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Abstract— Learning with feature evolution studies the scenario
where the features of the data streams can evolve, i.e., old
features vanish and new features emerge. Its goal is to keep the
model always performing well even when the features happen to
evolve. To tackle this problem, canonical methods assume that
the old features will vanish simultaneously and the new features
themselves will emerge simultaneously as well. They also assume
that there is an overlapping period where old and new features
both exist when the feature space starts to change. However,
in reality, the feature evolution could be unpredictable, which
means that the features can vanish or emerge arbitrarily, causing
the overlapping period incomplete. In this article, we propose a
novel paradigm: prediction with unpredictable feature evolution
(PUFE) where the feature evolution is unpredictable. To address
this problem, we fill the incomplete overlapping period and
formulate it as a new matrix completion problem. We give a
theoretical bound on the least number of observed entries to
make the overlapping period intact. With this intact overlapping
period, we leverage an ensemble method to take the advantage of
both the old and new feature spaces without manually deciding
which base models should be incorporated. Theoretical and
experimental results validate that our method can always follow
the best base models and, thus, realize the goal of learning with
feature evolution.

Index Terms— Feature evolving, learning with streams,
machine learning, online, unpredictable feature evolution.

I. INTRODUCTION

IN THE big data era, data often come in a streaming way
since the data often have big volume and high velocity.

Learning with data streams has been studied extensively
[1]–[4], where the typical methods in the literature assume
a fixed set of features. However, in a practical scenario,
the features of the data streams often evolve, i.e., old features
vanish and new features emerge. For example, in ecosystem
protection, people deploy sensors in the ecosystem to collect
data, where each sensor corresponds to a feature. Due to
deterioration or unexpected damage, after some time, many
sensors will be out of use, and new sensors will be deployed.
This scenario also occurs in object recognition or indoor
surveillance [5].

When the features start to evolve, since there are only
limited samples described by these new features, it is not
sufficient to train a strong model based on these samples.
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Fig. 1. Illustration of how data streams come in FESL. S1, S2, and S3
are different feature sets. T1 is the period where S1 is valid, and T2 is the
period where only S2 is valid. At the end of T1, namely, the second period,
samples are described by both S1 and S2. The second period is also called
the overlapping period.

Besides, the samples described by the old features are ignored,
which is a big waste of the data collection effort. To tackle
this problem, feature evolvable streaming learning (FESL) [6]
assumes that features do not change in an arbitrary way, and
instead, there are some overlapping periods in which both old
and new features are available. Fig. 1 illustrates how the data
streams come in FESL.

From Fig. 1, we can see that the features in the same feature
set vanish at the same time. However, in reality, the FESL’s
assumption may be too strong where the feature evolution can
be unpredictable. Back to the ecosystem protection example,
due to the different situations of sensors, such as the difference
in positions, temperatures, and magnitudes of signal, the sen-
sors’ expiring time would be different. Therefore, the features
corresponding to the sensors with short lifespans will vanish
earlier than the others, which is illustrated in Fig. 2. On the
other hand, generally, it is reasonable to assume that new
sensors are deployed simultaneously since it is much more
efficient and can save workload than employing new sensors
one by one. Thus, the new features will appear simultaneously.

In this article, we propose a novel paradigm: prediction with
unpredictable feature evolution (PUFE) where old features
vanish unpredictably and new features emerge simultaneously.
We define the “feature space" in our article by the feature
set. Fig. 1 shows that the three periods form a cycle, and
each cycle merely includes two feature spaces. Thus, we only
need to focus on one cycle, and it is easy to extend to the
case with multiple cycles. Fig. 2 gives the illustration of how
data streams come in PUFE. We call the two feature spaces
“previous” and “current” feature space with notations P and
C, respectively. Each column represents a feature. According
to Fig. 2, the process of PUFE can be summarized as follows.

1) For t = 1, . . . , T1−b, in each round, the learner observes
a vector xP

t ∈ R
d1 sampled from P where d1 is the

number of features of P , T1 is the number of total rounds
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Fig. 2. Illustration of PUFE with two feature spaces. The previous feature
space and the current feature space are denoted by P and C, respectively.
T1 is the period where P is valid, b is the overlapping period where both
feature spaces are available, and T2 is the period where only C is valid. d1
and d2 are the dimensions of P and C, respectively. A, M, N , and B are the
matrices formed by corresponding samples, in which M is incomplete due to
the unpredictable feature evolution.

in P , and b is the number of the rounds in overlapping
period. All observed data form matrix A.

2) For t = T1 − b + 1, . . . , T1, in each round, the learner
observes a portion of vector xP

t ∈ R
d1 from P that finally

forms the incomplete matrix M and the intact vector
xC

t ∈ R
d2 from C that finally forms the intact matrix N .

d2 is the number of features of C.
3) For t = T1 + 1, . . . , T1 + T2, in each round, the learner

observes vector xC
t ∈ R

d2 sampled from C where T2

is the number of rounds in C. All observed data form
matrix B . Note that b is small, so we can omit the data
from C on rounds T1 − b + 1, . . . , T1 since they have
minor effect on training the model in C.

To address the problem of unpredictable missing features,
we impute the missing value of M by reducing the original
problem into a matrix completion problem in which the sam-
ples are observed without replacement. We prove a theoretical
bound on the least number of observed entries that are far less
than that of the conventional methods with the help of matrix
A. Then, we use the intact overlapping period (reconstructed
M together with N) to learn the mapping from C to P so
as to recover the data from P when there are only data
from C. With predictions of the old model on the recovered
data, we propose a new ensemble method to make our model
always comparable with the best base models that are only
trained in the single feature space and, thus, solve the issue
of learning with feature evolution: always keep the model
performing well even when the feature evolving happens.
Furthermore, this ensemble method does not need to manually
decide which base models should be incorporated when newer
feature spaces come. In summary, our major contributions are
given as follows.

1) We propose a more practical setting PUFE, where the
old features will vanish unpredictably as the feature
evolves.

2) We formulate the unpredictable evolution as a new
matrix completion problem and propose an effective
method with much smaller observed entries than con-
ventional ones.

3) We propose to leverage the assistance from the previous
feature space and theoretically guarantee that our model
is always comparable to the best baseline and can
adaptively tackle the situation when newer feature space
appears.

4) The experimental results show that our model is com-
parable to the best baseline and surprisingly better than
them in most cases, which validates the effectiveness of
PUFE.

5) Our algorithms are in a one-pass manner without saving
any data, which is very valuable in learning with data
streams since it is infeasible to keep the whole data due
to the streaming nature.

In the following, Section II provides the framework of PUFE.
The proposed approach with corresponding theoretical guar-
antees is presented in Section III. Section V reports the
experimental results. Section IV introduces related works.
Finally, Section VI concludes our article.

II. FRAMEWORK

We focus on both classification and regression tasks. In each
round, the predictor receives an instance and is required to do
a prediction. After the prediction has been made, the true label
is revealed, and the predictor will suffer a loss, which exhibits
the discrepancy between the prediction and the true label.

Our goal is to always keep the model performing well
even when there are only a few data when new feature space
emerges. It is worth noting that this goal should be imple-
mented without storing the history or in a one-pass manner
due to the large volume and high velocity of data. Specifically,
we want to make our model obtain good performance in
the current feature space during period T2 shown in Fig. 2,
no matter at the beginning or at any other time step. The
basic idea is to establish the relationship between the previous
and current feature spaces by an overlapping period where
both previous and current features exist. Then, the well-learned
model in the previous feature space can be utilized to assist the
performance in the current feature space. Nevertheless, in our
setting, we do not have an intact overlapping period. Thus,
we need to study whether we can rebuild it, and this may need
matrix completion techniques [7]–[9]. Since time is seasonal,
it is reasonable to assume that two instances on the same
periodic point are linearly related. Thus, we have a chance to
rebuild the overlapping period with the help of observed intact
instances from the previous feature space, i.e., the matrix A
shown in Fig. 2.

So far, the framework of our approach has been clear.
Concretely, we have mainly four steps. The first step is to
learn a good model in the previous feature space as a prepared
backup. Then, in order to build the relationship between the
previous and the current feature space, we fill part of the
overlapping period, that is, the matrix M shown in Fig. 2,
where the features start to vanish. In the third step, we learn a
mapping between M and N . Finally, we make predictions in
the current feature space, which will be boosted by the well-
learned model from the previous feature space by utilizing
its prediction on the data recovered by the mapping. The
framework of our method is summarized in Algorithm 1.
It is worth emphasizing that all the processes can be operated
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Algorithm 1 Framework of PUFE
1: Learn a model sequentially in the previous feature space

with Algorithm 2.
2: Complete matrix M sequentially shown in Fig. 2 with

Algorithm 3.
3: Learn a mapping sequentially from N to M using (5).
4: Make predictions sequentially in the current feature space

with Algorithm 4.

sequentially, which means that we do not need to store any
data, which is valuable in learning with data streams.

Although it seems that there is only a small difference
between FESL and PUFE, PUFE is indeed more practical
than FESL and has more application value. Besides, the chal-
lenge brought by this difference is not simple for which we
make several efforts and contributions. Concretely, completing
matrix M in step two is not trivial since the missing of items
is not uniformly random but with a certain rule. This will be
discussed in Section III-B. We give a theoretical guarantee
on the number of observed entries, which is much smaller
than the conventional one. In addition, learning a good model
through utilizing the assistance from the previous feature space
in step four is also not easy since, in the beginning, we should
follow the good model, say h learned from the previous feature
space. However, there might be errors when doing recovering.
Then, after a period of time, this model h would be worse
and worse since more and more recovered errors accumulate.
Thus, we have to discard h and follow the new good base
model adaptively. We provide a tighter bound than FESL, and
besides that, our model can be extended to tackle the situation
adaptively when newer feature space appears. In other words,
we do not need to decide manually which base model should
be incorporated in and which base model should be discarded,
while FESL has to decide it manually. This will be discussed
in Remark 2.

III. PROPOSED APPROACH: PUFE

According to the framework presented in Algorithm 1,
in this section, we use four subsections to present the detailed
implementation of our proposed approach.

A. Learn a Model From A in Previous Feature Space

We use �x� to denote the �2-norm of a vector x. The inner
product is denoted by �·, ·�. Let OP ⊆ R

d1 be the set of linear
models in the previous feature space that we are interested
in. We define the projection �OP (b) = argmina∈OP

�a − b�.
We restrict our prediction function at the tth round to be
linear, which takes the form �wP,t , xP

t �, where wP,t ∈ OP .
The loss function �(w�x, y) is convex in its first argument.
In implementing algorithms, we use logistic loss for classifi-
cation tasks, namely

�(w�x, y) = ln(1 + exp(−y(w�x))) (1)

while, in regression tasks, we use square loss, namely

�(w�x, y) = (y − w�x)2. (2)

We follow FESL [6] to learn an online linear model from
the previous feature space, i.e., matrix A shown in Fig. 2

Algorithm 2 Learn a Model From A
1: Initialize wP,0 ∈ OP randomly.
2: for t = 1, 2, . . . , T1 − b do
3: Receive xP

t ∈ R
d1 and predict pt = �wP,t , xP

t � ∈ R.
4: Receive the target yt ∈ R, and suffer loss �(pt , yt).
5: Update wP,t using (3) where τt = 1/

√
t .

6: end for

sequentially by online gradient descent [10]. The model wP,t

is updated during rounds 1, . . . , T1 − b according to

wP,t+1 = �OP

(
wP,t − τt∇�(w�

P,t x
P
t , yt)

)
(3)

where τt is a varied step size.
The process of learning a model from A during rounds

1, . . . , T1−b is concluded in Algorithm 2. Specifically, we first
initialize our linear model wP,0 ∈ OP randomly. Then, in each
round, the predictor receives an instance xP

t ∈ R
d1 from P ,

where d1 is the number of the dimension of P . The predictor
makes predictions on this instance by pt = �wP,t , xP

t � ∈ R.
After the prediction has been made, the true label yt ∈ R is
revealed, and the predictor will suffer a loss �(pt, y) according
to (1) or (2). Finally, based on this loss, the predictor will
update itself using (3). We set the varied step size τ = 1/(t)1/2,
which can derive a good theoretical bound in Theorem 2.

B. Complete Matrix M

Back to the example of ecosystem protection, each feature
is represented by the data gathered by a sensor. In our
scenario, when some old sensor disappears, it means that
the corresponding feature will vanish forever. In other words,
for each row in M , the remaining or observed entries are
always fewer than or equal to the entries in the preceding
row. Besides, each element in the current row is observed
only once, and the vanishings of features are uniformly at
random since the corresponding sensors expire uniformly at
random. Thus, this setting can be formulated as the sampling
of each row uniformly at random without replacement in
the matrix completion problem. Traditional matrix completion
methods with nuclear norm minimization [7], [8] are not
appropriate in our setting because they usually assume that
the observed entries are sampled uniformly at random from
the whole matrix, whereas, in our setting, entries are observed
in the certain rule mentioned above. On the other hand, what
we handle is a data stream, which means that it is more
natural and appropriate to deal with it sequentially. Thus, it is
desirable to complete each row immediately when receiving
it, which cannot be resolved by traditional matrix completion
approaches neither.

Specifically, for a matrix K ∈ R
n×m , let K(i) and K ( j)

denote the i th row and the j th column of K , respectively.
For a set � ⊂ {1, . . . , n}, the vector x� ∈ R

|�| contains
elements of vector x indexed by �. Similarly, the matrix
K� ∈ R

|�|×m has rows of matrix K indexed by �. Let
M = [m1,m2, . . . ,mb]� ∈ R

b×d1 be the matrix to be
completed. We observe that matrices A and M share the same
feature space, and the same columns of A and M are data
gathered by the same sensor. Thus, it is reasonable to assume
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Algorithm 3 Complete Matrix M
1: Input: number of observed entries per row, s.
2: Calculate the top-r right singular vectors of A denoted by

V = [V (1), V (2), . . . , V (r)] by Frequent Directions.
3: for t = T1 − b + 1, . . . , T1 do
4: Sample a set �i of s entries uniformly at random without

replacement denoted by m�
i,�i

.
5: Calculate mi = V (V �

�i
V�i )

−1V �
�i

mi,�i .
6: end for
7: Output: M = [m1, . . . ,mn]�.

that matrices A and M are spanned by the same row space.
Therefore, we can leverage A to obtain the row space of M
and recover each row of M . Concretely, to approximate M , let
r ≤ min(T1 − b, d1) be the rank of A. We calculate the top-r
right singular vectors of A denoted by V = [v1, v2, . . . , vr ]
that is the row space of A. Here, r is calculated directly
rather than being chosen. Since, in our online or one-pass
setting, we can only obtain one instance (row) at a time,
we use Frequent Directions technique [11]–[13] to calculate
V . Frequent Directions can compute row space of a matrix in
a streaming way. For each row of M denoted by m�

i , we only
observe a set �i of s entries denoted by m�

i,�i
. It is equivalent

to state that we sample a set �i of s entries uniformly at
random without replacement from m�

i . We then solve the
following optimization problem:

min
z∈Rr

1

2
�mi,�i − V�i z�2

2 (4)

to recover this row by mi = V z∗, where z∗ is the optimal
solution and V�i is the selected columns of V indexed by
�i . Since this problem has a closed-form solution z∗ =
(V �

�i
V�i )

−1V �
�i

mi,�i , we have

mi = V (V �
�i

V�i )
−1V �

�i
mi,�i .

The above procedures are summarized in Algorithm 3.
Although the algorithm is simple, its proving on the least
number of observed entries faces a big challenge, i.e., the
entries of the matrix M are observed uniformly at random
without replacement. We leverage a new technique named
“Matrix Chernoff” [14] to tackle this problem (detailed proof
can be found in the supplementary file). Note that we do
not assume that the first row of matrix M must be complete
(e.g., in the ecosystem protection example, some sensors may
expire before the replacement, rendering the first row of M
incomplete). Thus, our method is not affected by this situation.

Let r ∈ [min(T1 − b, d1)], and let U = [u1,u2, . . . ,ur ] ∈
R
(T1−b)×r and V = [v1, v2, . . . , vr ] ∈ R

d1×r , where {ui }r
1 and

{vi}r
1 are the top-r left and right singular vectors of A. The

incoherence measure for U and V is defined as

μ(r) = max

(
max

i∈[T1−b]
T1 − b

r
�U(i)�2

2,max
i∈[d1]

d1

r
�V(i)�2

2

)
.

The following theorem demonstrates that, in the low-rank case
where rank(A) = r when observing:

s ≥ 7μ(r)r ln(2rn/δ)

entries, we can recover M exactly with high probability.

Theorem 1: Assume that the rank of A is r , and the number
of observed entries in M(i) is s ≥ 7μ(r)r ln(rb/δ). With a
probability at least 1 − δ, Algorithm 3 recovers M(i) exactly.

Remark 1: We know that there will be fewer and fewer
entries in each row as time goes on. Thus, we can recover
M exactly if only we guarantee that the number of entries
in the last row is larger than 7μ(r)r ln(rb/δ). For those rows
whose entries are fewer than this amount, we simply discard
them. Then, an intact overlapping period can be used to learn
mapping. Suppose that the number of rows that contain entries
more than s is b, and the column number is d1; then, with the
free row space of A, the sample complexity is only �(br ln r),
which is much smaller than �(rd1 ln2 d1) of the conventional
matrix completion [7].

C. Learn Mapping From N to M

There are several methods to learn a relationship between
two sets of features, including multivariate regression [15],
streaming multilabel learning [16], and so on. We follow
FESL [6] and choose to use the popular and effective
method—least-squares [17]—which can be formulated as
follows:

min
ψ :Rd2 →Rd1

T1∑
t=T1−b+1

1

2
�xP

t − ψ(xC
t )�2

2.

If the overlapping period is very short, it is unrealistic to learn
a complex relationship between the two spaces due to under-
fitting. Instead, we can use a linear mapping to approximate
ψ . Assume that the coefficient matrix of the linear mapping
is P; then, during rounds T1 − b + 1, . . . , T1, the estimation of
P can be based on linear least-squares method

min
P∈Rd2×d1

T1∑
t=T1−b+1

1

2
�xP

t − P�xC
t �2

2.

The optimal solution P∗ to the above problem is given by

P∗ =
(

T1∑
t=T1−b+1

xC
t xC

t
�
)−1( T1∑

t=T1−b+1

xC
t xP

t
�
)
.

Note that we do not need a budget to store instances from the
overlapping period because, during the period from T1 −b +1
to T1, P∗ can be calculated in an online way, i.e., we first
iteratively calculate P1 and P2

P1 = P1 + xC
t xC

t
�

and P2 = P2 + xC
t xP

t
�

and then

P∗ = P−1
1 P2. (5)

Then, if we only observe an instance xC
t ∈ R

d2 from the current
feature space, we can recover an instance in the previous
feature space by ψ(xC) ∈ R

d1 , to which wP,T1 can be applied.

D. Prediction in Current Feature Space

From round t > T1, if we keep on updating wP,t using the
recovered data ψ(xC

t ), that is

wP,t+1 = �OP

(
wP,t − τt∇�(w�

P,t(ψ(x
C
t )), yt)

)
(6)
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Algorithm 4 Prediction in Current Feature Space
1: Let Ri,T1 = 0, Si,T1 = 0, i = 1, 2.
2: for t = T1 + 1, . . . , T1 + T2 do
3: Predict the weight of each base model αi,t using (7).
4: Receive xC

t ∈ R
d2 and make prediction p1,t =

w�
P,tψ(x

C
t ) ∈ R and p2,t = w�

C,t x
C
t ∈ R.

5: Calculate our prediction by p̂t = α�
t pt where pt =

(p1,t, p2,t )
�.

6: Receive yt , each base model suffers loss �i,t = �(pi,t , yt)
and our model suffers �̂t = �( p̂t, yt ).

7: Set ri,t = �̂t −�i,t , Ri,t = Ri,t−1+ri,t , Si,t = Si,t−1+|ri,t |.
8: Update wP,t and wC,t using (6) and (8), respectively,

where τt = 1/
√

t − T1.
9: end for

where τt is a varied step size, the learner can mainly
calculate two base predictions: w�

P,t (ψ(x
C
t )) and w�

C,t x
C
t

based on models wP,t and wC,t . Through ensembling the base
predictions in each round by weighted combination [18], our
model is able to follow the best base model theoretically and
empirically. We borrow the idea of learning with expert [19]
to realize it. The main idea is to leverage the loss of the last
round to adaptively adjust the weight of each base prediction
in the next round.

We first give some notations that we need to use here. In
our case, the number of base models is 2 where the first base
model is wP,t and the second one is wC,t . It is easy to extend
the amount to a positive integer N > 2 when newer feature
spaces appear. To be general, we use N as the number of
the base models in the following. Let αi,t , i = 1, . . . , N be
the weight of the i th model at time t . �i,t ∈ [0, 1] is the loss
of the i th base model at time t . Then, our prediction p̂t at
time t is the weighted combination of the N base predictions,
namely

p̂t = α�
t pt

where αt = (α1,t , . . . , αN,t )
� and pt = (p1,t , . . . , pN,t)

� are
the vector of N weights and N base predictions. We let

ri,t = �̂t − �i,t , Ri,t =
t∑

k=T1+1

ri,k, Si,t =
t∑

k=T1+1

|ri,k |

and use 	N to denote the simplex of all distributions over
{1, . . . , N}. We define the weight function

w(R, S) = 1

2
(
(R + 1, S + 1)−
(R − 1, S + 1))

where 
(R, S) = exp(max{0, R}2/(3S)) is the potential
function with 
(0, 0) preset to 1. Then, at each round, we set
αi,t to be proportional to w(Ri,t−1, Si,t−1)

αi,t ∝ Ii,tw(Ri,t−1, Si,t−1) (7)

where Ii,t ∈ [0, 1] is the confidence of the i th base model at
time t . When receiving instance from the current feature space
xC

t ∈ R
d1 , we can make prediction

p1,t = w�
P,tψ(x

C
t ) ∈ R and p2,t = w�

C,t x
C
t ∈ R.

Then, with αt , we calculate our prediction by p̂t = α�
t pt .

After receiving target yt , our model and the base models suffer

loss �̂t = �( p̂t, yt ) and �i,t = �(pi,t , yt), respectively. Then,
we update wC,t by

wC,t+1 = �OC

(
wC,t − τt∇�(w�

C,t x
C
t , yt)

)
(8)

and wP,t by (6), where τt is a varied step size and OC ⊆ R
d2

is the set of linear models in the current feature space. The
procedure of learning model in the current feature space is
summarized in Algorithm 4 where i = 1, 2 for simplicity.

In the following, we give a theoretical guarantee that we
are able to follow the best models by this strategy of weight
adjusting. We denote the cumulative loss of each base model
i in T1 + 1, . . . , T1 + T2 by

Li,T2 =
T1+T2∑

t=T1+1

�i,t , i = 1, . . . , N.

The cumulative loss of our model in T1 + 1, . . . , T1 + T2 is
denoted by

L̂T2 =
T1+T2∑

t=T1+1

�̂t .

Then, we have the following theorem.
Theorem 2: For any u ∈ 	NT2

, the cumulative loss of our
model is bounded as follows:
L̂T2 ≤ u�LT2 + √

3(u · ST2)(ln NT2 + ln B + ln(1 + ln NT2 ))

= u� LT2 + Ô(
√
(u · ST2) ln NT2 ) (9)

where NT2 is the total number of the base models created from
T1 + 1 to T2, B = 1 + (3/2)∑NT2

i=1(1/NT2 )(1 + ln(1 + Si,T2)) ≤
(5/2) + (3/2) ln(1 + T2), LT2 = (L1,T2 , . . . , L N,T2 )

�, ST2 =
(S1,T2 , . . . , SN,T2 )

�, and Si,T2 = ∑T1+T2
k=T1+1 |ri,k | is redefined here

for simplicity. We use Ô to hide the “ln ln” terms since they
are very small, and thus, we consider these terms to be nearly
constant.

Remark 2: This theorem (proof deferred to supplementary
file) shows that our model is comparable to any linear combi-
nation of base models. Furthermore, Si,T2 ≤ T2 since Si,T2 is
the cumulative magnitude of ri,t ≤ 1. Thus, u · ST2 ≤ T2. If
u concentrates on the best model with minimum cumulative
loss, then the upper bound will become L̂T2 ≤ min(LT2) +
Ô((T2 ln NT2 )

1/2), which is exactly the bound in FESL [6],
which means that our model is comparable to the best model.
Yet, our bound has several merits over FESL. First, ours is
parameter-free, which means that we do not have to tune
η that appears in the exponential formula in FESL. Second,
u · ST2 = T2 is the worst case. As long as ri,t∀i ∈ 1, . . . , NT2

is not always the worst, u · ST2 will be much smaller than T2.
Besides, we can utilize any number of base models, while,
in FESL, they only focus on two. Note that Ii,t ∈ [0, 1] is the
confidence of the i th base model at time t . We focus on the
case when Ii,t ∈ {0, 1}, which means either the base model
participates in our prediction or not. If Ii,t = 0, it means that
the i th base model is “asleep” at round t . A base model that has
never appeared before should be thought of as being asleep for
all previous rounds. Thus, if the current feature space vanishes
and new feature space appears, it means new base models
appear, and these base models in the new feature space can be
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TABLE I

SUMMARY OF RELATED WORKS

regarded as being asleep in the current and previous feature
space. In this way, we do not need to decide manually which
base model should be incorporated or discarded.

IV. RELATED WORKS

Table I exhibits all the works related to ours. In the follow-
ing, we introduce these works and discuss their differences.

Our work is most related to FESL [6]. It proposes a setting
called “FESL.” The authors observe that, in learning with data
streams, old features can vanish, and new ones can occur.
To make the problem tractable, they assume that there is an
overlapping period that contains samples from both feature
spaces. Then, they learn a mapping from new features to old
features, and in this way, both the new and old models can
be used for prediction. The overlapping period comes from
the assumption that the old features vanish simultaneously.
However, usually, this assumption does not hold. A more
practical assumption is that different features could vanish
unpredictably, and thus, there will be no intact overlapping
period. In this article, we focus on this new setting and propose
an effective method to tackle it.

Another very related work is one-pass incremental and
decremental learning approach (OPID) [20], which also han-
dles evolving features in data streams. In this scenario, when
old features vanish, part of them survives and continues
existing with the emerging features. These surviving features
are called overlapping features because they are like the
overlapping of the old and new feature spaces in the fea-
tures’ dimension. Since its scenario is different from ours,
the technical challenges and solutions are also different. Sim-
ilar to OPID [20], REFORM [21] also assumes that there are
overlapping features when the feature evolves. It uses optimal
transport to learn the mapping from the two different feature
spaces. Besides, it does not consider streaming mode but batch
one.

Learning with trapezoidal data streams [22], [23] is also a
closely related work to us. They deal with a trapezoidal data
stream where the instance and feature can doubly increase.
Though their feature space evolves, the setting that new data
always have overlapping features with all old data is different
from our work. Recently, some works claim that they can
tackle the situation where features could vary arbitrarily at
different time steps [24], [25]. However, they still need to
assume that there are relations between old and new features.
Note that “no free lunch” says that, if we want the model can

generalize on unseen data, there must be relations between the
training data and the unseen one [38]. Thus, the requirement
on the relations between the old and new features can be
regarded as a new perspective of “no free lunch” in learning
with feature evolution. In addition, labels may be rarely given
when learning with feature evolvable streams, and this setting
has been studied in [26] recently.

Our work is also related to data stream mining, such
as evolving neural networks [3], core vector machines [4],
k-nearest neighbor [27], online bagging and boosting [28],
and weighted ensemble classifiers [29], [30]. For more details,
please refer to an overview on data stream mining [39]. These
conventional data stream mining methods usually assume that
the data samples are described by the same set of features,
while, in many real streaming tasks, a feature often changes.

Online learning [10], [31] is another related topic from the
area of machine learning. It can naturally handle the data
streams since it assumes that the data come in a streaming way.
Specifically, at each round, after the learner makes a prediction
on the given instance, the adversary will reveal its loss, with
which the learner will make a better prediction to minimize
the total loss through all rounds. Online learning has been
extensively studied under different settings, such as learning
with experts [40] and online convex optimization [41], [42].
There are strong theoretical guarantees for online learning, and
it usually uses regret or the number of mistakes to measure
the performance of the learning procedure. However, most of
the existing online learning algorithms are limited to the case
that the feature set is fixed.

Other related topics involving multiple feature sets include
multiview learning [32]–[34], transfer learning [35], [36],
and so on. Although multiview learning exploits the relation
between different sets of features as ours, there exists a
fundamental difference: multiview learning assumes that every
sample is described by multiple feature sets simultaneously,
whereas, in PUFE, only a few samples in the feature switching
period have two sets of features. Transfer learning usually
assumes that data come in batches, and few of them con-
sider the streaming cases where data arrive sequentially and
cannot be stored completely. One exception is online transfer
learning [37] in which data from both sets of features arrive
sequentially. However, they assume that all the feature spaces
must appear simultaneously during the whole learning process,
while such an assumption is not available in PUFE.

V. EXPERIMENTS

In this section, we first introduce the data sets that we use.
Then, we describe the compared approaches and experimental
settings. Finally, we present the results of our experiments.

A. Data Sets

We conduct our experiments on 11 data sets consisting of
nine synthetic data sets and two real data sets. To generate syn-
thetic data, we randomly choose some data sets from different
domains, including economy, biology, literature, and so on.1

We artificially map the original data sets into another feature

1Data sets can be found in http://archive.ics.uci.edu/ml/.
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space by random matrices; then, we have data both from the
previous and current feature spaces. Then, there are relation-
ships between the previous and current feature spaces, which
is exactly the “no free lunch” that is mentioned in Section IV.
Since the original data are in batch mode, we manually make
them come sequentially. In the overlapping period, we discard
entries of each row uniformly at random from the remaining
features obeying the vanishing rule mentioned in Section III-B.
In this way, synthetic data are completely generated. Besides
the nine synthetic data sets, we also conduct our experiments
on two real data sets that are collected by ourselves. They
are “radio frequency identification (RFID)” and “Amazon.”
For the real data, the ecosystem protection task mentioned in
the Introduction is a good example to demonstrate that the
requirement on the evolving feature awareness is necessary.
Although we do not collect the real data sets of this exact task,
we find other tasks where the feature evolution happens, which
are the moving goods detection task [5] and the products’
quality prediction task in the Amazon product-user review data
sets [43], [44].

“RFID” contains 450 instances from the previous and cur-
rent feature spaces, respectively. The previous feature space
has 78 features, while, in the current feature space, there are
72 features. RFID technique is widely used to do moving
goods detection [5]. This data set uses the RFID technique to
gather the location’s coordinate of the moving goods attached
by RFID tags. Concretely, several RFID aerials are arranged
in the indoor area. In each round, RFID aerials received the
tag signals. Then, the goods with tag moved; at the same
time, the goods’ coordinate is recorded. Before the aerials
expire, new aerials are arranged beside the old ones to avoid
the situation where no aerials exist. Thus, in this overlapping
period, data are from both the previous and current feature
spaces. After the old aerials expired, the new ones continue
to receive signals. Then, data only from the current feature
space remain. The overlapping period in this data set is
complete, so we simulate unpredictable feature evolution as
we did on the synthetic data. Therefore, the modified RFID
data satisfy our assumptions. This data set can be found in
http://www.lamda.nju.edu.cn/data_RFID.ashx.

“Amazon” comes from Amazon product-user review data
sets [43], [44] over “Movies and TV”.2 Each product is
reviewed by several users over several years. The elements
of each review are given as follows:

1) reviewerID—ID of the reviewer, e.g.,
A2SUAM1J3GNN3B;

2) asin—ID of the product, e.g., 0000013714;
3) reviewerName—name of the reviewer;
4) helpful—helpfulness rating of the review, e.g., 2/3;
5) reviewText—text of the review;
6) overall—rating of the product;
7) summary—summary of the review;
8) unixReviewTime—time of the review (unix time);
9) reviewTime—time of the review (raw).

We want to predict each product’s quality from the years 2006
to 2008 according to the ratings of its users. Therefore, each

2http://jmcauley.ucsd.edu/data/amazon/links.html

instance represents a product, and each feature of this instance
is its users’ rating. As time goes on, some users disappear, e.g.,
they signed out of their accounts, and some new users join.
Thus, the features will evolve, which means that old features
will disappear, and the new feature will emerge. We find some
periods where old and new features both exist and make this
data set to satisfy our assumption. The label of each product
is its quality that is calculated by the weighted combination of
each user’s rating. The weight of each rating is calculated by
the quality of its user, and the quality of each user is calculated
by the “helpfulness” of the user’s reviews. The number of
instances is 23 025; in the previous feature space, there are
278 features, while, in the current feature space, there are 227
features.

B. Compared Approaches and Settings

Since we focus on FESL, we compare our PUFE with five
baselines that are all introduced in FESL [6].

1) NOGD: It is the abbreviation of “Naive Online Gradient
Descent.” Once the feature space changed, the online
gradient descent algorithm will be invoked from scratch.

2) ROGD-f: It is the abbreviation of “Fixed Recovered
Online Gradient Descent.” It uses the classifier learned
from the previous feature space by online gradient
descent to do predictions on the recovered data. It does
not update itself with the recovered data, or in other
words, it keeps fixed.

3) ROGD-u: It is the abbreviation of “Updating Recovered
Online Gradient Descent.” It also utilizes the classifier
learned from the previous feature space by online gra-
dient descent to do predictions on the recovered data.
It keeps updating itself with the recovered data.

4) FESL-c: One version of FESL [6]. It uses the exponen-
tial of loss to update the weight of each base model
and combine them with these weights. It has a complete
overlapping period.

5) FESL-s: One version of FESL [6]. It also uses the
exponential of loss to update the weight of each base
model as FESL-c does. Instead of combining all the
base models, FESL-s selects the best one. It also has
a complete overlapping period.

We evaluate the empirical performances of the proposed
approaches on classification and regression tasks during
rounds T1 +1, . . . , T1 +T2. We expect the overall performance
can be good and not bad at the beginning or any other time
step. We first give the accuracy and mean square error (MSE)
over all instances during rounds T1 + 1, . . . , T1 + T2 on syn-
thetic and real data sets, respectively. We conduct experiments
on each data set with two settings, namely, “predictable”
and “unpredictable.” In “predictable” setting, the overlapping
period is predictable and, thus, intact, while, in “unpredictable”
setting, the overlapping period is unpredictable and, thus, frag-
mentary. We want to verify that though in the “predictable,”
our method can still work well. Besides, ROGD-u and ROGD-f
cannot run in an “unpredictable” setting since they need an
intact overlapping period. Thus, we fill the overlapping period
with 0 to let them work. FESL cannot work in this scenario.
Besides, NOGD is not affected by the overlapping period.

Authorized licensed use limited to: Nanjing University. Downloaded on October 07,2022 at 03:48:29 UTC from IEEE Xplore.  Restrictions apply. 



HOU et al.: PREDICTION WITH UNPREDICTABLE FEATURE EVOLUTION 5713

TABLE II

“−P” AND “−U” MEAN PREDICTABLE AND UNPREDICTABLE SCENARIOS, RESPECTIVELY. THE FIRST NINE BIG ROWS (EACH CONTAINS TWO UNIT
ROWS) ARE THE ACCURACY WITH ITS STANDARD DEVIATION ON SYNTHETIC DATA SETS (THE LARGER THE BETTER). THE LAST TWO BIG

ROWS ARE THE MSE WITH ITS STANDARD DEVIATION ON REAL DATA SETS (THE SMALLER THE BETTER). THE BEST ONES AMONG

ALL THE METHODS ARE BOLD. BLACK DOT INDICATES THE BEST AMONG THREE BASE MODELS, I.E., NOGD, ROGD-f, AND

ROGD-u. DASH LINES MEAN FESL CANNOT WORK IN UNPREDICTABLE SCENARIO. NOTE THAT WE DO NOT HAVE TO
BE BETTER THAN THE BASE MODELS, AND IT IS SUFFICIENT TO BE COMPARABLE WITH THEM. T-TESTS WITH

95% CONFIDENCE VALIDATE THAT THERE ARE NO SIGNIFICANT DIFFERENCE BETWEEN OUR MODEL AND

THE BEST BASE MODELS ON ALL DATA SETS EXCEPT GERMAN-P, GERMAN-U, AND RFID-P. ON THESE
THREE DATA SETS, OUR RESULTS ARE SIGNIFICANTLY BETTER THAN THE BEST BASE MODELS WITH 95%

CONFIDENCE

Furthermore, to verify that our model is comparable to the
best base model and has good performance when few data
are observed, we present the trend of average cumulative loss.
Concretely, at each time t , the loss �̄t of every method is the
average of the cumulative loss over T1 + 1, . . . , t , namely

�̄t = (1/(t − T1))

t∑
k=T1+1

�k .

The performances of all approaches are obtained by average
results over ten independent runs. The parameters that we need
to set are the number of instances in the overlapping period,
i.e., b; the number of instances in previous and current feature
spaces, i.e., T1 and T2; and the step size, i.e., τt , where t is
time. For all baseline methods and our methods, the parameters
are the same. In our experiments, we set b to be 10, 20, and
25 for synthetic data, 40 for RFID, and 50 for Amazon. We set
T1 and T2 to be half of the number of instances and τt to be
1/(c(t)1/2) where c is searched in the range from 10−1 to 102

with a step size of 10.

C. Results

The accuracy and MSE results are shown in Table II. The
first nine big rows (each contains two unit rows) are the
accuracy with its standard deviation on synthetic data sets (the
larger the better). The last two big rows are the MSE with its
standard deviation on real data sets (the smaller the better).

The best ones among all the methods are bold. The black
dot indicates the best among three base models, i.e., NOGD,
ROGD-f, and ROGD-u. Dash lines mean that FESL-c and
FESL-s cannot work in unpredictable scenarios. As can be
seen, in a total of 22 cases, our PUFE outperforms other
methods on 16 cases. Note that we do not have to be better
than the base models (i.e., NOGD, ROGD-f, and ROGD-u),
and it is sufficient to be comparable with them. To this end,
we conduct t-tests with 95% confidence; the results demon-
strate that our model can be comparable with the best base
models in most cases (without significant differences), and in
german-P, german-U, and RFID-P, our model is significantly
better than the best base models with 95% confidence. PUFE
also outperforms FESL-c and FESL-s in most cases even in
the predictable scenario.

Fig. 3 shows the trend of average cumulative loss in the
predictable setting since FESL-c and FESL-s are not com-
parable in the unpredictable setting. Fig. 3(a)–(i) shows the
results on synthetic data; Fig. 3(j) and (k) shows the results of
the real data. The average cumulative loss is the smaller the
better. From the experimental results, we have the following
observations. First, NOGD decreases rapidly, which conforms
to the fact that NOGD on rounds T1 +1, . . . , T1 + T2 becomes
better and better with more and more correct data coming.
Besides, ROGD-u also declines but not very apparent since,
in rounds 1, . . . , T1, ROGD-u already learned well and tends
to converge, so updating with more recovered data could not
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Fig. 3. Trend of average cumulative loss on synthetic and real data. The average cumulative loss is the smaller the better. All the average cumulative losses at
any time of our method are comparable to the best baselines. Note that we do not have to be better than the base models, and it is sufficient to be comparable
with them. (a) Australian. (b) Credit-a. (c) Credit-g. (d) Diabetes. (e) DNA. (f) German. (g) kr-versus-kp. (h) Splice. (i) Svmguide3. (j) RFID. (k) Amazon.

bring too many benefits. Moreover, ROGD-f does not drop
down but even go up instead, which is also reasonable because
it is fixed, and if there are some recovering errors, it will
perform worse. FESL-c and FESL-s are based on NOGD and
ROGD-u, so their average cumulative losses also decrease. Our
PUFE follows the best curve all the time and obtains good per-
formance at the beginning of period T1 + 1, . . . , T1 + T2. This
is very important since, at the beginning of the current feature
space, data are few, and a good model is hard to learn but very
necessary since, for example, in ecosystem protection, we need
good performance every day or even every single time.

VI. CONCLUSION

In this article, we focus on a new and more practical
setting: PUFE. In this setting, we find that the vanishing of
old features is usually unpredictable. We attempt to fill this
fragmentary period and formulate it as a matrix completion
problem. By the free row space obtaining from the preceding
matrix, we only need �(dr ln r) observed entries to recover
the target matrix exactly, where d is the row of the target
matrix and r is the rank. We also provide a new way to
adaptively combine the base models. Theoretical results show
that our model is always comparable to the best base model.
In this way, at the beginning of the new feature space, our
model is still desirable, which conforms to the robustness,
an important topic in nowadays machine learning community.

The data studied in our article are all tabular data whose
features are artificially designed, which limits the application
of our method. In the future, we would like to incorporate
neural networks that have both feature space transformation
and classifier construction [45] to render our method suitable
for the more sophisticated image and audio tasks.
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