging utility function fið:Þ;

4: Qi  ? ;
5: for k from1 toKi do
6: for c from1 toC do
7: Calculate DFk�

i ðQiÞ and obtain ek�i ;
8: Broadcastmsgði; k; c;NULL;DFk�

i ðQiÞ; ek�i Þ;
9: while DFk�

i ðQiÞ > 0 do
10: if DFk�

j ðQjÞ of all neighbors sj 2 NðsiÞ are collected
and all their colors are equal to c, and DFk�

i ðQiÞ is
larger than any of them then

11: Qi  Qi [ ðek�i ; cÞ;
12: Broadcastsmsgði; k; c; UPD;DFk�

i ðQiÞ; ek�i Þ;
13: break;
14: ifmsgðj; k; c; UPD;DFk�

j ðQjÞ; ek�j Þ is received then
15: Update the stored scheduling policy of its neigh-

bor sj at the kth time slots to ek�j ;
16: Calculate DFk�

i ðQiÞ and obtain ek�i ;
17: Broadcastmsgði; k; c;NULL;DFk�

i ðQiÞ; ek�i Þ;
18: continue;
19: ifmsgðj; k; c;NULL;DFk�

j ðQjÞ; ek�j Þ is received then
20: Update DFk�

j ðQjÞ and ek�j for the neighbor sj;
21: continue;
22: for c from1 toC do
23: Choose cik uniformly at random from ½C�;
24: Xi  sample~cðQiÞ, where~c ¼ ðci1; . . . ; ciKi

Þ.
25: returnXi

6.2 Theoretical Analysis

Theorem 6.1. Algorithm 3 achieves 1
2 ð1� rÞð1� 1

eÞ competitive
ratio for HASTE, and its time complexity is OðCðjNðsiÞ
jjTT ijKiÞ2Þ, its communication cost is OðCKiðjNðsiÞjÞ2Þ where
r is the switching delay, C is the number of colors, NðsiÞ is the
set of neighbors of charger si, TT i is the set of tasks that can
cover si, Ki is the number of considered time slots for all tasks
in TT i.

Proof. We first analyze the competitive ratio. To begin with,
we ignore the rescheduling delay of chargers. Different
from the centralized offline algorithm described in
Algorithm 2 that is executed in a well-ordered sequence,
the online algorithm is conducted in a totally asynchro-
nous manner among wireless chargers. Nevertheless, we
prove that we can organize the scheduling policies deter-
mination processes at all chargers in a global order. First,
as the processes of determining scheduling policies for
difference colors c 2 ½C� are in different loops as shown in
Algorithm 2, we can equivalently think of the processes
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of determining scheduling policies for difference colors
being isolated from each other and executed in order. For
each color, it is clear that the process of determining
scheduling policies for a charger si and its neighbors is
executed in order, which can be expressed as a directed
chain with a directed edge between si and sj indicating
that the scheduling policies of si is determined just left
behind that of sj. For instance, suppose the observed
order of determining scheduling policies for s1, s3, and s5
are s1 ! s8 ! s3 ! s2, s1 ! s5 ! s3 ! s6, and
s7 ! s5 ! s4, respectively, then we can plot their order
chains as in Fig. 3a. Next, we combine these chains by
merging the same nodes. For example, Fig. 3b illustrates
the resulted directed graph when we combine two
directed chains corresponding to s1 and s3 by merging
the two nodes for s1 and s3. Similarly, we can further
combine the directed chain of s5 by merging the node for
s5 as shown in Fig. 3c. After all, we can obtain a directed
graph G, which must be acyclic, i.e., with no directed
cycles, as otherwise we can always find a charger si deter-
mining its scheduling policies ahead of itself and thus a
contradiction arises. Consequently, we can apply some
topological sorting algorithm, such as the well-known lin-
ear time topological sorting algorithm presented in [64],
to order all the chargers. For example, the red dotted lines
in Fig. 3c connecting all the nodes indicate a topological
sort of s1 ! s7 ! s8 ! s5 ! s3 ! s4 ! s2 ! s6.

Second, clearly the “maximum” marginal increment
for the local expected charging utility function after S-C
tuple sampling for charger si, i.e., DF

k�
i ðQiÞ, computed by

each charger is exactly equal to the “maximum”marginal
increment for the global expected charging utility func-
tion after S-C tuple sampling because the increased
charging utility exactly stems from the affected tasks cov-
ered by charger si. Then, all chargers can be regarded as
sequentially determining their scheduling policies based
on the global knowledge of the expected charging utility
function after S-C tuple sampling, just as that in the cen-
tralized offline algorithm.

Third, in Algorithm 3, the loop for enumerating all
time slots is outside the loop for enumerating all colors.
This is critical for online algorithm design because as
such, the process of being interrupted by arrivals of new
charging tasks, recomputing the new scheduling policies
and carrying out these new polices for Algorithm 3 can
be equivalently viewed as the fluent process with all
charging tasks are known a priori. Nevertheless, one
may notice that Algorithm 3 differs from Algorithm 2 in
that the latter has the loop for enumerating all time slots
being inside the loop for enumerating all colors, then

does it make any difference in the ultimate performance
guarantee? Our answer is negative. Briefly speaking, the
TABULARGREEDY algorithm, upon which Algorithm 2
is based, is essentially the locally greedy algorithm for
selecting C 
K items that maximize a submodular func-
tion [54], [55] for which the order for selection does not
matter. We omit the detail analysis to save space.

To sum up, we claim that Algorithm 3 achieves the
same performance as Algorithm 2.

Next, we consider rescheduling delay, and first, we
neglect the switching delay as for HASTE-R. Suppose the
global solutionX based on the outputsXi of Algorithm 3 for
all chargers achieves charging utilityUR forHASTE-R, i.e.,

UR ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!
:

Due to rescheduling delay, the reaction of each char-
ger for a newly arrived charging task is delayed for t � Ts

time. Therefore, it can be equivalently considered that
there is no rescheduling delay for chargers under the set-
ting where the first t time slots of all the charging tasks
are “cut off”. Suppose X achieves overall charging utility
U0R for this setting, i.e.,

U0R ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþtþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X\QQi;kg

Prðsi; ojÞTs

!
:

Obviously, we have UR � U
0
R as each task misses the

opportunity to harvest charging power at its first t time
slots. Assume the optimal overall charging utility for the
above setting is U

0�
R , then we have

UR � U
0
R � 1� 1

e

� �
U
0�
R: (13)

Further, assume that the optimal overall charging util-
ity for HASTE-R is U�R and its corresponding solution is
X�. Due to the concavity of the charging utility function,
we have

U�R ¼
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X�\QQi;kg

Prðsi; ojÞTs

!

�
Xm
j¼1

wj � U
 Xk¼tjr=Tsþt

k¼tjr=Tsþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X�\QQi;kg

Prðsi; ojÞTs

!

þ
Xm
j¼1

wj � U
 Xtje=Ts

k¼tjr=Tsþtþ1

X
G
p
i;k
3oj; i2½n�;

p2fpjQp
i;k
¼X�\QQi;kg

Prðsi; ojÞTs

!

�U�1R þ U
�2
R :

(14)

Fig. 3. An example of directed acyclic graph construction.
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Note that we denote by U�1R and U�2R the first and sec-
ond terms at the right side of the second inequality. First,
we have

U�2R � U
0�
R; (15)

as the latter is optimal under the same setting. Second,
recall that all the charging tasks have a duration of at
least 2tTs where t is the switching delay, which indicates
tje=Ts � ðtjr=Ts þ t þ 1Þ þ 1 � ðtjr=Ts þ tÞ � ðtjr=Ts þ 1Þ þ 1.
Thus, the duration of each task regarding U�2R is greater
than or equal to that of the corresponding task regarding
U�1R . Notice that we can move the starting time points of
all tasks regarding U�1R for t time slots along the time
dimension to make them aligned with the corresponding
tasks regarding U�2R , we have

U�1R � U
0�
R: (16)

Combining Equs. (13), (14), (15), and (16), we obtain

UR �
1

2
ð1� 1

e
ÞU�R: (17)

Thus, Algorithm 3 achieves 1
2 ð1� 1

eÞ competitive ratio.
Last, by similar analysis on switching delay as in the

proof to Theorem 5.1, the achieved competitive ratio of
Algorithm 3 is 1

2 ð1� rÞð1� 1
eÞ.

The time complexity analysis is similar to that in the
proof to Algorithm 5.1, we omit it to save space. For com-
munication cost, it is clear that there are in total CKi

loops, and in each loop, there are OðjNðsiÞjÞ rounds to
determine a local a�maximuma marginal increment for
the local expected charging utility function after S-C
tuple sampling for a charger and its neighbors. Each
round in turn needs OðjNðsiÞjÞ times of message sending
and receiving. To sum up, the total communication cost
is OðCKiðjNðsiÞjÞ2Þ. This completes the proof. tu

7 SIMULATION RESULTS

In this section, we perform simulations to evaluate the per-
formance of the proposed centralized offline and distrib-
uted online algorithms to HASTE.

7.1 Evaluation Setup

Unless otherwise stated, we use the following setup in our
simulations. The considered field is a 50m
 50m square
area, and wireless chargers and charging tasks are uni-
formly distributed in this filed. We set a ¼ 10000, b ¼ 40,
D ¼ 20m, n ¼ 50, m ¼ 200, wj ¼ 1

200, Ts ¼ 1min, r ¼ 1
12,

t ¼ 1, As ¼ p=3, Ao ¼ p=3, respectively. The required charg-
ing energy and duration of charging tasks are randomly
selected in ½5kJ 20kJ � and ½10min 120min�, respectively. If
we choose 3.7 Volts for the voltage, the required charging
energy is selected in ½375mAh 1500mAh�. Therefore, the
simulation setup is reasonable for the required battery of
wireless sensor and mobile devices. To cover the area of
50m
 50m, we chose n ¼ 50 wireless chargers. Note that if
the number of wireless chargers is too small, some charging
tasks area will not be covered, which will make HASTE

meaningless. Conversely, if the number of wireless chargers
is too large, the charging utility will close to 1.0. Besides,
each data point in the figures in this section stands for an
averaging result for 100 random topologies.

7.2 Baseline Setup

As there are no existing schemes for scheduling charging
tasks in directional wireless charger networks, we propose
two algorithms named GreedyUtility and GreedyCover for
comparison. For GreedyUtility, each charger greedily picks
the orientation that leads to maximum charging utility
while ignoring the scheduling policies of its neighboring
chargers. For GreedyCover, the only difference compared
with GreedyUtility is that each charger greedily selects the
orientation that covers the maximum number of charging
tasks. Apparently, both of these algorithms can be easily
implemented in a distributed way by letting each charger
execute them locally.

7.3 Centralized Offline Algorithm Evaluation

7.3.1 Impact of Charging Angle As

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 2.67 and 3.40 percent (at most
4.34 and 6.03 percent), respectively, in terms of As. Fig. 4 shows
that the charging utilities of HASTE, GreedyUtility, and
GreedyCover steadily increase with the charging angle of
chargers As, and achieve the same maximum overall charg-
ing utility when As ¼ 360�. Note that for simplicity, we still
use HASTE to denote our proposed centralized offline algo-
rithm or distributed online algorithm to HASTE in all simu-
lation figures if no confusion arises. This observation is
consistent with our intuition as the larger the charging
angle, the larger the chance that a charger can cover more
charging tasks even with the same orientation, and all the
chargers cover the same set of tasks regardless of their ori-
entations when As ¼ 360� and thus make no difference in
the performance for the three algorithms. Moreover, the
solution for HASTE with the color number C ¼ 4 always
outperforms that with C ¼ 1, and has a performance gain of
0.39 percent on average (at most 2.59 percent).

To validate the performance guarantee of our proposed
centralized algorithm, we conduct simulations for a small-
scale network with five chargers and ten tasks in a
10m
 10m field and under the setting Ts ¼ 1min, r ¼ 1

12,
t ¼ 1, As ¼ p=3, Ao ¼ p=3, respectively. The required charg-
ing energy and duration of charging tasks are randomly
selected in ½200J 800 kJ � and ½1min 5min�, respectively. We
compute the optimal solution by a brute-force algorithm

Fig. 4. As versus charging utility (centralized offline algorithm).
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which enumerates all combinations of scheduling polices
for chargers, and plot it in Fig. 8. We can verify that even for
HASTE with C ¼ 1, its charging utility is far greater than
ð1� rÞð1� 1

eÞ � 0:579 (at least 92.97 percent) of the optimal
charging utility. This fact supports Theorem 5.1.

7.3.2 Impact of Receiving Angle Ao

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 5.63 and 8.81 percent (at most
7.36 and 11.27 percent), respectively, in terms of Ao. Fig. 5
shows that the charging utilities of the three algorithms
increase monotonically with the receiving angle of devices
Ao. This is because tasks with larger receiving angles can be
charged with more potential chargers. Clearly, the increas-
ing speeds of charging utilities for these algorithms are first
fast and then become slow as Ao increases from 30� to 360�.
On average, HASTE with C ¼ 4 outperforms HASTE with
C ¼ 1 by 1.04 percent on average (at most 1.45 percent).

Further, we conduct small-scale simulations under the
same setting in Section 7.3.1. We can see from Fig. 9 that the
achieved charging utility for either C ¼ 1 or C ¼ 4 is very
close to the optimal, specifically, it is at least 88.63 percent

(> 1
2 ð1� rÞð1� 1

eÞ � 0:290) of the latter. This finding cor-
roborates Theorem 6.1.

Besides, though Figs. 4 and 5 show that the charging util-
ity increases with growing As and Ao, it does not mean that
omnidirectional WPT is superior to directional WPT. This is
because in reality, with identical hardware settings and
working power, directional WPT concentrates more radi-
ated energy in the directions of the rechargeable devices via
energy beamforming, which enhances the power intensity
in the intended directions, or equivalently, enhance the
whole energy efficiency [8]. Therefore, we can image that
some other charging parameters will change accordingly
when increasing As and Ao, such as a decreasing a, which is
not reflected in Figs. 4 and 5.

7.3.3 Impact of Switching Delay r

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 3.20 and 6.30 percent (at most
3.25 and 6.34 percent), respectively, in terms of r. Not surpris-
ingly, we observe in Fig. 6 that the charging utilities for all
the algorithms smoothly decrease with an increasing
switching delay r. HASTE with C ¼ 4 outperforms HASTE
with C ¼ 1 by 0.99 percent (at most 1.00 percent). Note that
even when r ¼ 1, which means the switching delay is up to
one time slot, the achieved charging utilities for all the algo-
rithms just slightly degrade. The reason is that each charger
keeps still most of the time and the orientation switching
seldom happens, and therefore, the performance loss
caused by switching is little.

7.3.4 Impact of Color Number C

Our simulation results show that on average the achieved charg-
ing utility of HASTE steadily increases with color number C.
Fig. 7 shows the box plot of the charging utilities of HASTE.
It can be seen that the average charging utility of HASTE
increases by 3.29 percent when the color number C
increases from 1 to 8. The maximum and minimum

Fig. 5. Ao versus charging utility (centralized offline algorithm).

Fig. 6. r versus charging utility (centralized offline algorithm).

Fig. 7. C versus charging utility (centralized offline algorithm).

Fig. 8. As versus charging utility (small-scale networks).

Fig. 9. Ao versus charging utility (small-scale networks).
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charging utilities of HASTE also smoothly increase with C.
The variance of charging utility for the eight colors is at
most 8:56
 10�3.

7.3.5 Impact of Required Charging Energy

and Task Duration

Our simulation results show that the achieved charging utility of
HASTE steadily increases with a decreasing charging energy or an
increasing task duration. We set the required charging energy
being randomly selected from ½0:5Ej 1:5Ej�, and task dura-
tion from ½0:5Dt 1:5Dt�. Fig. 10 shows that when Ej decreases
from 50 kJ to 10 kJ and Dt increases from 30min to 70min,
the overall charging utility increases by 44.28 percent. More-
over, the increasing speed for charging utility slows down
when Ej is large or Dt is small, which indicates a marginal
diminishing gain property.

7.4 Distributed Online Algorithm Evaluation

7.4.1 Impact of Charging Angle As

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 3.33 and 4.47 percent (at most
5.59 and 7.59 percent), respectively, in terms of As. We denote
by HASTE-DO the distributed online algorithm for HASTE
in the following figures. Fig. 12 demonstrates that the charg-
ing utilities of HASTE, GreedyUtility, and GreedyCover
smoothly increase with the charging angle of chargers As,

and reach the same maximum overall charging utility when
As ¼ 360�. This is a natural result because the larger the
charging angle, the larger the chance that a charger can
cover more charging tasks with the same orientation. More-
over, if As ¼ 360�, each charger covers the same set of tasks
regardless of its orientations, and therefore, the three algo-
rithms have the same performance. The solution for HASTE
with C ¼ 4 always outperforms that with C ¼ 1 with a gain
of 0.77 percent on average (at most 2.59 percent). Besides,
we can see that the charging utility for each of the three dis-
tributed online algorithms is less than that of its correspond-
ing centralized offline algorithm.

7.4.2 Impact of Receiving Angle Ao

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 6.83 and 8.95 percent (at most
8.68 and 10.96 percent), respectively, in terms of Ao. Fig. 13
illustrates that the charging utilities of the three algorithms
monotonically increase with the receiving angle of devices
Ao. The reason is that tasks with larger receiving angles can
potentially be charged by more chargers, and thus receive
more energy on average. Moreover, it is clear that the
increasing trends of charging utilities for these algorithms
are first fast and then become slow as Ao increases from 30�

to 360�. Besides, HASTE with C ¼ 4 outperforms HASTE
with C ¼ 1 by 1.42 percent on average (at most 2.23 per-
cent). Again, the charging utilities for the distributed online
algorithms are less than their corresponding centralized off-
line version.

7.4.3 Impact of Switching Delay r

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 5.20 and 7.3 percent (at most
5.20 and 7.31 percent), respectively, in terms of r. Fig. 14 shows
that the charging utilities for all the algorithms steadily

Fig. 11. Required charging energy & task duration versus charging utility
(distributed online algorithm).

Fig. 12. As versus charging utility (distributed online algorithm).

Fig. 13. Ao versus charging utility (distributed online algorithm).

Fig. 14. r versus charging utility (distributed online algorithm).

Fig. 10. Required charging energy & task duration versus charging utility
(centralized offline algorithm).
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decrease with switching delay r. Especially, HASTE with
C ¼ 4 outperforms HASTE with C ¼ 1 by 1.98 percent.
When the switching delay is even up to one time slot, i.e.,
r ¼ 1, the achieved charging utilities for all the algorithms
only slightly degrade compared with r ¼ 0. This is because
most chargers keep still most of the time, and thus the
caused performance loss is little.

7.4.4 Impact of Color Number C

Our simulation results show that on average the achieved charg-
ing utility of HASTE steadily increases with color number C.
Fig. 15 demonstrates the box plot of the charging utilities of
HASTE when the color number C increases from 1 to 8. We
can see that both of the maximum and minimum charging
utilities of HASTE steadily increase with C. Moreover, on
average the average charging utility of HASTE increases by
3.08 percent when the color number C increases by 1.
Besides, the variance of charging utility for all the eight col-
ors is at most 8:42
 10�3, which indicates the stable perfor-
mance of our algorithm.

7.4.5 Impact of Required Charging Energy

and Task Duration

Our simulation results show that the achieved charging utility of
HASTE steadily increases with a decreasing charging energy or an
increasing task duration. Similar to the setting for the central-
ized offline algorithm, we set the required charging energy
being randomly selected from ½0:5Ej 1:5Ej�, and task dura-
tion from ½0:5Dt 1:5Dt�. Fig. 11 shows that when Ej down-
grades from 50 kJ to 10 kJ and Dt rises from 30min to 70min,
the achieved charging utility increases by 45.47 percent. The
increasing speed for charging utility decreases when Ej

increases or Dt decreases, which demonstrates a marginal
diminishing gain property.

7.4.6 Communication Cost

Our simulation results show that the number of messages and the
number of rounds for a time slot increase quadratically and linearly,
respectively, with the number of chargers. We set the number of
color C to 1, and plot the average numbers of messages and
rounds in Algorithm 3 in Fig. 16. We can see that when the
number of chargers increases from 10 to 100, the numbers of
messages and rounds increase by 223.77 and 952.29 percent,
respectively. The number of rounds linearly increases because
the number of neighboring chargers linearly increases. Further,
as the number of messages in each round also grows propor-
tionally to the number of neighboring chargers, it thus grows
quadratically with the number of neighboring chargers, or the
number of chargers. This finding supports Theorem 6.1.

7.5 Insights

First, we investigate the impact of distribution of positions of
charging tasks on the overall charging utility. Suppose there
are 50 tasks distributed in a 50m
 50m area, and
Ao ¼ As ¼ p=3. The required charging energy and charging
duration for all tasks are randomly chosen from ½5 kJ 20 kJ �
and ½10min 120min�, respectively. The positions of tasks are
randomly generated following a 2DGaussian distributionwith
both x- and y- coordinates obeying a Gaussian distribution
with m ¼ 25. Fig. 17 shows that generally the charging utility
increaseswith either sx or sy, which indicates that the uniform-
ness of tasks’ distribution contributes to the overall charging
utility. This is because with a higher degree of uniformness of
positions, the phenomenon that some tasks are over-charged
while the others are starved out can be effectively avoided, and
according to the concavity of the charging utility function, the
overall charging utility will be enhanced. Second, we study the
impact ofEj on the individual charging utility of each charger.
Compared with the above setting, we uniformly distribute 50
chargers and 200 tasks. The required charging energy is a ran-
dom number in ½5 kJ 100 kJ �. Fig. 18 shows that generally the
charging utility first can achieve 1 for a smallEj, and then rap-
idly decreases when Ej continues growing. The maximum
individual charging utility is approximately inversely propor-
tional toEj, as shown by the curve in Fig. 18. The reason is that

Fig. 15. C versus charging utility (distributed online algorithm).

Fig. 16. Communication cost.

Fig. 17. Overall charging utility versus Guassian distribution variance.

Fig. 18. Individual charging utility versus required charging energy.
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to achieve the same charging utility, a task with a higher
required Ej needs a higher average charging power from its
surrounding chargers, which is not cost efficient. Thus, higher
Ej leads to lower charging utility.

8 FIELD EXPERIMENTS

Wehave conducted field experiments to evaluate our scheme.
First of all, we implemented our proposed schemes on a

small textbed which consists of 8 TX91501 power transmit-
ters produced by Powercast [19] with charging angle of
about 60�, 8 rechargeable sensor nodes with receiving angle
of about 120�, and an AP that connects to a laptop for
reporting data collected from the nodes as shown in Fig. 19.
Each power transmitter is mounted on a rotatable platform
atop a mobile robot, and thus can be freely rotated. Fig. 20
shows the topology of this testbed, where the 8 power trans-
mitters are placed at the boundaries of a 2:4m
 2:4m
square area, and the 8 sensor nodes are placed inside the
square area. We mark the orientation angle and the release
and end time (in time slots) on the top of each task associ-
ated with a sensor node in Fig. 20. The required charging
energy for all tasks is set to be in ½3J 5 J �. We set a ¼ 41:93,
b ¼ 0:6428, D ¼ 4m, r ¼ 1

12, t ¼ 1, As ¼ p=3, Ao ¼ 2p=3,
wj ¼ 1

8, based on our empirical results for the power trans-
mitters, the sensor nodes, and the robot, and set Ts ¼ 1min.

Figs. 21 and 22 show the charging utility for each task for
the three algorithms, i.e., HASTE (withC ¼ 4), GreedyUtility,
and GreedyCover, for the centralized offline and distributed
online settings, respectively. We can observe that HASTE
basically has the best charging utility for all tasks, and respec-
tively outperforms GreedyUtility and GreedyCover by 4.67

and 12.74 percent on average, and by 16.68 and 24.83 percent
at most in the centralized offline scenario; and by 5.62 and
12.38 percent on average, and by 19.52 and 22.10 percent at
most in the distributed online scenario. Moreover, task 1 and
task 6 have the largest two charging utility for both the algo-
rithms as they have the largest two charging task duration.

Next, we implemented our proposed schemes on a large
testbed which consists of 16 TX91501 power transmitters
and 20 rechargeable sensor nodes. Fig. 23 shows the topol-
ogy of this large testbed, which is much more irregular than
the small testbed as it is randomly generated. Similarly,
Figs. 24 and 25 show that HASTE respectively outperforms
GreedyUtility and GreedyCover by 4.38 and 10.12 percent
on average, and by 13.27 and 23.60 percent at most in the
centralized offline scenario; and by 6.04 and 15.28 percent
on average, and by 22.58 and 29.63 percent at most for in
the distributed online scenario.

9 CONCLUSION

The key novelty of this paper is on proposing the first schedul-
ing algorithm for charging tasks in directional wireless charg-
ing networks. The key contributions of this paper are
proposing a centralized offline algorithm that achieves
ð1� rÞð1� 1

eÞ approximation ratiowhere r denotes the switch-
ing delay, and a distributed online algorithm that achieves
1
2 ð1� rÞð1� 1

eÞ competitive ratio, and conducting both simula-
tions and field experiments for evaluation. The key technical
depth of this paper is in transforming the problem into maxi-
mizing a submodular function subject to a partition matroid
constraint, bounding the performance loss caused by the
switching delay and proving the approximation ratio for the
centralized offline algorithm, making the centralized offline
algorithm distributed and bounding the performance loss
caused by the rescheduling delay and proving the competitive
ratio for the distributed online algorithm. Our simulation and
field experimental results show that our proposed distributed
online algorithm can achieve 92.97 percent of the optimal
charging utility, outperform the other two comparison

Fig. 19. Testbed.

Fig. 20. Topology 1.

Fig. 21. Charging utility of 8 tasks for the centralized offline algorithms.

Fig. 22. Charging utility of 8 tasks for the distributed online algorithms.
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algorithms, and its communication cost moderately increases
as the charger number scales up.
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