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Abstract—This paper studies the problem of cHarging tAsk Scheduling for direcTional wireless chargEr networks (HASTE), i.e., given
a set of rotatable directional wireless chargers on a 2D area and a series of offline (online) charging tasks, scheduling the orientations
of all the chargers with time in a centralized offline (distributed online) fashion to maximize the overall charging utility for all the tasks.
We prove that HASTE is NP-hard. Then, we prove that a relaxed version of HASTE falls within the realm of maximizing a submodular
function subject to a partition matroid constraint, and propose a centralized offline algorithm that achieves (1 — p)(1 — ﬁ) approximation
ratio to address HASTE where p is the switching delay of chargers. Further, we propose a distributed online algorithm and prove it
achieves 1 (1 — p)(1 — 1) competitive ratio. We conduct simulations and field experiments on a testbed consisting of eight off-the-shelf
power transmitters and 8 rechargeable sensor nodes. The results show that our distributed online algorithm achieves 92.97 percent of
the optimal charging utility, and outperforms the comparison algorithms by up to 15.28 percent in terms of charging utility.

Index Terms—Charging task, scheduling, directional wireless chargers
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1 INTRODUCTION

1.1 Motivation and Problem Statement

HE last decade has witnessed the rapid development of

Wireless Power Transfer (WPT) technology, which enjoys
huge advantages such as no contact, reliable power supply,
and ease of maintenance compared to traditional wired power
supply technologies. WPT technology has numerous applica-
tions, including wireless identification and sensing platform
(WISP) [1], wireless rechargeable sensor networks [2], electric
vehicles [3], solar power satellites [4], and wireless powered
drone aircraft [5], efc. As per the record provided by Wireless
Power Consortium, an organization dedicated to promote
standardization of WPT, the number of registered WPT prod-
ucts from its 214 member companies, including IT leaders
Samsung, Philips, LG, and Huawei, has surged to 848 [6]. By a
recent report, 35 percent of consumers in the United States
have used WPT products [7].

Directional wireless charger network, which consists of
static directional wireless chargers, is one of the critical
topics for WPT technology. To begin with, it is well-known
that directional charging is more energy efficient than
omnidirectional charging. Unlike omnidirectional charging
which broadcasts the electromagnetic waves equally in all
directions regardless of the locations of the rechargeable
devices, directional charging concentrates radiated energy
in the directions of the rechargeable devices (i.e., energy
beamforming), and thus enhances the power intensity in
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the intended directions [8]. For this reason, directional
antennas for WPT are widely adopted in applications such
as millimeter wave cellular networks [9], [10], [11], [12],
wireless rechargeable sensor networks [13], and wireless
charging systems adopting the simultaneous wireless
information and power transfer technology [14], [15], and
are also studied in [16], [17], [18]. Further, static chargers
are more preferable than mobile chargers in some scenar-
ios. First, using static chargers is a more robust and timely
way to handle unexpected arrived charging tasks in an
online manner, such as urgent charging requests caused by
accidental energy depletion of existing sensor nodes or
new nodes join, than using mobile chargers, because
mobile chargers may need to travel a long distance for han-
dling tasks. Second, static chargers can also serve as data
collectors, which allows fast and efficient data collection
than using mobile chargers. Third, it is more cost-efficient
for some applications where, for example, sensor nodes
form multiple clusters with long distance between them.
Moreover, from a long term view, purchasing wireless
chargers is a one-time investment and can be amortized
over time, while using mobile chargers usually require
much higher energy cost and human cost than maintaining
static chargers, and such cost constantly accumulates over
time. Fourth, there have emerged a lot of on-the-shelf
products based on wireless power transfer technologies
[19], [20], [21], and they offer solutions for popular applica-
tions such as charging at coffee shops, security systems,
smart home, and in-vehicle charging. These applications
require dedicated static chargers.

In this paper, we consider the problem of cHarging tAsk
Scheduling for direcTional wireless chargEr networks
(HASTE) aiming for maximizing the overall charging utility
of offline/online charging tasks. We adopt the directional
charging model for wireless chargers and rechargeable
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devices, which captures the characteristics of power trans-
mitters and receivers equipped with directional antennas.
In this model, the power charging area for a charger and
the power receiving area for a device are modeled as sec-
tors. A rechargeable device can be charged via wireless by
a charger with non-zero power if and only if they are
located in each other’s covered sector. All wireless chargers
can freely adjust its orientation in [0,27) while recharge-
able devices cannot. Moreover, a charging task initiated by
a rechargeable device consists of five elements: the position
and orientation of its associated device, the release time
and end time of the task, and its required charging energy.
To evaluate the effectiveness of wireless charging for a
task, we define the task’s charging utility as a linear and
bounded function with its harvested energy from its
release time to its end time.

With these models, we consider two scenarios for charging
task scheduling, i.e., offline and online. In the offline scenario,
information for all charging tasks is known a priori, and
thereby the scheduling policies for all chargers at any moment
can be determined beforehand. To accommodate practical
concerns, we assume that each charger needs an amount of
time for switching its orientation, which we call switching
delay. In the online scenario, charging tasks stochastically
arrive, and chargers reschedule their orientations in realtime.
Nevertheless, in addition to switching delay, each charger
needs an additional amount of time for recomputing the
scheduling policies with negotiating with neighboring charg-
ers, which we call rescheduling delay. To avoid global manage-
ment effort and reduce update cost, we desire a distributed
and local algorithm which is scalable with network size. For
both scenarios, we want to dynamically schedule the orienta-
tions of chargers as time goes on such that the overall
weighted charging utility for all charging tasks is maximized.
Moreover, we stress that chargers can be either in the working
mode for the offline scenario or in that for the online scenario,
but cannot switch between these two different statuses. To
sum up, we state our problem HASTE as follows. Given a set
of rotatable directional wireless chargers on a 2D area and a
series of offline (online) charging tasks, scheduling the orien-
tations of all the chargers with time in a centralized offline
(distributed online) fashion to maximize the overall charging
utility for all the tasks.

1.2 Prior Art

On one hand, there exist numerous literatures [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37] studying on the mobile charging case where one
single or multiple chargers travel in a field to charge wire-
less rechargeable devices to guarantee their normal work-
ing. They are fundamentally different from ours as we
consider static chargers.

On the other hand, the other works consider wireless
charger networks consisted of static wireless chargers, but
nearly none of them investigate charging task scheduling.
In particular, most of them focus on scheduling issues in
coarse granularity rather than task levels, such as those
overlooking the harmful effect of high electromagnetic radi-
ation (EMR) [16], [17], [38], [39], [40], [41] and those taking
the EMR safety into consideration [42], [43], [44], [45], [46],
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[47], [48]. To the best of our knowledge, there is only one
work [49], [50] investigate wireless charging task schedul-
ing issue for omnidirectional wireless chargers in offline
scenarios, which are fundamentally different from our
paper. In the conference version of this paper [51], we initi-
ated the first study on scheduling wireless charging tasks
for directional wireless chargers and designing online
algorithms.

1.3 Key Technical Challenges

We are faced with three major challenges to address
HASTE. The first challenge is that HASTE is non-linear
and is NP-hard. HASTE is nonlinear because that the ori-
entation of chargers can be freely scheduled; a task can be
either covered by a charger and have a certain constant
power increment or not with no power increment, which
has the flavor of 0-1 integer programming; the charging
utility function is linear but bounded, let alone that we
extend our results to the case where the utility function is
a general concave function. In addition, by reducing from
the classical NP-hard separate assignment problem, we
prove that HASTE is NP-hard.

The second challenge is how to design an efficient cen-
tralized offline algorithm for HASTE in the offline scenario
while considering the switching delay of chargers. The
switching delay happens if and only if a charger’s next
intended orientation is different from its current orientation,
which implies that the switching delay as well as its caused
performance loss is history-dependent. Moreover, the per-
formance loss is difficult to evaluate as there are potentially
multiple tasks are affected by a charger’s switching delay,
and the charging utility function for tasks is non-linear.

The third challenge is how to design an efficient distrib-
uted online algorithm for HASTE in the online scenario
where all chargers are asynchronous and the rescheduling
delay needs to be considered. To the best of our knowledge,
there are neither existing distributed online algorithms
directly applicable to our problem even when the resched-
uling delay is omitted, nor existing online algorithms that
deal with the case in our considered scenario with resched-
uling delay being concerned for which the response is
delayed and the algorithm is not truly “online”.

1.4 Proposed Approach
To address the first challenge, we propose that rather than
considering all possible orientations in [0,2n) for chargers,
we can safely consider a limited number of orientations for
them without causing performance loss, and therefore,
extract the so-called “dominant task sets” as the corre-
sponding sets of covered tasks. Then, we neglect the
switching delay for wireless chargers, and thus reformulate
the original continuous optimization problem into a dis-
crete optimization problem HASTE-R. Further, we prove
that the reformulated problem is exactly a problem of max-
imizing a submodular function subject to a partition mat-
roid constraint, which greatly facilitates approximation
algorithm design.

To address the second challenge, based on the theoretical
results obtained by addressing the first challenge, we
can either use a simple greedy algorithm that achieves 3
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approximation ratio [52] or a randomized algorithm with
the optimal approximation guarantee, namely, 1 — £ approx-
imation ratio [53]. Nevertheless, as the former is not good
enough and the latter is too computationally demanding,
we tailor the TABULARGREEDY algorithm proposed in
[54], [55] to address HASTE-R as it can achieve an approxi-
mation ratio between § and 1 — 1 (1 — L as default in our set-
ting) depending on the value of a control parameter and
resulting in different time complexity. Further, to bound the
performance loss of switching delay, we exploit the concav-
ity of the utility function and consider all the caused perfor-
mance loss for all impacted tasks in the worst case, and
prove that the switching delay introduces a constant factor
of 1 — p in the ultimate achieved approximation ratio, i.e.,
(1—p)(1 —1), of the proposed algorithm, where p is the
switching delay.

To address the third challenge, we propose a distributed
online algorithm based on the proposed centralized offline
algorithm to HASTE. We prove that if the rescheduling
delay is neglected, as long as the local executions of a char-
ger and its neighbors are in order and repeat regularly
with time, the achieved global charging utility is the same
as that of the centralized offline algorithm. Further, by
leveraging the concavity of the utility function and the sub-
modularity of the objective function in HASTE, we bound
the performance loss of scheduling delay, and prove that
our distributed online algorithm achieves (1 — p)(1—1)
competitive ratio.

1.5 Evaluation Results

We conducted simulations and field experiments to evalu-
ate our proposed algorithms. Our simulation results show
that our proposed distributed online algorithm can achieve
92.97 percent of the optimal charging utility which corrobo-
rates our theoretical findings, outperform the other two
comparison algorithms by 10.96 percent. We implemented
our algorithms on a testbed consisting of 8 off-the-shelf
TX91501 power transmitters produced by [19] and 8
rechargeable sensor nodes associated with 8 charging tasks.
Our experimental results show that our distributed online
algorithm outperforms the comparison algorithms by up to
15.28 percent on average, and 29.63 percent at most.

2 RELATED WORK

In this section, we briefly review related works regarding
wireless charging.

First, there exist some literatures focus on mobile charg-
ing scenarios where one single or multiple chargers travel
in a field to charge rechargeable devices deployed there to
make them work perpetually, which are fundamentally dif-
ferent from ours. [22], [23], [24], [25], [26] study the charging
efficiency issues of wireless chargers, e.g., Zhang et al. pre-
sented an optimal scheme for multiple mobile chargers to
charge a linear WSN while the ratio of truly charged energy
to wasted energy is maximized. [27], [28], [29] concentrate
on reducing the service delay of mobile chargers, e.g., Fu
et al. considered the problem of minimizing the overall
charging delay of a single mobile charger by planning its
charging route and charging strategy [27]. [30], [31], [32],
[33], [34], [35], [36], [37] pay attention to the overall network
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performance such as data routing, event monitoring, data
collection, and task assignment. For instance, Shi ef al. pro-
posed to use a single mobile charger to improve data collec-
tion performance and the charger’'s working time in a
charging time period [30], [31]. We refer readers to survey
[56] for more related works.

Second, the other works are dedicated to wireless charger
networks consisted of static wireless chargers, but nearly
none of them consider charging task scheduling. First, most of
them study scheduling issues in coarse granularity rather
than task levels. On one hand, some works (e.g., [16], [17],
[38], [39], [40], [41]) overlook the detrimental effect of the elec-
tromagnetic radiation to human health. For instance, He et al.
considered the triangular deployment problem of wireless
chargers [38]. They attempted to minimize the number of
chargers while rechargeable tags can receive sufficient power.
In addition, we first proposed the directional charging prob-
lem based on empirical experimental results, and investigated
the ominidirectional charging problem using directional
chargers in [16], the wireless charger placement problem for
directional charging in [17], [39], [40], [41]. On the other hand,
other literatures [42], [43], [44], [45], [46], [47], [48] take the
EMR safety into consideration, and guarantee that the EMR
intensity at any point in the area does not exceed a predefined
EMR threshold. For instance, we presented and studied how
to schedule non-adjustable chargers [42], [43] and adjustable
chargers [44], [45] to maximize the charging utility for charg-
ers under the EMR safety constraint. Nikoletseas et al. [46]
considered more practical constraints such as the energy limi-
tations of chargers and devices, the non-linear constraints in
the time domain, and their goal is to optimize the amount of
energy transferred from chargers to devices and truly utilized.
Moreover, we reported a wireless charger placement scheme
that ensures EMR safety in [47]. Second, to the best of our
knowledge, there is only one work [49], [50] that study the
wireless charging task scheduling. Nevertheless, [49], [50]
consider omnidirectional wireless chargers whose charging
power is adjustable and focus on offline scenarios, which are
fundamentally different from our paper. Moreover, we
launched the first study on scheduling wireless charging tasks
for directional wireless chargers and designing online algo-
rithms in the conference version of this paper [51].

3 PROBLEM FORMULATION

3.1 Preliminaries

Suppose there is a set of directional wireless chargers
S ={s1,...,s,} located in a 2D plane (), which can continu-
ously rotate with orientation angle within [0 27). Suppose
there are also some rechargeable devices located in (),
which either keep static or dynamically join or leave the
wireless charger network. These rechargeable devices
launch (wireless) charging tasks and sending them to wire-
less chargers now and then, and the chargers accordingly
schedule their orientations to serve the tasks. Formally,
charging tasks are defined by a five-tuple 7; =< o;,¢;,
t/,t/,E; > where o; denotes the position of the recharge-
able device that raises the task, ¢; is the orientation of the
device, t/ and ¢ are the release time and end time of the
task, and FEj is required charging energy. We adopt a dis-
crete time model for which the time is divided into multiple
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TABLE 1
Notations and Symbols Used in This Paper
Symbol Description
S; The iy, directional wireless charger, or its position
n Number of directional wireless chargers
0; (6;(t)) Orientation of charger s; (its function with time ¢)
0; 1 The value of 6;(t) at the &y, time slot if charger s;
is not switching
T, The j;;, charging task
0j Position of the rechargeable device that raises
charging task 7, or the j,, rechargeable device
é; Orientation of the rechargeable device that raises
o charging task 7, or the orientation of device o;
tl(t) Release time (end time) of charging task 7 ;
E; Required charging energy of charging task 7 ;
m Number of charging tasks
Ay Charging angle of chargers
A, Receiving angle of devices
T Duration of a time slot
P.(.) Charging power function
a, B Constants in the charging model
D Radius of charging/receiving area
0 Switching delay
T Rescheduling delay
Uu) Charging utility function
wj Weight of charging task 7 ;
T; Set of charging tasks that cover charger s;
r; @) Set of dominant task sets for charger s; (the py,
dominant task set in I';)
T, (@?,)  Setof dominant task sets for charger s; at the ky,
time slot (the p;, dominant task setin I'; ;)
K Number of considered time slots for all tasks
C Number of colors
N(s;) Neighbors of charger s; (two chargers are

neighbors to each other if and only if they cover at
least one charging task in common)

K; Number of considered time slots for all tasks
observed by charger s;

slots with uniform duration 7. For simplicity, we assume
that ¢/ is exactly at the beginning of a time slot while ¢/ is at
the end of a time slot. We summarize the notations used in
this paper in Table 1.

We adopt the general and practical directional charging
model proposed in [16], [17], [18]. As Fig. 1 shows, a charger
s; with working orientation denoted by vector 7, can only
charge devices in a charging area in the shape of a sector
with charging angle A, and radius D. A rechargeable device
oj with orientation denoted by vector r_d,]’ can only receive
non-zero power in a receiving area in the shape of a sector
with receiving angle A, and radius D. The charging power
from s; to o; is given by

ool TAE 0 < llsioff| < D,
50} - 7o, = ||siojllcos(4s/2) 2 0,
555 T, = llogsillcos(4,/2) 0.

0, otherwise

Pr(si79i70j7¢j) =
and

where « and B are two known constants determined by
hardware parameters of chargers as well as surrounding
environment [16], [17], [18], ||s;0;]| is the distance between s;
and o;, A, and A, are respectively the charging angle of
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N

Fig. 1. Directional charging model (o; can receive power from s; while oy,
cannot).

chargers and the receiving angle of devices, 7, and Ty, are
respectively the unit vectors denoting the orientations of the
charger and the device. Further, if a device o; is covered by
more than one directional wireless chargers, its received
power is the sum of the received power from all chargers
[16], [17]. Note that there is another directional charging
model proposed in [57], which is more practical as it consid-
ers the anisotropic energy receiving property of recharge-
able sensors. We plane to consider it in our future work.

A charger can either keep its orientation unchanged during
the same time slot, or switch its orientation in the starting p
(0 < p < 1) portion of a time slot, which we call switching
delay, and keep static in the rest 1 — p portion of the time slot.
We argue that this assumption makes sense because typically
a charging task can last up to tens of minutes or even more
than an hour, the duration of time slots can be set to a few
minutes, and the switching time for commercial rotatable
heads or cradles [58] on which the chargers are mounted or
soft switching of smart antennas of chargers [59], [60] is com-
monly a few seconds or even shorter. We assume that a char-
ger stops emitting power during its switching. For conve-
nience of exposition, we define 6; = @ for a charger during its
switching process, and further define P,(s;, ®,0;,¢;) = 0. In
the offline case, we assume the information for all charging
tasks are known a prior, then the scheduling policies for all
time slots for each charger are determined beforehand. In the
online case, we assume the charging tasks stochastically
arrive, and chargers recompute their scheduling policies in an
on-the-fly fashion. Especially, we assume each charger needs
7 (1 € Z) number of time slots, which we name as reschedul-
ing delay, for negotiation with neighboring chargers and com-
putation to update its future scheduling policies, and then, if
necessary, starts switching with a delay of p time slot. Typi-
cally, the rescheduling delay is expected to be much less than
the duration of charging tasks. In this paper, we assume the
latter is at least two times that of the former, i.e., t/ — t/ > 277}
for any task 7 ;, where T}, is the duration of a time slot.

3.2 Charging Utility Model

We adopt a linear and bounded charging utility model for
harvested energy for a task, which is similar to the charging
utility model for received power proposed in [17]. That is, the
charging utility for a task is first proportional to the harvested
energy of its associated device, and then reaches a constant if
the harvested energy exceeds a predetermined threshold, i.e.,

mw:{%”’“SE’ W

1, $>Ej.

where F; is the required charging energy of charging task 7 ;.
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3.3 Problem Formulation and Hardness Analysis

Let 0;(t) (0; : R>o — {[0 27) U ®}) be the function of orienta-
tion for charger s; with time ¢. Suppose the value of 6;(t) at
the ky, time slot is 0;, if charger s; is not switching; other-
wise, 0;(t) is set to ® and the charging power of s; is zero.
Then, for a charging task 7 j, its harvested power at time ¢ is
givenby 3" | P.(s;,0i(t), 05, ¢;), and its aggregate harvested

energy during its whole life is fz tf doimy Pr(si,0i(t), 05, ¢;)dt.

m

And the overall (weighted) che:rging utility is > 7", wy
u(ftz Y1 Pr(si,0i(t), 05,¢;)dt) where w; is the weight of

t
charging task 7 ;.

Our task is to determine the decision variables 6,
defined in 6;(¢) for all the chargers so that the overall charg-
ing utility is maximized. With all above, we define the prob-
lem of cHarging tAsk Scheduling for direcTional wireless

chargEr networks as follows.

m th n
LR j=1 rooi=1

O, KT, < t< (k+p)T;
st 0;(t) = Oty (k+p)Ts < t < (k+1)T;
O, KTy < t(k+1)T,

Oik # Oik

otherwise

where k € Z, and 6;(0) = ®

0<0;, < 2m.

The following theorem shows the complexity of HASTE.
Theorem 3.1. HASTE is NP-hard.

Proof. Due to space limit, we only sketch the proof here.
Suppose p — 0, /. = 0 and t/ = T} for all charging tasks,
which means each task simply occupies the first time slot
and we only need to consider one round scheduling in
this time slot. Moreover, suppose the required charging
energy for each task F; is so small that as long as a task is
covered by a charger, it certainly obtains an amount of
energy greater then ; and therefore achieves a charging
utility of w; in the overall charging utility. Besides,
though the orientation of chargers can be freely chosen in
[0 27), its covered sets of charging tasks can be enumer-
ated in a fixed number of steps and are limited, as we will
see in Algorithm 1. Consequently, with the above set-
tings, our problem changes to choosing the orientation
for each charger among its candidate choices such that
the overall charging utility of all tasks is maximized. We
can prove this simplified problem is NP-hard by reducing
from the classical NP-hard separate assignment problem
[61], which is defined as follows: given a set of bins and a
set of items to pack in each bin, a value for assigning item
j to bin ¢, and a separate packing constraint for each bin,
i.e., for bin ¢, a family I; of subsets of items that fit in bin 4,
packing items into bins to maximize the aggregate value.
Here we can regard each charger as a bin, each task as an
item, each set of covered tasks for a candidate orientation
of charger s; as a subset in the family I; for bin i, the
achieved utility of a task as the value for assigning this
item to a bin, and therefore, we can reduce any instance
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of the separate assignment problem to the considered
simplified problem. As the separate assignment problem
is NP-hard [61], HASTE is also NP-hard. O

4 PROBLEM REFORMULATION

In this section, considering the complexity of the formula-
tion P1 of HASTE, we reformulate HASTE to make it trac-
table. In particular, we first propose a dominant task sets
extraction algorithm for chargers to reduce the continuous
solution space for orientations of chargers to a discrete one
with limited choices. Then, we consider a relaxed version
of HASTE, i.e., HASTE-R, and prove it falls into the realm
of maximizing a submodular function subject to a partition
matroid constraint, which assists the further algorithm
design.

Algorithm 1. Dominant Task Sets Extraction

Input: The wireless charger s;, all charging tasks {7 ;}]",

Output: All dominant task sets

1: Find the subset of charging tasks in {7}, that cover s;,
say 7 ;;

2: Initialize the orientation of the charger to 0;

3: Rotate the charger anticlockwise to cover the tasks in 7'; one
by one until there is some covered task is going to be uncov-
ered. During the rotating process, if the rotated angle is
larger than 27, then terminate;

4: Add the current covered set of tasks to the collection of dom-
inant task sets;

5: Rotate the charger anticlockwise until a new task in 7; is
included in the covered set. During the rotating process, if
the rotated angle is larger than 27, then terminate. If not,
goto Line 3.

4.1 Extraction of Dominant Task Sets

Though each charger can continuously rotate within [0 27),
we do NOT need to consider all possible orientations.
Instead, we only need to care about the possible sets of cov-
ered tasks, whose number is obviously limited for any given
charger. Further, among these sets we only need to consider
the following specific ones.

Definition 4.1 (dominant task set). Given a set of tasks T}
covered by a charger s; with some orientation, if there
doesn’t exist another set of tasks T; covered by s; with
some other orientation such that T C T?, then T, is a
dominant task set.

We describe our algorithm for extracting dominant task
sets in Algorithm 1. Basically, the considered charger rotates
for 27 and extracts the dominant task sets one by one. We
use a toy example for illustration. As shown in Fig. 2a, the
charger first covers task 7, then rotates to cover tasks 75
and 7 3 sequentially. Further, 74 cannot be added in the cur-
rent covered set as otherwise {7 1,7} will be missed, and
therefore, {7,72,73} is a dominant task set. Then, the
charger continues to cover 74 by removing 7| and 7, from
the current set, as shown in Fig. 2b. Similarly, as 7’5 cannot
be covered by the charger without missing 75, {73,7 4} is
added as a dominant task set. Algorithm 1 proceeds until
the charger rotates for 27, as depicted in Figs. 2c and 2d.
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Fig. 2. A toy example of dominant task sets extraction.

After all, the obtained dominant task sets are {7,7-,
TS}a {7—3774}, {74, Ts} and {T67Tl}~

4.2 Problem Relaxation and Reformulation
As the switching delay is hard to be analyzed for optimiza-
tion, we first consider a relaxed version of HASTE, HASTE-
R for short, by neglecting the switching delay of all charg-
ers, and then analyze HASTE. We will bound the perfor-
mance loss for the relaxation in our proposed algorithms.
Suppose the obtained set of dominant task sets for char-
ger s; is I';, the py, dominant task set in I'; is I7}. Let z}, be a
binary indicator denoting whether the py, dommant task set
in I'; in the k;, time slot is selected or not. For convenience
of expression, we define

R © S O< 0 <D
Po(si,0,) = { Usiogl#p7” < llsiofll = D,
r\5i; 05 0

, otherwise.

Moreover, we abuse the notation slightly by defining I'V 5 o;
as 37y € I'Y|T y.0y = o;. That is, there exists a charmg task
T in I’p and its ass0c1ated position of rechargeable device
is 0;. Then the problem HASTE-R can be formulated as

(RP1)
m tJ/Tb
max Up = Zw7 Z Z (8i,05)Ts
I:L J ™30
e iE[n]-pef\HH

|T';|

st Y al, =1, (af, €{0,1}),
p=1

where ;s are the decision variables, I'/ is the p;, dominant
task setin I';.

Clearly, RP1 is a combinatorial optimization problem. To
facilitate further analysis, we first give the following
definitions.

Definition 4.2 [62] (submodular set function). Let S be a
finite ground set. A real-valued set function f : 25 — R is nor-
malized, monotonic and submodular if and only if it satisfies
the following conditions, respectively:

1) f0)=0;

2)  f(Au{e}) — f(A) > 0forany A C Sand e € S\A;

3)  f(AU{e}) = f(A) = f(BU{e}) = f(B) for any
ACBCSande € S\B.
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Definition 4.3 [62] (matroid). A matroid M is a strategy
M = (S, L) where S is a finite ground set, L C 2% is a collec-
tion of independent sets, such that

1) bel;

2) ifXCYelL thenXe€L;

3) if X, YelL, and |X| <]|Y]
XU{y}elL.

Definition 4.4 [62] (partition matroid). Given S = |J* S/
is the disjoint union of k sets, ly,ls, ..., l}, are positive integers,
a partition matroid M = (S,7) is a matroid where T =
{XCS: XNl <lforie [k}

We will show that the problem RP1 fits perfectly in the
realm of maximizing a monotone submodular function sub-
ject to a partition matroid. First, we define I'; ;, = I'; (k € [K])
as the set of dominant task sets for charger s; at the &y, time
slot, where K is the total number of time slots and the nota-
tion [n] = {1,2,...,n}. Then, we define ©/, as the corre-
sponding scheduhng policy for I}, i.e., the orientation that
covers I' = =1I%, for charger s; at the ky, time slot, define

then Jy e Y\X,

0, = {®i,k}p€ (I, 4] @S the set of scheduling policies for s; at
the ky, time slot, and define a ground set of all scheduling
policies S = {0;};c1, 1ex)- Further, we define the schedul-
ing policies for all chargers at all K time slots as X, which is
subject to | X N @, ;| < 1. Therefore, as @, ;s are disjoint sets,
we write the independent sets as

I={XCS8:|XNnO,;; <1lforie[n],kel[K]} 2)

Besides, it can be easily proved that M = {5, 7} is a matroid
by verifying the three properties proposed in Definition 4.3.
Thus we have the following lemma.

Lemma 4.1. The constraint in the scheduling problem RP1 can
be written as a partition matroid on the ground set S.

Accordingly, problem RP1 can be rewritten as

(RP2)
m t{/’l;
max f(X Z w;j - Z Z P.(si,01)Ts
k=t) /Ty+1  T0y205 i€k,
Pe{plO?, =X, 1}
st. XeT,

where X is the decision variable, and f(X) (f : 2% — Rs) is
the objective function. Note that we abuse the notation
slightly, and here I'}; > o; means 37y € I'},|7 y.0y = o;.

For RP2, we have the following Cr1tlcal Iemma
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Lemma 4.2. The objective function f(X) in RP2 is a monotone
submodular set function.

Proof. By Definition 4.2, we need to check whether f(X)
satisfies the three listed conditions.
First, when there are no active scheduling policies, i.e.,
X = &, the received energy for any task is zero, then we
have f(X) =
Second, let A be a set of scheduling strategies in S and
e € S\ A. For simplicity, define

t}/Ts
=ul > X
k:t],.,/Ts+1 l"f_k_soj‘ie[n]‘
pe{p\@iik:Xﬁehk)

P,.(Si, Oj)Ts)7 3)

as the achieved utility for task 7 ;. It is easy to see that
g(AU{e},5) — g(4,j) > 0 because there are possibly more
chargers cover task 7 ; as all possible dominant task sets
that cover 7, ie, I}, G €[n], p€ {p|®, = ANO;;})
would be enlarged as A becomes A U {e}, and the utility
function () is non-decreasing. Hence we have

m

f(Au{e}) - Zw/ [9(AU{e}, ) — g(A, )] = 0.

4)

Third, let A and B be two sets such that AC BC S
and element e € S\ B. On one hand, it is easy to see that

Z Z Pr(siyoj)Ts

»
F’ 2%
i€[n].pePy

A

T

E E P,(si,0))T.

t) r"ﬂaor )
g i Iy
k T5+ i€[n], peP, k= T*Jr

Z Z P, (s;,0))T. Z Z P.(si,05)Ts, %)

. l F 120 e 1 FL
7T» 16[71],])6]33 T,+ i€[n], p

where Pi = {p|®], = {AUe} NO;;}, P, = {p|®], = AN

0}, Py= {p|®2k ={BUe}NO;;}, and Py = {p|®,
= BN ®,;}. On the other hand, it is clear that
(U(zy + Az) —U(x1)) — U(z2 + Az) — U(22)) > 0, (6)

for any s > x; > 0 and Az > 0 due to the concavity of
the charging utility function ¢(.).

Consequently, we have [g(AU{e},j) —g(4,i,q)]—

[9(BU{e},7) — g(B,7)] > 0, and therefore,
[f(AU{e}) = f(A)] = [F(BU{e}) — f(B)]
:Zwl : {[g(A U {6}7.7) - g(Am?)] - [g(BU {6}7.]) - g(Ba])]}
=
>0.
(7)
In summary, we conclude that f(X) is a monotone
submodular set function. This completes the proof. 0

5 CENTRALIZED OFFLINE ALGORITHM

In this section, we propose a centralized offline algo-
rithm to address HASTE in the offline scenario. We note
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that in this case, the information for all charging tasks is
known beforehand, and thereby the scheduling policies
for all chargers at any time can be determined a priori.

5.1 Algorithm Description

After proved that HASTE-R is a problem of maximizing
a submodular function under a partition matroid con-
straint, we can resort to existing schemes to address
HASTE-R. For example, we can use a simple greedy
algorithm to find a solution that achieves 1 approxima-
tion ratio according to the classical results presented in
[62]. Moreover, [53] proposes a randomized algorithm
with optimal approximation guarantees, namely, 1 —1
approximation ratio. Nevertheless, it is too computation-
ally demanding to practically implement. In this paper,
we tailor the TABULARGREEDY algorithm proposed in
[54], [55] to address HASTE-R as it can achieve an
approximation ratio between § and 1—1 depending on
the value of a control parameter and resultmg in differ-
ent time complexity, which provides flexibility in practi-

cal applications.

Algorithm 2. Centralized Offline Algorithm to HASTE

Input: Integer C, set of scheduling policies ®; , for charger s;
(i € [n], k € [K]), objective function f(.)
Output: Scheduling policies for all chargers X
Qo
: forall c € [C] do
foralli € [n], k € [K] do
€ikc < arg maX:rE@,.kx{c}F(Q + x);
Q — Q U €ik.cr
: foralli € [n], k € [K] do
Choose ¢;; uniformly at random from [C];
: X «— sample.(Q), where¢= (c11,...,¢n1,---
: return X

yCLE -+ Cn,K)-

VRGN

We first propose some useful concepts in our context,
which also capture the essential elements in the TABU-
LARGREEDY algorithm, to facilitate understanding our
algorithm.

e  5-C tuple. An S-C tuple is a tuple of a scheduling pol-
icy for a charger at a time slot and a color from a pal-
ette [C] of C colors (note that here color and palette
have no concrete meaning, and they are only used to
assist sampling). A set Q C S x [C] consists of S-C
tuples which can be regarded as labeling each sched-
uling policy for a charger with one or more colors.

o 5-C tuple sampling function. We associate with each
partition ®; ;; a color ¢; ;. For any set Q C S x [C] and
vector €= (C11,--,Cn1ys-v -, CLE, - -, Cn k), We define
S-C tuple sampling function as

U {z€0u:(z.cn)€Q) (8)

i€n],keK]

sample,(Q) =

In other words, sample;(Q) returns a set containing
each item z that is exactly labeled with the color ¢;
assigned by c'to the partition ©; ; that contains x.

e  Expected charging utility function after S-C tuple sam-
pling. It is defined as F(Q)) = E( f(sample.(Q))) as the
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expected value of f(sample,(())) when each color ¢;
in ¢is selected uniformly at random from [C].
We present our centralized offline algorithm in Algorithm 2.
We can see that at each step in the two-level loop, Algorithm 2
greedily optimizes F(Q).

5.2 Theoretical Analysis

Following Theorem 2 in [55], we have the following lemma.
Lemma 5.1. Algorithm 2 achieves 1— (1 —2)° — ("F)C!
approximation ratio for HASTE-R.

Obviously, when C — +oo, the approximation ratio
approaches 1 — 1. Further, when C = 1, there is only one
possible choice for ¢, and TABULARGREEDY is simply

1

the locally greedy algorithm that achieves ; approxima-

tion ratio [52]. For simplicity, we assume C — +oo and
say Algorithm 2 achieves 1 —! approximation ratio for

HASTE-R.

Theorem 5.1. Algorithm 2 achieves (1 — p)(1 — %) approxima-
tion ratio for HASTE, and its time complexity is O(C(nmK)?)
where p is the switching delay, C, n, and m are the color num-
ber, charger number, and task number, respectively, K is the
number of considered time slots for all tasks.

Proof. Suppose the optimal charging utility for HASTE is
U, and that for HASTE-R is I{},. Apparently, we have

Up>U . 9)

Further, suppose the output X of Algorithm 2 achieves
overall charging utility ¢/ for HASTE-R, i.e.,

m 1]/ Ty
UR_Z’LU]"U< Z Z P/‘(Sivoj)TS)7
j=1 k:Li/Tﬁ*l F‘i{kaaj.ie[n].

(|0, =XN0, .}

and achieves U (U <Up) for HASTE by taking the
switching delay into consideration. Consider the worst
case, i.e., every charger needs to rotate at the begin-
ning of each time slot and lead to switching delay,
which results in a time duration of (1 — p)T; for effec-
tive charging in each time slot for all tasks, then we
have

m t/Ts
u> Zw‘j ~L{< Z Z P,(si,05)(1 — ,o)T5>
= ey e ]
pe{p|®? =XNO; 1}
m sz/T@
>(1—-p) ij 'U< Z Z P.(s4, Oj)Ts>
J=1 k:tZ/Tg+1 F’;kaokj,ie[n]‘

pe{pl0?, =XnO; ;}

= (1 - pUg.
(10

Note that the second inequality in the above formula
is due to the concavity of the charging utility function.
Following Lemma 5.1 and letting C' — +o00, we have
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Up > (1 - %)H}}. (11)
Combining Equs. (9), (10), and (11) we obtain
_ -
Uz(1-p)1-2)U, (12)

which indicates that Algorithm 2 achieves (1 — p)(1 —1)
approximation ratio.

For time complexity, it is clear that the computation
for @ is the dominating part. The computation inside
the two-level loop involves testing all possible sched-
uling policies, which is O(m) in the worst case when
the considered charger covers all m tasks. Moreover,
computing F(Q +z) needs O(nmK) computational
cost. Thus, considering all CnK loops, the overall
time complexity for computing Q is O(C(nmK)?), so
does the time complexity of Algorithm 2. This com-
pletes the proof. 0

6 DISTRIBUTED ONLINE ALGORITHM

In this section, we propose a distributed online algorithm to
address HASTE in the online scenario. Note that in this
case, charging tasks stochastically arrive, and chargers
reschedule their orientations in realtime. Moreover, charg-
ers can be either in the working mode for the offline sce-
nario or in that for the online scenario, and cannot switch
between these two different statuses.

We face two main challenges. First, we need to adapt
the centralized offline algorithm to HASTE, whose relaxed
version HASTE-R is a submodular function maximization
problem, to cater to the distributed online scenario where
all chargers are asynchronous and charging tasks ran-
domly arrive. Nevertheless, to the best of our knowledge,
there are no distributed online schemes for maximizing a
submodular function with or without constraints. Second,
the response of each charger has a delay of up to 7+ p
time slots, that is, r number of time slots for computation
and negotiation with neighboring chargers and, possibly,
plus p time slot for switching delay. This setting is funda-
mentally different from existing ones of online scheduling
problems and invalidates traditional online algorithms.
We address these challenges by proposing a distributed
online algorithm that achieves §(1 — p)(1 —1) competitive
ratio.

6.1 Algorithm Description
We design our distributed online algorithm for HASTE based
on our proposed centralized offline algorithm, and partially
borrow the idea of the distributed algorithm in [63].

First, we present some concepts to assist analysis.

e  Neighbors of a charger. We say two chargers are neigh-
bors to each other if and only if they cover at least
one charging task in common. We assume that the
communication range of wireless chargers is at least
twice of their charging range, and therefore, the
neighboring wireless chargers can communicate
with each other. The set of neighbors of charger s; is
denoted as N(s;).
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e Local charging utility function. The local charging util-
ity function for charger s; is defined as the aggre-
gated charging utility of all charging tasks that can
be charged by s;, i.e., T;. Denote by X; as the set of
scheduling policies of s;, and X; the set of scheduling
polices of s; and its neighbors N(s;), we can formally
express the local charging utility function for
HASTE-Ras f; : Us,»/e{sz-}uN(si),ke[Ki]®i’,k — Ry as

/Ty
fi(Xi) = E wju( E E :
T;€T; k:t;/'_/T;Jrl l‘:”_]'_so/. s €{si JUN(s;),
PE{pl®Y, =XiNO; ;}

Pr'(si’ ) OJ)TL> ’

where K; is the number of considered time slots for
all tasks 7 ; observed by charger s;.

o  Local expected charging utility function after S-C tuple sam-
pling. Similar to the expected charging utility function
after S-C tuple sampling defined in Section 5.1, we
define F;(Q;) = E(f;(samples(Q;))) as the expected
value of fi(sample;(Q;)) when each color ¢;j, in € is
selected uniformly at random from [C].

o Control message. The control message exchanged
between wireless chargers is expressed as
msg(ID, TIM, COL,CMD, AF; (Q;),e}). The field
ID is the charger ID; TTM is the index of the time
slots; COL is an integer between 1 and C, which
stands for the parameter ¢ in the centralized off-
line algorithm; CMD can be UPD which indicates
an update command; and AFM(Q;) is the
“maximum” marginal increment for the local
expected charging utility function after S-C tuple
sampling for charger s; for all possible scheduling
policies at the k;, time slot, and ei-“* is the corre-
sponding scheduling policy.

We show our distributed online algorithm in
Algorithm 3, which is invoked at charger s; upon arrival
of new charging tasks that can be charged by s;. Each
charger accordingly updates the set of charging tasks 7,
all possible scheduling policies in all K; time slots 0, ,
and the local charging utility function f;(.). Then, each
charger s; enumerates all C colors in all K; time slots. For
each color c at the ky, time slot, s; computes AF¥*(Q;) and
the corresponding scheduling policy e/, and broadcasts
them to its neighbors. Note that AF¥(Q;) for charger s; is
obtained by greedily choosing the scheduling policies that
yield the maximum additional local expected charging
utility in all K; time slots in an increasing order, and
therefore, e/ is a set of K; scheduling policies. Mean-
while, s; receives the control messages sent from its neigh-
bors. If it collects the messages from all its neighbors and
finds that it has the maximum value of AF/(Q;) (if there
are two or more chargers have the same value of AF#*(Q);)
which leads to a tie, we break it based on the IDs of these
chargers), s; adds the S-C tuple (e!*,¢) to its global S-C
tuple set @;, and broadcasts the update command to its
surrounding neighbors. Otherwise, if it receives an update
command from one of its neighbors, s; updates the stored
scheduling policy for the neighbor, recomputes AF#(Q);)
and e, and repeats the above negotiation procedure.

i 7

After traversing all C colors for all K; time slots,
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Algorithm 3 obtains a set of S-C tuples @;, and applies a
sampling function on @; to get a solution Xj.

Algorithm 3. Distributed Online Algorithm to HASTE
(at each wireless charger s;)

Input: Neighbor set N(s;)
Output: Scheduling policy X;

1: Update the set of charging tasks that can cover charger s;,
i.e., 7; to include the new arrived tasks;

2: Compute the dominant task sets and determine all possible
scheduling policies O, ;;

3: Exchange the information of dominant task sets and sched-
uling policies with the neighbors, and thus derive the local
charging utility function f;(.);

4: Q; —
5: for k from1 toK; do
6: for c froml toC do
7: Calculate AF¥(Q;) and obtain €/;
8: Broadcast msg(i, k, ¢, NULL, AF¥(Q;), e);
9: while AF/*(Q;) > 0do
10: if A]F’,j*(Q,-) of all neighbors s; € N(s;) are collected
and all their colors are equal to ¢, and AFY(Q;) is
larger than any of them then
11: Qi — Q; U (e¥,c);
12: Broadcasts msg(i, k, ¢, UPD, AF¥(Q;), e);
13: break;
14: if msg(j, k, c, UPD, AF¥*(Q;), €*) is received then
15: Update the stored scheduling policy of its neigh-
bor s; at the ky, time slots to e;‘f* ;
16: Calculate AF/*(Q;) and obtain e/*;
17: Broadcast msg(i, k, ¢, NULL, AF¥(Q;), e);
18: continue;
19: if msg(j, k, ¢, NULL, AF"(Q;), ) is received then
20: Update AF}*(Q;) and €!* for the neighbor s;;
21: continue;

22: for ¢ froml toC' do

23:  Choose ci, uniformly at random from [C];
24: X; « sample.(Q;), where¢= (ci,..., c;’l).
25: return X;

6.2 Theoretical Analysis

Theorem 6.1. Algorithm 3 achieves % (1 — p)(1 — 1) competitive
ratio for HASTE, and its time complexity is O(C(|N(s;)
|T:|K:)?), its communication cost is O(CK;(|N(s;)|)*) where
p is the switching delay, C' is the number of colors, N(s;) is the
set of neighbors of charger s;, T, is the set of tasks that can
cover s;, K; is the number of considered time slots for all tasks
in Tz

Proof. We first analyze the competitive ratio. To begin with,
we ignore the rescheduling delay of chargers. Different
from the centralized offline algorithm described in
Algorithm 2 that is executed in a well-ordered sequence,
the online algorithm is conducted in a totally asynchro-
nous manner among wireless chargers. Nevertheless, we
prove that we can organize the scheduling policies deter-
mination processes at all chargers in a global order. First,
as the processes of determining scheduling policies for
difference colors ¢ € [C] are in different loops as shown in
Algorithm 2, we can equivalently think of the processes
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Fig. 3. An example of directed acyclic graph construction.

of determining scheduling policies for difference colors
being isolated from each other and executed in order. For
each color, it is clear that the process of determining
scheduling policies for a charger s; and its neighbors is
executed in order, which can be expressed as a directed
chain with a directed edge between s; and s; indicating
that the scheduling policies of s; is determined just left
behind that of s;. For instance, suppose the observed
order of determining scheduling policies for s;, s3, and s5
are §1 — S§ — S3 — So, §1 — S5 — S3 — Sg, and
s7 — 85 — s4, respectively, then we can plot their order
chains as in Fig. 3a. Next, we combine these chains by
merging the same nodes. For example, Fig. 3b illustrates
the resulted directed graph when we combine two
directed chains corresponding to s; and s3 by merging
the two nodes for s; and s3. Similarly, we can further
combine the directed chain of s; by merging the node for
s5 as shown in Fig. 3c. After all, we can obtain a directed
graph G, which must be acyclic, i.e., with no directed
cycles, as otherwise we can always find a charger s; deter-
mining its scheduling policies ahead of itself and thus a
contradiction arises. Consequently, we can apply some
topological sorting algorithm, such as the well-known lin-
ear time topological sorting algorithm presented in [64],
to order all the chargers. For example, the red dotted lines
in Fig. 3c connecting all the nodes indicate a topological
sort of s — §7 — Sg — S5 — $3 — S4 — S — Sg.

Second, clearly the “maximum” marginal increment
for the local expected charging utility function after S-C
tuple sampling for charger s;, i.e., AF?*(Q);), computed by
each charger is exactly equal to the “maximum” marginal
increment for the global expected charging utility func-
tion after S-C tuple sampling because the increased
charging utility exactly stems from the affected tasks cov-
ered by charger s;. Then, all chargers can be regarded as
sequentially determining their scheduling policies based
on the global knowledge of the expected charging utility
function after S-C tuple sampling, just as that in the cen-
tralized offline algorithm.

Third, in Algorithm 3, the loop for enumerating all
time slots is outside the loop for enumerating all colors.
This is critical for online algorithm design because as
such, the process of being interrupted by arrivals of new
charging tasks, recomputing the new scheduling policies
and carrying out these new polices for Algorithm 3 can
be equivalently viewed as the fluent process with all
charging tasks are known a priori. Nevertheless, one
may notice that Algorithm 3 differs from Algorithm 2 in
that the latter has the loop for enumerating all time slots
being inside the loop for enumerating all colors, then
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does it make any difference in the ultimate performance
guarantee? Our answer is negative. Briefly speaking, the
TABULARGREEDY algorithm, upon which Algorithm 2
is based, is essentially the locally greedy algorithm for
selecting C' x K items that maximize a submodular func-
tion [54], [55] for which the order for selection does not
matter. We omit the detail analysis to save space.

To sum up, we claim that Algorithm 3 achieves the
same performance as Algorithm 2.

Next, we consider rescheduling delay, and first, we
neglect the switching delay as for HASTE-R. Suppose the
global solution X based on the outputs X; of Algorithm 3 for
all chargers achieves charging utility /s for HASTE-R, i.e.,

m tzi/Ts
-y 3 ¥
j=1 k':t'Z/Tﬁ’l F‘Iq‘kSr)v/.,iG[n,].,
pe{plOf, =XN0;;}

P.(s4, 0j)Ts> .

Due to rescheduling delay, the reaction of each char-
ger for a newly arrived charging task is delayed for 7 - T}
time. Therefore, it can be equivalently considered that
there is no rescheduling delay for chargers under the set-
ting where the first r time slots of all the charging tasks
are “cut off”. Suppose X achieves overall charging utility
HIR for this setting, i.e.,

t/Ts

, m
Z’{R = E wj . u E §
=1 k=t /Tyrrel Tiy20pich].
pe{pl®f, =XNO; 1.}

P (s, Oj)Ts) .

Obviously, we have Uy > Uy, as each task misses the
opportunity to harvest charging power at its first r time
slots. Assume the optimal overall charging utility for the
above setting is I/ ,, then we have

_ — 1\«
Up > Uy > (1_E)UR' (13)

Further, assume that the optimal overall charging util-
ity for HASTE-R is i, and its corresponding solution is
X*. Due to the concavity of the charging utility function,
we have

- m t*Z,/T,'
Uy :Zw(,--u< > >
=

k':t'Z»/Ts‘Fl FTJ\Q(JJ‘I,G[WL]‘

PT(S’h OJ)T5>

pe{pl®?, =X"NO; .}

m k:t{/T9+T
SRS D>
=1

k':t'z /Ts+1 Fj),l\»guj‘ i€[n],

Pr(si, OJ)T5>
pe{pl®!, =X"1O; \}

£/ Ts

+ji1wj-u< ) 5

k::ti/n+r+l Ff.kaoj.z'e[n].
Pelpl®, =X"10, 1)

Pr(sia Oj)TS‘)

<Uy +Uy.
(14)
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Note that we denote by Uy r and uy p the first and sec-
ond terms at the right side of the second inequality. First,
we have

ul<u, (15)
as the latter is optimal under the same setting. Second,
recall that all the charging tasks have a duration of at
least 277, where 7 is the switching delay, which indicates
)Ty — /Ts+t+1)+1> )T+ 1) — (t]/T +1)+1.
Thus, the duration of each task regarding Uy r is greater
than or equal to that of the corresponding task regarding
Uy, r - Notice that we can move the starting time points of
all tasks regarding Uy, p for t time slots along the time
dimension to make them aligned with the corresponding
tasks regarding I/}, , we have

un <u. (16)

Combining Equs. (13), (14), (15), and (16), we obtain

(1~ el

Ur = amn

N | —

Thus, Algorithm 3 achieves § (1 — 1) competitive ratio.

Last, by similar analysis on sw1tch1ng delay as in the
proof to Theorem 5.1, the achieved competitive ratio of
Algorithm 3is 1 (1 — p)(1 —2).

The time complexity analysis is similar to that in the
proof to Algorithm 5.1, we omit it to save space. For com-
munication cost, it is clear that there are in total CK;
loops, and in each loop, there are O(|N(s;)|) rounds to
determine a local a®maximuma+ marginal increment for
the local expected charging utility function after S-C
tuple sampling for a charger and its neighbors. Each
round in turn needs O(|N(s;)|) times of message sending
and receiving. To sum up, the total communication cost
is O(CK;(IN(s;)|)*). This completes the proof. O

7 SIMULATION RESULTS

In this section, we perform simulations to evaluate the per-
formance of the proposed centralized offline and distrib-
uted online algorithms to HASTE.

7.1 Evaluation Setup

Unless otherwise stated, we use the following setup in our
simulations. The considered field is a 50 m x 50 m square
area, and wireless chargers and charging tasks are uni-
formly distributed in this filed. We set o = 10000, g = 40,
D=20m, n=>50, m=200, wj=g5 T.=1min, p=3
t=1, A, =n/3, A, = n/3, respectively. The required charg-
ing energy and duration of charging tasks are randomly
selected in [5kJ 20k.J] and [10min 120min|, respectively. If
we choose 3.7 Volts for the voltage, the required charging
energy is selected in [375mAh 1500mAh|. Therefore, the
simulation setup is reasonable for the required battery of
wireless sensor and mobile devices. To cover the area of
50m x 50 m, we chose n = 50 wireless chargers. Note that if
the number of wireless chargers is too small, some charging
tasks area will not be covered, which will make HASTE
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meaningless. Conversely, if the number of wireless chargers
is too large, the charging utility will close to 1.0. Besides,
each data point in the figures in this section stands for an
averaging result for 100 random topologies.

7.2 Baseline Setup

As there are no existing schemes for scheduling charging
tasks in directional wireless charger networks, we propose
two algorithms named GreedyUtility and GreedyCover for
comparison. For GreedyUftility, each charger greedily picks
the orientation that leads to maximum charging utility
while ignoring the scheduling policies of its neighboring
chargers. For GreedyCover, the only difference compared
with GreedyUltility is that each charger greedily selects the
orientation that covers the maximum number of charging
tasks. Apparently, both of these algorithms can be easily
implemented in a distributed way by letting each charger
execute them locally.

7.3 Centralized Offline Algorithm Evaluation
7.3.1 Impact of Charging Angle A

Our simulation results show that on average HASTE outperforms
GreedyUltility and GreedyCover by 2.67 and 3.40 percent (at most
4.34 and 6.03 percent), respectively, in terms of A. Fig. 4 shows
that the charging utilities of HASTE, GreedyUftility, and
GreedyCover steadily increase with the charging angle of
chargers A, and achieve the same maximum overall charg-
ing utility when A, = 360°. Note that for simplicity, we still
use HASTE to denote our proposed centralized offline algo-
rithm or distributed online algorithm to HASTE in all simu-
lation figures if no confusion arises. This observation is
consistent with our intuition as the larger the charging
angle, the larger the chance that a charger can cover more
charging tasks even with the same orientation, and all the
chargers cover the same set of tasks regardless of their ori-
entations when A; = 360° and thus make no difference in
the performance for the three algorithms. Moreover, the
solution for HASTE with the color number C' = 4 always
outperforms that with C' = 1, and has a performance gain of
0.39 percent on average (at most 2.59 percent).

To validate the performance guarantee of our proposed
centralized algorithm, we conduct simulations for a small-
scale network with five chargers and ten tasks in a
10m x 10m field and under the setting 7, = 1min, p = 7,
t=1,A, =n/3, A, = n/3, respectively. The required charg-
ing energy and duration of charging tasks are randomly
selected in [200 J 800 kJ] and [1 min 5 min]|, respectively. We
compute the optimal solution by a brute-force algorithm
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which enumerates all combinations of scheduling polices
for chargers, and plot it in Fig. 8. We can verify that even for
HASTE with C =1, its charging utility is far greater than
(1—p)(1—1) = 0.579 (at least 92.97 percent) of the optimal
charging utility. This fact supports Theorem 5.1.

7.3.2 Impact of Receiving Angle A,

Our simulation results show that on average HASTE outperforms
GreedyUltility and GreedyCover by 5.63 and 8.81 percent (at most
7.36 and 11.27 percent), respectively, in terms of A,. Fig. 5
shows that the charging utilities of the three algorithms
increase monotonically with the receiving angle of devices
A,. This is because tasks with larger receiving angles can be
charged with more potential chargers. Clearly, the increas-
ing speeds of charging utilities for these algorithms are first
fast and then become slow as A, increases from 30° to 360°.
On average, HASTE with C = 4 outperforms HASTE with
C = 1by 1.04 percent on average (at most 1.45 percent).
Further, we conduct small-scale simulations under the
same setting in Section 7.3.1. We can see from Fig. 9 that the
achieved charging utility for either C' =1 or C' =4 is very
close to the optimal, specifically, it is at least 88.63 percent
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(> 3(1—p)(1—1)~0.290) of the latter. This finding cor-
roborates Theorem 6.1.

Besides, though Figs. 4 and 5 show that the charging util-
ity increases with growing A, and A,, it does not mean that
omnidirectional WPT is superior to directional WPT. This is
because in reality, with identical hardware settings and
working power, directional WPT concentrates more radi-
ated energy in the directions of the rechargeable devices via
energy beamforming, which enhances the power intensity
in the intended directions, or equivalently, enhance the
whole energy efficiency [8]. Therefore, we can image that
some other charging parameters will change accordingly
when increasing A, and A,, such as a decreasing «, which is
not reflected in Figs. 4 and 5.

7.8.3 Impact of Switching Delay p

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 3.20 and 6.30 percent (at most
3.25 and 6.34 percent), respectively, in terms of p. Not surpris-
ingly, we observe in Fig. 6 that the charging utilities for all
the algorithms smoothly decrease with an increasing
switching delay p. HASTE with C = 4 outperforms HASTE
with C' = 1 by 0.99 percent (at most 1.00 percent). Note that
even when p = 1, which means the switching delay is up to
one time slot, the achieved charging utilities for all the algo-
rithms just slightly degrade. The reason is that each charger
keeps still most of the time and the orientation switching
seldom happens, and therefore, the performance loss
caused by switching is little.

7.3.4 Impact of Color Number C

Our simulation results show that on average the achieved charg-
ing utility of HASTE steadily increases with color number C.
Fig. 7 shows the box plot of the charging utilities of HASTE.
It can be seen that the average charging utility of HASTE
increases by 3.29 percent when the color number C
increases from 1 to 8. The maximum and minimum
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charging utilities of HASTE also smoothly increase with C.
The variance of charging utility for the eight colors is at
most 8.56 x 107%.

7.3.5 Impact of Required Charging Energy

and Task Duration

Our simulation results show that the achieved charging utility of
HASTE steadily increases with a decreasing charging energy or an
increasing task duration. We set the required charging energy
being randomly selected from [0.5E; 1.5E;], and task dura-
tion from [0.5A¢ 1.5A¢]. Fig. 10 shows that when E; decreases
from 50 kJ to 10 kJ and At increases from 30 min to 70 min,
the overall charging utility increases by 44.28 percent. More-
over, the increasing speed for charging utility slows down
when Ej is large or At is small, which indicates a marginal
diminishing gain property.

7.4 Distributed Online Algorithm Evaluation

7.4.1  Impact of Charging Angle A,

Our simulation results show that on average HASTE outperforms
GreedyUltility and GreedyCover by 3.33 and 4.47 percent (at most
5.59 and 7.59 percent), respectively, in terms of A;. We denote
by HASTE-DO the distributed online algorithm for HASTE
in the following figures. Fig. 12 demonstrates that the charg-
ing utilities of HASTE, GreedyUltility, and GreedyCover
smoothly increase with the charging angle of chargers A,,
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and reach the same maximum overall charging utility when
As =360°. This is a natural result because the larger the
charging angle, the larger the chance that a charger can
cover more charging tasks with the same orientation. More-
over, if A, = 360°, each charger covers the same set of tasks
regardless of its orientations, and therefore, the three algo-
rithms have the same performance. The solution for HASTE
with C = 4 always outperforms that with C' = 1 with a gain
of 0.77 percent on average (at most 2.59 percent). Besides,
we can see that the charging utility for each of the three dis-
tributed online algorithms is less than that of its correspond-
ing centralized offline algorithm.

7.4.2 Impact of Receiving Angle A,

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 6.83 and 8.95 percent (at most
8.68 and 10.96 percent), respectively, in terms of A,. Fig. 13
illustrates that the charging utilities of the three algorithms
monotonically increase with the receiving angle of devices
A,. The reason is that tasks with larger receiving angles can
potentially be charged by more chargers, and thus receive
more energy on average. Moreover, it is clear that the
increasing trends of charging utilities for these algorithms
are first fast and then become slow as A, increases from 30°
to 360°. Besides, HASTE with C' = 4 outperforms HASTE
with C'=1 by 1.42 percent on average (at most 2.23 per-
cent). Again, the charging utilities for the distributed online
algorithms are less than their corresponding centralized off-
line version.

7.4.3 Impact of Switching Delay p

Our simulation results show that on average HASTE outperforms
GreedyUtility and GreedyCover by 5.20 and 7.3 percent (at most
5.20 and 7.31 percent), respectively, in terms of p. Fig. 14 shows
that the charging utilities for all the algorithms steadily
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decrease with switching delay p. Especially, HASTE with
C =4 outperforms HASTE with C' =1 by 1.98 percent.
When the switching delay is even up to one time slot, i.e.,
p =1, the achieved charging utilities for all the algorithms
only slightly degrade compared with p = 0. This is because
most chargers keep still most of the time, and thus the
caused performance loss is little.

7.4.4 Impact of Color Number C

Our simulation results show that on average the achieved charg-
ing utility of HASTE steadily increases with color number C.
Fig. 15 demonstrates the box plot of the charging utilities of
HASTE when the color number C increases from 1 to 8. We
can see that both of the maximum and minimum charging
utilities of HASTE steadily increase with C. Moreover, on
average the average charging utility of HASTE increases by
3.08 percent when the color number C increases by 1.
Besides, the variance of charging utility for all the eight col-
ors is at most 8.42 x 1073, which indicates the stable perfor-
mance of our algorithm.

7.4.5 Impact of Required Charging Energy

and Task Duration

Our simulation results show that the achieved charging utility of
HASTE steadily increases with a decreasing charging energy or an
increasing task duration. Similar to the setting for the central-
ized offline algorithm, we set the required charging energy
being randomly selected from [0.5E; 1.5E}], and task dura-
tion from [0.5A¢ 1.5A¢]. Fig. 11 shows that when E; down-
grades from 50 k.J to 10 kJ and At rises from 30 min to 70 min,
the achieved charging utility increases by 45.47 percent. The
increasing speed for charging utility decreases when E;
increases or At decreases, which demonstrates a marginal
diminishing gain property.

25
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Fig. 16. Communication cost.
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7.4.6 Communication Cost

Our simulation results show that the number of messages and the
number of rounds for a time slot increase quadratically and linearly,
respectively, with the number of chargers. We set the number of
color C to 1, and plot the average numbers of messages and
rounds in Algorithm 3 in Fig. 16. We can see that when the
number of chargers increases from 10 to 100, the numbers of
messages and rounds increase by 223.77 and 952.29 percent,
respectively. The number of rounds linearly increases because
the number of neighboring chargers linearly increases. Further,
as the number of messages in each round also grows propor-
tionally to the number of neighboring chargers, it thus grows
quadratically with the number of neighboring chargers, or the
number of chargers. This finding supports Theorem 6.1.

7.5 Insights

First, we investigate the impact of distribution of positions of
charging tasks on the overall charging utility. Suppose there
are 50 tasks distributed in a 50m x 50m area, and
A, = As = /3. The required charging energy and charging
duration for all tasks are randomly chosen from [5 k.J 20 k.J]
and [10min 120 min|, respectively. The positions of tasks are
randomly generated following a 2D Gaussian distribution with
both z- and y- coordinates obeying a Gaussian distribution
with o = 25. Fig. 17 shows that generally the charging utility
increases with either o, or o, which indicates that the uniform-
ness of tasks’ distribution contributes to the overall charging
utility. This is because with a higher degree of uniformness of
positions, the phenomenon that some tasks are over-charged
while the others are starved out can be effectively avoided, and
according to the concavity of the charging utility function, the
overall charging utility will be enhanced. Second, we study the
impact of E; on the individual charging utility of each charger.
Compared with the above setting, we uniformly distribute 50
chargers and 200 tasks. The required charging energy is a ran-
dom number in [5 k.J 100 k.J]. Fig. 18 shows that generally the
charging utility first can achieve 1 for a small £}, and then rap-
idly decreases when FE; continues growing. The maximum
individual charging utility is approximately inversely propor-
tional to £}, as shown by the curve in Fig. 18. The reason is that

Charging Utility

o
N

=)

Fig. 18. Individual charging utility versus required charging energy.
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Fig. 19. Testbed.

to achieve the same charging utility, a task with a higher
required F; needs a higher average charging power from its
surrounding chargers, which is not cost efficient. Thus, higher
E); leads to lower charging utility.

8 FIELD EXPERIMENTS

We have conducted field experiments to evaluate our scheme.
First of all, we implemented our proposed schemes on a
small textbed which consists of 8 TX91501 power transmit-
ters produced by Powercast [19] with charging angle of
about 60°, 8 rechargeable sensor nodes with receiving angle
of about 120°, and an AP that connects to a laptop for
reporting data collected from the nodes as shown in Fig. 19.
Each power transmitter is mounted on a rotatable platform
atop a mobile robot, and thus can be freely rotated. Fig. 20
shows the topology of this testbed, where the 8 power trans-
mitters are placed at the boundaries of a 2.4m x 2.4m
square area, and the 8 sensor nodes are placed inside the
square area. We mark the orientation angle and the release
and end time (in time slots) on the top of each task associ-
ated with a sensor node in Fig. 20. The required charging
energy for all tasks is set to be in [3.J 5 J]. We set « = 41.93,
B=06428, D=4m, p=3, t=1, A, =n/3, A, =2n/3,
w; =%, based on our empirical results for the power trans-
mitters, the sensor nodes, and the robot, and set T, = 1 min.
Figs. 21 and 22 show the charging utility for each task for
the three algorithms, i.e., HASTE (with C' = 4), GreedyUtility,
and GreedyCover, for the centralized offline and distributed
online settings, respectively. We can observe that HASTE
basically has the best charging utility for all tasks, and respec-
tively outperforms GreedyUltility and GreedyCover by 4.67

24+ % * *
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1.8 . * .
3 5 2
0°[34] 90°[7 8] 0°[6 9]
121 % . * .
4 7 6
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Fig. 20. Topology 1.
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and 12.74 percent on average, and by 16.68 and 24.83 percent
at most in the centralized offline scenario; and by 5.62 and
12.38 percent on average, and by 19.52 and 22.10 percent at
most in the distributed online scenario. Moreover, task 1 and
task 6 have the largest two charging utility for both the algo-
rithms as they have the largest two charging task duration.

Next, we implemented our proposed schemes on a large
testbed which consists of 16 TX91501 power transmitters
and 20 rechargeable sensor nodes. Fig. 23 shows the topol-
ogy of this large testbed, which is much more irregular than
the small testbed as it is randomly generated. Similarly,
Figs. 24 and 25 show that HASTE respectively outperforms
GreedyUltility and GreedyCover by 4.38 and 10.12 percent
on average, and by 13.27 and 23.60 percent at most in the
centralized offline scenario; and by 6.04 and 15.28 percent
on average, and by 22.58 and 29.63 percent at most for in
the distributed online scenario.

9 CONCLUSION

The key novelty of this paper is on proposing the first schedul-
ing algorithm for charging tasks in directional wireless charg-
ing networks. The key contributions of this paper are
proposing a centralized offline algorithm that achieves
(1 — p)(1 — 1) approximation ratio where p denotes the switch-
ing delay, and a distributed online algorithm that achieves
$(1 = p)(1 — 1) competitive ratio, and conducting both simula-
tions and field experiments for evaluation. The key technical
depth of this paper is in transforming the problem into maxi-
mizing a submodular function subject to a partition matroid
constraint, bounding the performance loss caused by the
switching delay and proving the approximation ratio for the
centralized offline algorithm, making the centralized offline
algorithm distributed and bounding the performance loss
caused by the rescheduling delay and proving the competitive
ratio for the distributed online algorithm. Our simulation and
field experimental results show that our proposed distributed
online algorithm can achieve 92.97 percent of the optimal
charging utility, outperform the other two comparison
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Fig. 22. Charging utility of 8 tasks for the distributed online algorithms.
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algorithms, and its communication cost moderately increases
as the charger number scales up.
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