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Continual Learning With Unknown Task Boundary
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Abstract— Most existing studies on continual learning (CL)
consider the task-based setting, where task boundaries are known
to learners during training. However, they may be impractical
for real-world problems, where new tasks arrive with unno-
tified distribution shifts. In this article, we introduce a new
boundary-unknown continual learning scenario called continuum
incremental learning (ColL), where the incremental unit may be
a concatenation of several tasks or a subset of one task. To iden-
tify task boundaries, we design a continual out-of-distribution
(OOD) detection method based on softmax probabilities, which
can detect OOD samples for the latest learned task. Then,
we incorporate it with continual learning approaches to solve the
ColL problem. Furthermore, we investigate the more challenging
task-reappear setting and propose a method named continual
learning with unknown task boundary (CLUTaB). CLUTaB first
adopts in-distribution detection and OOD loss to determine
whether a set of data is sampled from any learned distribution.
Then, a two-step inference technique is designed to improve
the continual learning performance. Experiments show that our
methods work well with existing continual learning approaches
and achieve good performance on CIFAR-100 and mini-ImageNet
datasets.

Index Terms— Continual learning (CL), continuum incremen-
tal learning (ColL), deep learning, out-of-distribution (OOD)
detection.

I. INTRODUCTION

RADITIONAL machine learning methods learn from
independent and identically distributed data. In practical
applications, a learner often encounters new tasks over time.
The data distribution shifts with the arrival of new tasks,
and we hope that the learner could pick up the new task
while maintaining performance on existing ones. However,
deep learning models often suffer from catastrophic forgetting
(a significant performance degradation on old tasks) without
access to training data from previously learned tasks [1], [2].
To address the issue, continual learning (CL) aims to learn a
sequence of tasks without forgetting. In recent years, numerous
task-based continual learning approaches have been proposed.
They consolidate previous knowledge by regularization [3],
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[4], replay [5], [6], and expansion [7], [8]. These task-based
approaches assume that a model will not encounter a new task
before finishing learning the current one. However, in a more
realistic scenario, we collect training data until a certain point,
e.g., out of disk space in a memory-constrained environment,
and drop these data after learning. We refer to the segment
of data collected in a continuous period of time as a data
continuum. Data in the continuum may come from the latest
learned task, a new task, or even an old task. In this situation,
it is hard to learn tasks one after the other. In addition, given
the task boundaries during training, task-based approaches
consolidate knowledge when the model is about to learn a
new task. Unfortunately, input distribution shifts can occur
without notification. For example, a classifier distinguishing
between mammals and fish first learns from images of lions
and carps, and then, we collect more images of giraffes and
sharks but they are still labeled as mammals and fish. Ideally,
the classifier can predict class labels (distinguish mammals
from fish) and identify distribution shifts (distinguish giraffes
from lions and sharks from carps). With distribution shift
awareness, we can further understand the collected data and
better evaluate the model, like designing more fine-grained
labels and evaluating model performance by task.

The observations above motivate us to propose a new
continual learning scenario called continuum incremental
learning (ColL). Different from the task-based setting [9],
the incremental unit in ColL is a data continuum instead
of a task. We assume that adjacent data in continua are
sampled from the same distribution unless they are separated
by an unknown task boundary. The main obstacle in ColL
is to identify distribution shifts based on a continual learn-
ing model. Inspired by previous out-of-distribution (OOD)
detection methods for nonincremental learning [10], [11],
we design a continual OOD detection method to distinguish
OOD samples, which are sampled from a new distribution,
and in-distribution (InD) samples, which are sampled from
the latest learned one. Specifically, we adopt an adaptive
threshold to accommodate OOD detection for different tasks.
When sufficient samples are detected as outliers, we think a
task boundary is identified. Then, we incorporate continual
OOD detection with continual learning approaches to solve
a ColL problem, where all data from the same task are
consecutive. Furthermore, we investigate the more challenging
task-reappear setting, where a continuum may consist of extra
data from any learned task. To determine whether a set
of data is sampled from a learned distribution, we propose
continual learning with unknown task boundary (CLUTaB)
with continual InD detection, which leverages exemplars to
widen the gap between the max probabilities of InD and
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OOD samples. Experiments show that our methods work well
with existing continual learning approaches and achieve good
performance on common benchmark datasets.

This article is organized as follows. Section II summa-
rizes recent research related to continual learning and OOD
detection. Section III formally describes the ColL scenario
and compares it with other continual learning scenarios.
We propose the continual OOD detection method to identify
task boundaries in Section IV. In Section V, we design InD
detection and CLUTaB to solve a task-reappear ColL setting.
In Section VI, we report and analyze the experimental results,
and we conclude this article in Section VII.

II. RELATED WORK

In this section, we review existing literature that relates
to our proposed methodology from three perspectives: task-
based continual learning, task-free continual learning, and
OOD detection.

A. Task-Based Continual Learning

In task-based continual learning, models learn a sequence of
tasks one after the other without access to training data from
previously learned tasks [12]. Task-based continual learning
can be divided into three scenarios [9], [13]: task-incremental
learning, domain-incremental learning, and class-incremental
learning. In task-incremental learning, task identifiers are
always given by an oracle, while they are not available at test
time in domain-incremental and class-incremental learning.
Models need to infer which task they are dealing with in
class-incremental learning and need not in domain-incremental
learning. Class-incremental learning attracts more attention
since it is more difficult and more practical.

Based on how to consolidate knowledge, approaches for
task-based continual learning can be classified into three
branches [14]: regularization [3], [4], [15], [16], [17], [18],
replay [5], [19], [20], [21], [22], and expansion [7], [8],
[23], [24]. Regularization-based approaches add regulariza-
tion terms in loss function to prevent catastrophic forgetting.
Replay-based approaches store a subset of samples from
previous tasks for replay when learning new tasks. As a replay-
based method, SS-IL [20] adopts separated softmax combined
with taskwise knowledge distillation to resolve the severe data
imbalance between new tasks and previous tasks. PMR [25]
proposes synthetic prototypes as knowledge representations
to guide the sample selection for memory replay. Expansion-
based approaches add new network components to learn new
data. Neural architecture search [26] and network pruning [27]
are employed to discern optimal network architectures for
novel tasks while ensuring memory efficiency. To avoid
catastrophic forgetting, these approaches need to consolidate
knowledge after learning a task, like storing exemplars [6],
[28] and old model parameters [29], and allocating more
memory for new network architecture [26]. Since models learn
from all data of one task at a time in task-based continual
learning, task boundaries are always located at the end of
each incremental unit. However, task-based continual learning
approaches cannot be directly applied to ColL. They are
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unaware of task boundaries so they do not know when to
consolidate knowledge, and also they cannot distinguish which
task they are presented with at both training and test times.

B. Task-Free Continual Learning

Task-free continual learning aims at learning from a
stream of data without task identifiers and boundaries [12].
Approaches for task-free continual learning can also be clas-
sified into three branches: regularization [12], replay [30],
[31], and expansion [32], [33]. However, in task-free continual
learning, new classes are introduced when distribution shifts
occur, and many works exploit label tricks to determine when
and how to consolidate knowledge. CoPE [34] sets up a
prototype for a class if it is discovered for the first time
and adopts a balanced replay for each class according to
exemplars’ class labels. CN-DPM [33] utilizes class labels to
calculate weights for experts during training. To edit memory
examples, GMED [35] needs to update model parameters with
a loss function calculated on inputs and their class labels.
Besides, task-free continual learning does not require models
to identify distribution shifts. They do not distinguish samples
with the same class label even though they are sampled
from different distributions. On the contrary, in ColL, data of
different tasks share the same label space, and models must
be able to distinguish different distributions.

C. OOD Detection

A robust machine learning system should not only output
results with high quality but also detect unknown inputs
and reject them. To achieve this goal, the OOD detection
identifies test data that are sampled from a shifted distribution.
A baseline method [10] detects OOD samples based on the
maximum softmax probabilities since a well-trained neural
network tends to assign higher softmax probabilities to InD
samples than those to OOD samples. ODIN [36] improves the
baseline with temperature scaling and input preprocessing to
amplify the separability of InD and OOD samples. The energy-
based detection method [37] uses an energy function instead
of a softmax function as the detection score, and the energy
function also maps the logit outputs to a scalar. DAGMM [38]
uses an autoencoder to generate low-dimensional represen-
tations and detects OOD samples with the reconstructions
from these representations. To enhance the sensitivity to
distribution shifts, some methods focus on the hidden rep-
resentations in the middle layers of neural networks. They
leverage techniques like layerwise Mahalanobis distance [39]
and gram matrix [40]. Some works [11], [41], [42] leverage
a dataset of known OOD samples to further improve detec-
tion performance. Nevertheless, these methods are designed
to detect OOD samples based on a well-trained single-task
model. To detect distribution shifts, we propose a continual
OOD detection method that works on models that learn tasks
incrementally and suffer from catastrophic forgetting.

III. CONTINUUM INCREMENTAL LEARNING

In this section, we formally describe the ColL scenario.
We also compare ColLL with other CL scenarios, including
class-incremental learning and task-free continual learning.
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TABLE I
DISTINCTIONS BETWEEN COIL AND OTHER CONTINUAL LEARNING SCENARIOS

\ Training Sample Label Space  Prediction  Distribution Shift  Task Boundary
Class-Incremental learning (x,y,t) YVinNY; =0fori#j y Notified Known
Task-Free Continual Learning (x,y) VinYj=0fori#j y Notified Unknown
Continuum Incremental Learning (x,y) Y; = Y; for Vi, j y and ¢t Unnotified Unknown

A. Problem Settings

Here, we introduce ColL. A model f(x;6) parameterized
by 6 learns a sequence of T tasks. Task ¢ is composed of a
training set D, = (x, y))M | with N, classes. X/ € &;, y! € ),
and N, denote the input data, the class label, and the number
of training samples in task 7, respectively. Note that all class
labels from different tasks share the same label space, i.e.,
Vi = JY; for Vi, j. As a result, we cannot identify a task
boundary by the change of the label space, and the distribution
shifts between tasks are unnotified.

Since the task boundaries are unknown, data are not orga-
nized by tasks. Instead, the incremental unit is a continuum.
A continuum is either concatenated by N; training sets
{Dy,, Dy, - . ., Dka} of different tasks ki, ks, ..., ky,, or only
a subset (maybe a whole set) of a training set Dy, of task
ky. In this case, task boundaries could be found anywhere
in continua. During training, the model f learns from a
continuum of data at each step. At test time, the model f
predicts both a class label y and a task identifier ¢ for a test
input x of any learned task.

The main obstacle of ColL is how to identify distribution
shifts during training. Once a new task is detected, we can
assign a new label space to the new task and train model f
with existing continual learning approaches. At test time, f
predicts a scalar in the extended label space, and the scalar
can be interpreted as a class label and a task identifier.

B. Comparisons With Other Continual Learning Scenarios

To better illustrate the distinctions between ColL and some
related settings, we introduce class-incremental learning and
task-free continual learning and compare them with ColL.
We summarize the distinctions in Table I.

1) Class-Incremental Learning: A model f(x;0) param-
eterized by 6 learns a sequence of T tasks. Each task is
composed of a training set D, = (xi, y))¥  with N, classes
and a task identifier f. Note that label spaces of tasks do
not overlap, ie., J; NY; = ¥ for Vi # j. The goal
of class-incremental learning is to incrementally update the
model f so that it can predict a class label y for a test input
x of any learned task.

In class-incremental learning, the incremental unit is a task.
Hence, task boundaries are known during training. On the
contrary, the only assumption in ColL is that adjacent data
in continua are sampled from the same distribution unless
an unknown task boundary separates them. In addition, the
model has to predict task identifiers without task supervision
in ColL, while task labels are available during training in class-
incremental learning.

2) Task-Free Continual Learning: A model f(x;6) param-
eterized by 6 learns a sequence of mini-batch data
(xi,, yi, t1)M which sequentially arrive at each timestamp
ts, and the data form a nonstationary data stream [43]. Each
sample is associated with a latent task identifier #;;, where X
denotes the input sample received at timestamp ts, y;; is the
data label associated with x;,, and Ny is the number of training
samples at timestamp ts. In a more general definition of task-
free CL, data distributions might shift gradually without clear
task boundaries [12]. Similar to class-incremental learning,
label spaces of different tasks do not overlap. During training
and testing, the task identifier #; is unavailable to the learner.
At test time, the model is required to predict a class label y
for a test input x of any learned task.

In task-free continual learning, task boundaries remain
unknown until label space changes. The arrival of new classes
implies that distribution shifts happen even when task bound-
aries are blurry. However, in ColL, all class labels from
different tasks share the same label space, so the learner has
to detect distribution shifts with only the input x.

IV. TASK BOUNDARY IDENTIFICATION WITH OOD
DETECTION

In this section, we focus on how to identify task boundaries
with OOD detection and how to leverage this technique to
solve ColL. We first design the continual OOD detection
method to identify task boundaries. Then, we show how to
incorporate task boundary identification with existing contin-
ual learning approaches.

A. Continual OOD Detection

To identify distribution shifts, softmax-based OOD detection
methods [10], [11], [36] have been proven simple and effective
without introducing extra network structures. The rationale
is that a well-trained neural network tends to assign higher
softmax probabilities to InD samples than those to OOD
samples. However, in continual learning, models suffering
from catastrophic forgetting often misclassify samples of old
tasks, which are apparently not “well-trained.” Furthermore,
models in ColL have to alternate between detecting OOD
samples in continua and incrementally learning new tasks,
while previous OOD detection methods detect OOD samples
in a test dataset.

Therefore, we design an OOD detection method for con-
tinual learning, as illustrated in Fig. 1. To detect whether a
batch of samples X is OOD to the latest learned task 7, the
model f evaluates X and a stored batch of samples XD
of task 7. To utilize the well-trained part of the model for
OOD detection, we calculate the local probabilities on the
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task ¢ for OOD detection. Once the OOD buffer is full, we add new logits and train it with data in the buffer. Then, we continue to detect OOD samples

based on the new logits.

tth head of the multihead classifier only with logits of task
t, i.e., the [N, * (tr — 1)]th to the (N, % ¢t — 1)th outputs
(before softmax) of model f, where N, is the number of
classes per task. X is considered to be OOD to task ¢ when
there is a large gap between the max probabilities of X and
XD Formally, we define the ith component of the probability
vector pf(x; 0) € RN as
efrix0)/t

—_—— 1
Z;vi | efriGaO)/T O

p;i(x; 0) =

where T is a temperature scaling factor and f; ;(x; 6) is the
ith output logit of task . Then, we define

Pt max (X; 6) = max pf;(x; 6) 2
for a single input x and
1
Plnax(X:0) = 52 > Pl (%2 0) 3)
xeX

for a batch of inputs X. Given the definitions above, the
continual OOD detector for the latest learned task ¢ can be
described as

¢(X. X0, 1)

{ 1, if ptf.max(X; 0) < ptrmax(X}nD; 9) — doop
= . ’ “4)
0, otherwise.

A batch of input X is considered as OOD samples on task
t when pf .. (X;0) is smaller than an adaptive threshold
Pl max(X{™; 6) — 80op. The threshold is calibrated by a small
number of InD samples X!"° since the model may output
different ranges of probabilities on different tasks. Here,
we assume that data in the same batch are sampled from the
same distribution, which is also adopted by previous works on
continual learning [8], [33], [44].

As mentioned above, previous OOD detection methods
are designed for a well-trained neural network. Hence, it is
natural to detect OOD samples only on the latest learned task,
where the model tends to perform well without catastrophic
forgetting.

Algorithm 1 Task Boundary Identification

Input: Model f, continuum Cj, latest learned task #, InD
samples XD and its size Np,p, number of tasks learned so
far N, OOD buffer capacity O, max iterations between two
OOD batches 1,

Output: Dataset D

1: f' = DeepCopy(f); D=0; O=0;n=N +1
2: for X in C; do

33 0=0UX

4:  if n =1 then

5: Recognize X as OOD samples

6: else

7 Calculate g(X, X', ¢) by Eq. (4)

8: end if

9:  if No OOD samples detected in last / iterations then
10: Assign task identifier ¢ to samples in O

11 D=DUO;0=0

12:  end if

13:  if |O| > O then

14: Assign task identifier n to samples in O

15: Train [ with O

16: Randomly select Ny,p samples in O as X™P
17: t=n;n=n+1;,D=DUQO;O0O=0

18:  end if

19: end for

20: Assign task identifier ¢ to samples in O;
2. D=DUO; 0O=9
22: return D

B. Continual Learning With OOD Detection

The learning procedure in ColL can be split into two phases:
task identifier prediction and model training. Once a new
continuum arrives, we first assign task identifiers to inputs.
Then, we train the model f with existing continual learning
approaches. Here, we only consider the situation where all
data from the same task are consecutive, so identifying a task
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Algorithm 2 Task Identifier Prediction
Input: Model f, latest learned task ¢’, dataset D returned in
Algorithm 1, number of tasks learned so far N
Output: Dataset D’
. D=0n=N+1
2: for s in all task identifiers appear in D do
3: X, = all samples with task identifier s in D

4 if N <1 ors =1t then

5: Assign task identifier s to X

6: else

7 Calculate 7(X,, X"P, 1) by Eq. (5) for each task ¢

except t’

8: if h(X,, X"P,t) =1 for any ¢ then

9: Assign task identifier
argmax; p; . (X1 0) — pl,.. (X)P;6)
to X,

10: else

11: Assign task identifier n to X;; n=n+1

12: end if

13:  end if

14 D =D'UX;

15: end for

16: return D’

boundary implies a new task arrives. We will investigate a
more general setting in Section V.

Algorithm 1 describes the task boundary identification
process. To increase the stability of continual learning and
the resistance to OOD detection errors, a task boundary is
identified only when enough inputs in a consecutive sequence
are detected as OOD samples. To this end, we employ an
OOD buffer O to collect data. Note that no extra memory for
O is required because data in Cy are stored in memory before
finishing learning Cj. Once O reaches the maximum capacity
O, we add new logits on the model f” and train f’ with data
in O. After that, a small number of samples in the buffer is
stored as X™P, and O is emptied. We continue to process the
rest data in Cy and calculate probabilities on the new logits
for OOD detection. This procedure is repeated until all data
in Cy are processed.

V. CONTINUAL LEARNING WITH UNKNOWN TASK
BOUNDARY

In this section, we propose CLUTaB for a more challenging
task-reappear setting of ColL. First, we propose the continual
InD detection method for task identifier prediction. Then,
we design OOD loss to improve InD detection accuracy.
Finally, we propose the two-step inference at test time based on
InD detection to improve the continual learning performance.

A. Task Identifier Prediction With Continual InD Detection

We investigate the task-reappear setting where a continuum
of extra data from an already learned task may arrive. In this
case, a task boundary implies the arrival of a new or old task.
Since all class labels share the same label space in ColL,
we need to determine whether a set of data is sampled from

a new distribution or any learned distribution. To this end,
we propose a method named CLUTaB, which also consists of
a task identifier prediction phase and a model training phase.

For task identifier prediction, we design a continual InD
detection method. Calibrated by XJP, the InD detection
threshold p; .. (X{"°; 6) + 8ip is adaptive to different tasks,
where ¢’ denotes the latest learned task. Here, we consider
XD as OOD samples on task ¢ where ¢ # t' since they
are sampled from a different distribution. The continual InD
detector for task # can be described as

i . InD.
h(X’ XI’an t) == 1’ if p;’max(x’ 9) > p;maX(ti ) 9)+51nD
t 0, otherwise

&)

where ¢t # t'. A set of input X is considered as InD samples
on task ¢+ when the max probabilities of X surpass those of
OOD samples by a margin §pp.

Algorithm 2 describes the task identifier prediction phase,
which runs after Algorithm 1. To further improve the resis-
tance to InD detection errors, the InD detection unit here is
a set of all samples between two task boundaries instead of
a batch. We use (5) to detect whether the set of data X, is
sampled from any learned distribution.

B. OOD Loss

To improve InD detection performance, we propose an OOD
loss to expand the probability discrepancy between ID and
OOD samples. We regard samples from other tasks as OOD
samples on task ¢ and define the OOD loss

1
1 X

> H(pi(x:6)),0 6)

xeX;

(X)) = max| m —

where X, is a set of data labeled with task identifier s, and H
is the entropy over the probability distribution. To prevent the
model from forgetting knowledge learned on task s, we use
a hyperparameter m to stop penalizing the model when the
probability distribution of OOD samples is flat enough. Given
the definition of /;, the overall OOD loss is formulated as

| N N
Loon(X) = xv =T ;; L # s} (X) (D
where N is the number of tasks so far. Note that we only
apply the OOD loss when N > 1. In practice, we leverage
exemplars to make sure that X contains samples of all tasks.
For model training, we incorporate taskwise knowledge
distillation and separated-softmax training [20] with the OOD
loss. When learning C; with data from a set of tasks 7, the
loss is

Lss(X)

N
- = 2 ZDKL(P?(X; Ooi0)| 1Py (x; 9))]1{s ¢ T)

|X| x,y,0)eX s=1

+ DL (y: | p: (x; 0)1{t € T}

+ Dk (y 7 llp/7(x;0))1{r ¢ T}

+ ALoop(X) (3
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where N is the number of tasks so far, Dy (:||-) is the
Kullback-Leibler divergence, 7’ is a temperature scaling factor
for knowledge distillation, 6,4 are the model parameters stored
for knowledge distillation, p,(x; 0) is short for p; (x; ) when
T = 1, y; is a one-hot vector in RRM: that has value one at
the yth coordinate, y,7 is a one-hot vector in RN ~1ZI"Ve that
has one at the corresponding coordinate according to the class
label y and the predicted task identifier ¢, and p,7 is a vector
of probabilities calculated on all logits except the logits of
tasks in 7.

C. Two-Step Inference

Here, we propose the two-step inference at test time. For
a batch of test samples X, we first leverage continual InD
detection to predict a task identifier f by inferring on all heads
of the multihead classifier, and then predict class labels by
pi(x; 6) for x € X. We describe the task identifier prediction
in two-step inference as

¢, if g(X, XM ) =0
f=1{arg max Pl (X5 0) = Pl (XB]D? 0). 9)

otherwise

where ¢’ is the latest learned task. It assumes that adjacent
data at test time are highly correlated, which is also adopted
in previous continual learning studies [8], [44]. Compared to
the original one-step single-head inference in which the model
predicts a task identifier and a class label at the same time, our
two-step inference can greatly improve performance without
adding extra model parameters.

VI. EXPERIMENT

In this section, we compare our methods with other
continual learning methods on CIFAR-100 [45] and mini-
ImageNet [46]. We also perform ablation experiments to
analyze the effects of the OOD loss and the performance of
two-step inference with different test batch sizes.

A. Dataset Details

We use two widely used benchmark datasets: CIFAR-
100 and mini-ImageNet. Both CIFAR-100 and mini-ImageNet
contain 60000 32 x 32 images of 100 classes. Each class has
500 training images and 100 testing images. Unless otherwise
stated, the class order is randomly shuffled as in iCarl [28].
We first split 100 classes into T tasks and remap the class
labels to make samples of different tasks that share the same
label space if the experiment runs in ColL, and then reorganize
them into K continua. We take different values of 7 and K,
and use different reorganization methods.

1) Consecutive Split/Concatenation: Data are split into

T tasks. If T < K, data in each task are split
into ? continua; otherwise, data in every % task

are concatenated into one continuum. The order of
these continua is not changed. The sequence of con-
tinua can be denoted as {1, .. S Ir th, ...} or
(s B2k -

b,
AT k41, T}
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2) Reappearing Split: Data are split into T tasks, and then,
data in each task are split into % continua. We reorder the con-
tinua so that each task reappears successively. The sequence of
continua can be denoted as {t|, >, ..., t7,t[, 1, ..., t7, ...}

B. Implementation Details

We use a 32-layer ResNet [47] for CIFAR-100 and a
reduced 18-layer Resnet for mini-ImageNet. A multihead
classifier is adopted and each head is a single fully-connected
layer. We train the model for 160 epochs for each task. The
learning rate starts from 0.1 initially and reduces to 0.01 and
0.001 after 80 and 120 epochs, respectively. The training batch
size is 128 and the batch size of experience replay is 32. The
weight decay is set to 0.0002. We adopt random cropping and
horizontal flip for data augmentation following the original
ResNet implementation. We randomly select 20 samples as
exemplars for each class. For continual OOD detection and
task boundary identification, we use dpoop = 0.07, Ny,p = 64,
O = 2000, and I = 5. For continual InD detection and task
identifier prediction, we use m = 2, 1.5, and 0.8 for T =5,
10, and 20 in Loop, dmp = 0.12 and 0.1 for CIFAR-100
and mini-ImageNet, and A\ = 2, 7/ = 2 in all experiments.
v = 1 for both continual OOD and InD detection. The test
batch size is 32 in two-step inference.

C. Evaluation

To compare with existing continual learning methods in
ColL, a simple trick is adopted: every time a continuum
arrives, these methods treat it as a new task. For a test sample
(x, y, 1), we use the following accuracy metrics.

1) Task Accuracy A,: The model predicts a class label §
given task identifier #, which means the model can only focus
on the corresponding distribution. A, = 1 when y = y.

2) Domain Accuracy A;: The model only predicts a class
label § without task identifier #. The model has no knowledge
of which distribution the sample follows but is also not
required to figure it out. A; = 1 when y = y.

3) Class Accuracy A.: The model predicts both a class
label $ and a task identifier 7. A, = 1 if and only if § = y
and f =t.

For CLUTaB, we report A. of both one-step and two-
step inference, denoted as A.; and A, ,, respectively. Other
methods cannot adopt two-step inference, so we only report A,
of one-step inference. Furthermore, to evaluate InD detection
performance, we report task accuracy A, as an upper bound
for A.,, where task identifiers are given [instead of being
predicted by (9)] to help predict class labels. All accuracy
metrics above are calculated after learning the latest task and
averaged over test data of all learned tasks.

We also use the backward transfer (BWT) to measure
catastrophic forgetting. Let A denote an accuracy metric, A, i
denote the model accuracy of task ¢ after learning continuum
k, 7 denote the set of all tasks, and 7; denote the set of tasks
that appear in continuum k, and then, the BWT of A is

1
BWl = ——

10
T —Tx] (10

z A g — m]le A k.
te(T—Tx)
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TABLE I

RESULTS OF CONSECUTIVE SPLIT ON CIFAR-100 AND MINI-IMAGENET. T = 5 AND K = 10

CIFAR-100 mini-ImageNet

Methods

Aq BWT of A, Ac BWT of A. Aq BWT of A, Ac BWT of A
Finetuning 20.12 £ 023  -73.44 £ 0.19 - - 19.38 £ 0.19  -67.85 £ 0.57 - -
Joint 72.27 £ 0.18 - - - 69.97 £+ 0.16 - - -
ER 3843 £0.18 -49.72 + 043 - - 32.14 £ 049 -51.20 £ 0.74 - -
ER w. OOD Detection 41.29 + 0.27 -46.54 + 0.26 38.46 + 0.29 -50.49 + 0.44 35.87 + 0.22 -47.85 + 0.32  33.08 £ 0.18 -50.80 + 0.51
LwF 36.78 £ 0.70  -53.12 4+ 0.47 - - 28.53 £ 0.31  -55.25 4+ 0.66 - -
LwF w. OOD Detection 4297 + 035 4396 + 0.28 4024 + 0.41 -47.14 £+ 0.08 35.78 £+ 0.67 -46.27 + 0.87 3293 £ 0.56 -49.71 + 0.47
iCaRL 50.32 £ 034  -21.78 £ 091 - - 45.16 £ 0.55 -18.63 £ 0.84 - -
iCaRL w. OOD Detection  51.94 + 1.38  -17.98 + 1.57 48.85 + 2.74 -19.33 £+ 1.32 46.05 = 1.57 -16.20 + 1.24 44.02 + 1.66 -16.92 + 1.53
BiC 49.10 £ 036 -30.77 £ 0.39 - - 4090 + 0.84  -37.59 £ 0.98 - -
BiC w. OOD Detection 52.29 + 034 -20.73 + 0.15 50.16 + 0.37 -22.36 + 0.19 47.69 + 094 -23.80 + 0.53 45.54 +£ 091 -25.42 + 0.68
SS-IL 48.77 £ 0.51  -19.83 £ 0.33 - - 4278 £ 094  -23.17 £ 1.22 - -
SS-IL w. OOD Detection ~ 50.42 + 0.30  -18.35 + 0.34  48.10 + 0.28 -16.63 + 0.24  45.62 + 0.22  -20.87 + 0.36  43.37 £ 0.22 -21.44 + 0.80

TABLE III
RESULTS OF CONSECUTIVE CONCATENATION ON CIFAR-100 AND MINI-IMAGENET. T = 20 AND K = 10

Methods CIFAR-100 mini-ImageNet

Aq BWT of A, Ac BWT of A. Aq BWT of A, Ac BWT of A.
Finetuning 2573 £ 036  -69.01 £ 0.24 - - 2532 £ 0.19 -65.05 + 0.38 - -
Joint 76.56 £+ 0.21 - - - 75.30 £ 0.20 - - -
ER 4598 + 0.34  -46.34 £ 0.58 - - 40.50 +£ 0.60  -47.76 £ 0.94 - -
ER w. OOD Detection 48.71 + 0.12 4441 + 043 3590 + 0.20 -56.68 + 0.37 43.11 £+ 0.13  -46.41 + 0.22  30.23 £ 0.42 -55.46 + 0.39
LwF 46.63 £ 0.34  -44.88 £ 0.53 - - 3830 £ 0.53  -49.02 + 145 - -
LwF w. OOD Detection 48.54 + 0.41 4321 + 0.73 3530 £ 0.52 -5572 4+ 0.66 41.03 + 0.44 -47.48 + 0.86 27.34 £ 0.51 -60.07 + 0.96
iCaRL 5220 £ 0.56  -21.57 £ 045 - - 46.43 £ 0.69  -15.64 £ 1.06 - -
iCaRL w. OOD Detection  56.87 + 0.77 -17.87 &+ 0.85 4526 + 1.05 -22.97 + 1.52 52.27 + 0.54 -14.68 + 0.49 41.16 + 0.81 -18.90 + 0.76
BiC 5344 £ 051 -31.66 £ 0.71 - - 46.62 £ 0.67  -36.74 £ 0.99 - -
BiC w. OOD Detection 57.76 + 0.59  -26.56 + 0.49 4641 + 0.72 -38.46 + 1.13  50.37 + 0.55 -32.69 + 0.88 38.86 + 0.77 -41.47 £+ 0.51
SS-IL 5271 £ 0.06 -15.73 £ 0.14 - - 48.58 + 0.34  -13.98 £ 0.29 - -
SS-IL w. OOD Detection ~ 55.33 + 0.50 -14.06 + 0.39 4347 + 031 -16.58 + 0.35 50.65 + 0.89 -13.24 + 0.25 38.70 + 1.24  -16.81 + 0.56

TABLE IV

RESULTS OF TASK-REAPPEAR SETTINGS ON CIFAR-100 AND MINI-IMAGENET. WE REPORT A; UNLESS OTHERWISE STATED IN THE TABLE

Methods

Reappearing T' = 5, K = 10

Reappearing T' = 10, K = 20

CIFAR-100 mini-ImageNet CIFAR-100 mini-ImageNet

Accuracy BWT Accuracy BWT Accuracy BWT Accuracy BWT
Finetuning 19.86 £ 0.11  -73.33 £0.30 1938 £ 0.20 -69.65 £ 0.54 1552 £ 0.67 -73.69 £ 1.36 16.74 £ 0.52  -67.39 £ 1.20
Joint 71.67 £ 0.53 - 70.07 £ 0.58 - 74.23 £ 0.35 - 72.10 £ 0.33 -
ER 38.81 £043 -4833 £0.59 3299 £ 0.51 -4945 + 0.66 4030 £0.67 -4558 £0.89 33.13 £ 082 -49.19 £ 1.57
LwF 39.64 £ 1.03  -44.15 + 1.17 3219 £ 043 -48.10 £ 0.71 3849 £ 0.80 -46.56 £ 1.36  30.69 £ 032  -47.54 £ 0.55
iCaRL 4939 £ 098 -11.00 £+ 0.32 44.07 £ 099 -14.75 £ 041 4400 + 1.82 -13.28 £ 0.77 3944 + 1.39 -13.72 £ 0.54
BiC 50.52 £ 0.68 -1893 £ 095 4502 £ 052 -22.83 +£0.34 46.66 £ 0.56 -25.25 £ 0.78 38.85 £ 1.88  -29.84 £ 2.63
SS-IL 4927 £ 024 -16.84 £ 0.16 4383 £ 1.65 -1647 =097 4634 £ 050 -16.87 £ 0.31 40.12 £ 1.01 -17.67 £ 0.73
CLUTaB 5195 £ 0.63 -16.73 £ 049 4756 £ 1.61 -16.13 £ 097 4935 £ 0.68 -1627 £ 126 42.73 +£1.79 -17.15 = 144
CLUTaB (A.;1) 49.84 £0.70 -17.68 & 0.54 4473 £2.12 -19.83 £ 1.39 4344 £ 056 -18.72 £ 0.87 36.55 £ 298 -20.59 £ 1.70
CLUTaB (Ac2) 72.46 + 1.02 -3.47 + 1.58  65.07 £+ 3.50 -3.41 + 236 77.30 £ 0.60 -3.67 + 043 68.03 £+ 3.66 -4.58 + 2.46
CLUTaB (A¢) 73.03 + 0.48 -5.65 +£ 0.33  68.02 + 1.38 -543 £ 1.57 77.81 + 0.24 -5.39 £ 056  70.18 + 1.42 -5.71 + 1.49

D. Main Results

1) Results for Consecutive Split/Concatenation: Tables II
and III show the results in the consecutive settings. We com-
pare ER [5], LwF [29], iCaRL [28], BiC [6], and SS-IL [20]
with their corresponding versions that leverage continual OOD
detection for task boundary identification. We also include
finetuning and joint training [9] as baselines. Since the original

continual learning methods cannot identify task boundaries
during training, they predict meaningless task identifiers, so we
do not report A, for them. Compared A, with A; in the
same settings, methods with OOD detection can predict task
identifiers with high accuracy for samples whose y = y.
Furthermore, methods with OOD detection also perform better
on A,, which means that continual OOD detection does find
better timings for knowledge consolidation.
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Fig. 2. Results for aligned tasks and continua. We report A, unless otherwise stated on CIFAR-100 and mini-ImageNet when 7 = K =5, 10, and 20.

2) Results for Reappearing Split: Table IV shows the results
of task-reappear settings. We report A. i, Ac2, and A, for
CLUTaB, and A, for all methods. We observe that CLUTaB
with two-step inference significantly surpasses methods with
one-step inference. Note that A, ; is close to its upper bound
A,, indicating high-quality InD detection at test time. Besides,
CLUTaB still outperforms other methods on A,. This implies
that task identifier prediction helps the model better recapture
the forgotten knowledge.

3) Results for Aligned Tasks and Continua: We also per-
form experiments in a setting where each Cj is exactly
Dy of task k. In Fig. 2, we report A.1, A2, and A, for
CLUTaB, A, and A, for joint training, and A, for all the

other methods when T = K = 5, 10, and 20. In this
case, task boundaries are known to ER, LwF, iCaRL, BiC,
and SS-IL, while their corresponding versions with continual
OOD detection and CLUTaB still run in the ColL scenario.
Although task boundaries are unknown to methods with OOD
detection, they still perform almost as well as their original
versions, which means continual OOD detection can identify
proper task boundaries. Like the results of task-reappear
settings, CLUTaB with two-step inference still outperforms
other methods even including the joint training. It is because
we assume that adjacent data at test time are highly correlated
and our batchwise task identifier prediction achieves high
accuracy.
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Fig. 3.
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Distributions of maximum probabilities p,‘max(X}“D) and p,,max(X,OOD) with and without Loop after learning first five continua in the 7 = 5,

K = 10, task-reappear setting by SS-IL. X,InD are data of task ¢ in the left five continua and X}"D are the others. (a) t = 0, with Loop. (b) t = 4, with Loop.

(c) t = 0, without Loop. (d) t = 4, without Loop.

RESULTS OF FINE-GRAINED CONTINUAL LEARNING ON CIFAR-100.

TABLE V

WE REPORT A; UNLESS OTHERWISE STATED IN THE TABLE

Methods Accuracy BWT
Finetuning 18.92 + 038  -75.44 £ 0.65
Joint 71.63 £ 0.11 -
ER 38.69 £ 0.16  -48.03 + 0.34
LwF 39.57 £ 0.11  -46.03 £ 0.08
iCaRL 4951 £ 1.54 -12.85 £ 1.51
BiC 50.57 £ 043  -20.15 £ 0.67
SS-IL 49.00 £ 0.67 -16.88 £ 0.92
CLUTaB 52.05 + 0.81 -16.97 + 1.19
CLUTaB (A;;1) 4994 £0.80 -19.10 £ 1.21
CLUTaB (A;2) 71.33 + 1.84 -3.60 + 1.08
CLUTaB (Ay) 72.90 + 0.67 -5.79 + 0.95
TABLE VI
ACCURACY OF DIFFERENT METHODS WITH AND WITHOUT Loop
Methods ER LwF iCaRL  BiC SS-IL
Acc. w. Loop 35.03 3477 4580 42.02  44.70
Acc. wlo. Loop  35.72  35.78 4578 4590  44.38

E. Fine-Grained Continual Learning

To demonstrate how CLUTaB helps understand collected
data, we design the fine-grained continual learning experiment.
We split CIFAR-100 into five tasks, and each task contains
20 classes. Then, we split each task into two continua.
We reorder the continua as Reappearing Split in Section VI-A.
Different from the task-reappear setting in the main results,

TABLE VII
A.> WITH DIFFERENT TEST BATCH SIZES

Batch Size 1 2 4 8 32 64 Ay
Ac2 4220 5324 66.16 7554 8128 81.86 | 82.12

Aca
46.90

we leverage the superclass in CIFAR-100 and adopt a fixed
class order. The details of superclass and class order are
given in Appendix A. Now the class label y represents a
superclass and the unknown task identifier ¢ encodes a fine-
grained subclass. Since the class order is deliberately designed,
distributions between tasks are more similar, and it is more
difficult to identify distribution shifts.

Table V shows the results for fine-grained continual learn-
ing. Like the task-reappear settings, we report A, Ac2,
and A, for CLUTaB, and A, for all methods. We observe
higher performance on A; for CLUTaB as expected. That
means our continual OOD detection and InD detection still
work well during training to find better timings for knowledge
consolidation and recapture the forgotten knowledge when
distribution changes mildly. Compared to the results of the
T =5, K = 10, task-reappear setting in Table IV, CLUTaB
performs similarly on A, but slightly worse on A, ,, indicating
that the accuracy of InD detection in two-step inference with
a small batch size decreases due to the similarity among
the distributions. Nevertheless, in Table V, A., of CLUTaB
still surpasses A.; by a large margin and is close to its
upper bound A;, which means InD detection in two-step
inference predicts task identifiers with high accuracy. From
these results, we conclude that CLUTaB is also effective for
continual learning settings where distribution does not change
dramatically and can design more fine-grained labels for data.
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TABLE VIII
SUPERCLASS, SUBCLASS, AND CLASS ORDER FOR FINE-GRAINED CONTINUAL LEARNING ON CIFAR-100
Superclass Subclass

Task 1 Task 2 Task 3 Task 4 Task 5
aquatic mammals beaver dolphin otter seal whale
fish aquarium fish  flatfish ray shark trout
flowers orchids poppies roses sunflowers tulips
food containers bottles bowls cans cups plates
fruit and vegetables apples mushrooms oranges pears sweet peppers
household electrical devices clock computer keyboard  lamp telephone television
household furniture bed chair couch table wardrobe
insects bee beetle butterfly caterpillar cockroach
large carnivores bear leopard lion tiger wolf
large man-made outdoor things | bridge castle house road skyscraper
large natural outdoor scenes cloud forest mountain plain sea
large omnivores and herbivores | camel cattle chimpanzee elephant kangaroo
medium-sized mammals fox porcupine possum raccoon skunk
non-insect invertebrates crab lobster snail spider worm
people baby boy girl man woman
reptiles crocodile dinosaur lizard snake turtle
small mammals hamster mouse rabbit shrew squirrel
trees maple oak palm pine willow
vehicles 1 bicycle bus motorcycle  pickup truck  train
vehicles 2 lawn-mower rocket streetcar tank tractor

TABLE IX TABLE XII

ACCURACY OF CLUTAB WITH TWO-STEP INFERENCE AND ICARL WITH
THREE INFERENCE METHODS

T 5 10 20

CLUTaB(A.2) 73.74 8128 82.54

iCaRL(A¢) 76.37 8241 84.58

iCaRL(A¢,1) 51.72 4577 39.35

iCaRL(A¢,2) 5326 4199 23.76
TABLE X

ACCURACY OF TASK PREDICTION IN TESTING

Methods Acc.
CCGN 72.61
CLUTaB (Batch Size = 1) 58.02
CLUTaB (Batch Size = 2) 71.02
CLUTaB (Batch Size = 4) 85.20
CLUTaB (Batch Size = 8) 93.03
CLUTaB (Batch Size = 16) 97.71
CLUTaB (Batch Size = 32) 98.37
CLUTaB (Batch Size = 64)  99.68

TABLE XI
CONTINUAL OOD DETECTION ACCURACY WITH DIFFERENT 800D

doop 0.01 0.03 0.05 0.07 0.09 0.11 0.13
Acc. 78.72 9135 9583 98.10 96.76 9238 84.03
FE. Analysis

In this section, we perform more detailed analyses on
continual OOD and InD detection, including the effects of
Loop, Ac 2 with different test batch sizes. All experiments are
performed on CIFAR-100.

CONTINUAL IND DETECTION ACCURACY WITH DIFFERENT §inp

OInD 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Acc. 91.67 9722 100.00 100.00 100.00 94.45 77.78
TABLE XIII

CONTINUAL OOD DETECTION ACCURACY WITH DIFFERENT Nyyp

NinD 1 4 8 16 32 64 128
6229 7447 80.65 9433 9749 98.10 98.33

Acc.

1) Effect of Loop on Probability Distribution: Fig. 3 illus-
trates the distributions of maximum probabilities p; max (XP)
and  p; max (X2P) after learning first five continua in the
reappearing 7 = 5, K = 10 setting by CLUTaB. X"P is
a batch of samples from task ¢ in the rest five continua and
X909 s from the left four tasks. We use m =2 and A = 2 in
Loop- We observe that the gap between the max probabilities
of InD and OOD data widens when Loop is applied. Com-
pared between the distributions on different tasks, the optimal
boundaries of InD and OOD data are different, which indicates
the importance of the adaptive detection threshold.

2) Effect of Loop on Learning: We add Loop into the orig-
inal loss functions in continual learning approaches. Table VI
shows the accuracy of different methods with and without
Loop in a standard ten-task continual learning setting. Here,
m = 1.5 and A = 0.5. Loop leads to a minor degradation for
ER and LwF, and a minor improvement for SS-IL. However,
BiC suffers almost a 4% reduction in accuracy. We consider
that Loop is contradictory to BiC since BiC only flattens the
probability distribution on the new task, while Loop does the
same for all old tasks.
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TABLE XIV
CONTINUAL OOD DETECTION ACCURACY WITH DIFFERENT O

0] 500 1000 1500 2000 2500
Acc. 9392 96.86 97.57 98.10 98.12
TABLE XV

ACCURACY WITH DIFFERENT m IN Loop

m 0 0.5 1 1.5 2 2.5 3
Ac1 4874 4891 4923 49.63  49.84 48770 4521
Ac.o 6825 6874 7052 7230 7246 7207 66.95
Ay 73.63 7337 73.18 73.03 73.03 7294 67.94

3) Size of Test Batch: Table VII shows A., of CLUTaB
with the test batch size b in the aligned setting where T =
K = 10. With more data in a batch, A, increases because the
InD detection estimates more accurate p; max. Ac 2 is close to
its upper bound A; when b > 32. In addition, A, ; is surpassed
by A., when b > 2, which means we could adopt two-step
inference even when the distribution is changing fast.

VII. CONCLUSION

In this article, we investigate ColL, a new continual learning
scenario with unknown task boundaries. The incremental unit
in ColL is a data continuum instead of a task, and each
continuum may contain several tasks or only a subset of
one certain task. The key idea to solving a ColL problem is
to identify task boundaries and predict task identifiers. First,
we consider a simpler situation where all data from the same
task are consecutive, so a task boundary means that a new
task arrives. To identify task boundaries, we design a continual
OOD detection method based on softmax probabilities. Once
enough samples in a consecutive sequence are detected as
OOD samples, we assume that a task boundary is identified.
The continual OOD detection method calculates the local
probabilities with the logits of the latest task to detect OOD
samples on the well-trained part of the whole network. We also
design an adaptive threshold for continual OOD detection,
which can accommodate OOD detection for different tasks.
Then, we further investigate the task-reappear setting, where a
continuum may contain extra data from a learned task. We pro-
pose CLUTaB for the more challenging setting. To determine
whether a set of data is sampled from any learned distribution,
CLUTaB uses a continual InD detection method, which is
based on local probabilities and leverages the output of task
boundary identification. Also, an OOD loss is employed in
CLUTaB to widen the gap of the max probabilities between
InD and OOD samples. In addition, CLUTaB enables two-step
inference, which first predicts task identifiers and then predicts
class labels based on the predicted identifiers. Our approach
outperforms task-based approaches in ColL on CIFAR-100
and mini-ImageNet because of the proposed methods, and
CLUTaB with the two-step inference significantly improves
the performance because of its high InD detection accuracy.

Future work will focus on developing solutions to more
general continual learning scenarios with unnotified distribu-

tion shifts, such as a scenario where the basic unit of the
distribution shift is a class instead of a task. This will be
achieved by adapting classwise anomaly detection or novelty
detection to continual learning. We will also focus on accurate
samplewise OOD detection for continual learning, which will
allow our approach to solve continual learning problems with
blurry task boundaries. In addition, it is worth studying how
to train a model continually with repeated tasks [48], [49]
after the task identifier prediction. A proper strategy instead
of finetuning could further improve the performance.

APPENDIX A
MORE DETAILS OF FINE-GRAINED CONTINUAL LEARNING
EXPERIMENTS

The details of superclass and class order are given in
Table VIII. As shown in Table VIII, there are 100 classes in
CIFAR-100, and these classes can be grouped into 20 super-
classes. A superclass exactly contains five classes. Each image
comes with a “fine” label (the class to which it belongs) and
a “coarse” label (the superclass to which it belongs). As a
result, we split CIFAR-100 into five tasks, and each task
contains 20 classes. Different from the task-reappear setting
in the main results, we adopt a fixed class order. In each
task, there is exactly one class from each superclass. For
example, in Table VIII, Task 1 contains classes from “beaver”
to “lawn-mower.” Besides, images with the same superclass
have the same class label y. For example, in Table VIII, images
of aquatic mammals (including “beaver,” “dolphin,” “otter,”
“seal,” and “whale”) have the same class label. Hence, the
class label y now represents a superclass and the unknown
task identifier ¢ encodes a fine-grained subclass.

APPENDIX B
MORE ANALYSIS AND ABLATION STUDY

In this section, we perform detailed analyses on continual
OOD and InD detection as well as more experiments to
evaluate the effects of hyperparameters. All experiments are
performed on CIFAR-100.

1) Two-Step Inference and Multihead Inference: We com-
pare CLUTaB with two-step inference and iCaRL with three
different inference methods in the aligned tasks and continua
settings. Note that task identifiers are provided by a task oracle
for iCaRL with multihead inference during both training and
testing. Table IX shows the accuracy with a different number
of tasks and continua. We find that iCaRL with multihead
inference(A,) outperforms CLUTaB and iCaRL with other
inference methods in all experiments, which is reasonable
since CLUTaB and iCaRL with other inference methods have
to infer the task identifiers. Compared with iCaRL with
one-step single-head inference (A.;), iCaRL with two-step
inference (A, ») performs better when the total number of tasks
is small but degenerates with more tasks. The results show
that our methods help the classifier infers task identifiers more
accurately.

2) Distribution Shift Detection: We compare our con-
tinual OOD detection with a change-detection test (CDT)
method [50] that detects concept drift [S1] on CNN, which
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can be directly adopted to detect image distribution shifts.
The CDT method monitors the classification error over time
by a cumulative sum test to detect variations in its probability
distribution. In the consecutive split setting where 7' = 5, K =
10, the detection accuracy of the CDT method is 98.35%,
and the accuracy of our continual OOD detection is 98.10%.
Our unsupervised continual OOD detection performs basically
as well as CDT, even though CDT relies on class labels
to calculate the classification error, while continual OOD
detection does not need class labels as supervised signals.

3) Task Prediction in Testing: We compare our task pre-
diction step in two-step inference with CCGN [52], which
adds an extra classifier for task prediction in class-incremental
learning. Table X shows the task prediction accuracy of CCGN
and CLUTaB with different sizes of test batch where T = K =
5. Note that CCGN runs in the class-incremental setting, while
CLUTaB still works in ColL. Although CCGN outperforms
CLUTaB when test batch sizes are small, CLUTab surpasses
CCGN after the batch size is greater than 4 without extra
model parameters.

4) Effect of Spop: To investigate the effects of different
Soop in (4), we perform experiments in the consecutive setting
where T = 10 and K = 5 with SS-IL w. OOD detection.
We report the overall accuracy of the continual OOD detection
in Table XI. With a proper §pop, our model can identify
OOD samples with high accuracy. Also, the continual OOD
detection still works well in a range of values of Spop,
indicating that the continual OOD detection is not sensitive
to SooD-

5) Effect of 85,p: To investigate the effects of different §p,p
in (5), we perform experiments in the task-reappear setting
where 7 = 10 and K = 20. We report the overall accuracy
of the continual InD detection in Table XII. Since we use all
detected OOD samples for the continual InD detection and
the OOD loss widens the gap between the max probabilities
of InD and OOD data, our model can assign the correct task
identifiers to all samples during training.

6) Effect of Npp: To compare the number of stored InD
samples Np,p in Algorithm 1, we perform experiments in the
consecutive setting where 7 = 10 and K = 5 with SS-
IL w. OOD detection. With more stored InD samples, the
performance of the continual OOD detection improves. The
results in Table XIII indicate that it is important to store
enough InD samples to calibrate the detection threshold.

7) Effect of O: To compare the OOD buffer capacity O in
Algorithm 1, we perform experiments in the consecutive set-
ting where 7 = 10 and K = 5 with SS-IL w. OOD detection.
The results are shown in Table XIV. The performance of the
continual OOD detection improves with an increasing number
of the OOD buffer capacity. For both efficiency and sufficiently
exploring the input distribution to detect OOD samples with
better performance, we choose O = 2000 as the OOD buffer
capacity.

8) Effect of m: In the task-reappear setting where T =
5 and K = 10, Table XV shows the results with different
entropy thresholds m in (6). We can find that proper values of
m can improve A, and the accuracy of InD detection at test
time. With larger m, A, tends to get lower, which is reasonable
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since the OOD loss sacrifices the accuracy within one task for
the better performance of distinguishing different tasks.
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