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1 PROOF OF THEOREM 3.1
By using Woodbury matrix identity, Eq. (14) can be
rewritten as follows:
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Noticing that Tr(AB) = Tr(BA), we have:
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This completes the proof.

2 PROOF OF THEOREM 4.1

Let H = g(M) = M + XTMX. It is easy to see that
g is an affine function of M. Therefore, g is convex.
Let f(H) = Tr(H~') which is also convex [1]. Thus,

fog(M) =Te((M + XTMX)™")
pletes the proof.
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3 PROOF OF THEOREM 4.2

Let M; be the optimal solution of problem (17), and
(P*, My) be the optimal solutions of problem (18). Then
M} = My is a sufficient condition for Theorem 4.2. We
define

FIM) =\ +XTMX)~1.

Assume My # My. Since M minimizes the problem
(17), we have

Trf(Mg) < Trf(My).

Note that (P*, M;) satisfies the conditions in problem
(18), so we have

& P —f(M})esS)
& TP > Trf(My)

It is clear that (f(M;), M) satisfies the conditions in
problem (18). Thus, for problem (18), (f(My), M) is
more optimal than P*, My, which contradicts our as-
sumption. Therefore, we have M} = M.

4 PROOF OF THEOREM 4.3
Let ¢ = ||[I — ATXB|2 + A||B||?. Thus, we have
¢ = [IT — ATXB|* + \| B|*
= Te((I — ATXB)(I - ATXB)T) + Mx(BB")
= k—2Tr(ATXB) + Tr(AT XBBT X" A) + ATr(BBT)

)
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By requiring the gradient of ¢ with respect to B vanish,
we have
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= B=(XTAATX + \I)'XT A.

Substituting Eq. (2) into Eq. (1) and noticing that
Tr(AB) = Tr(BA), we have
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= n = ATr((X7447X + 1)),

and,
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= n = ATe((X744TX + 1) 7).

(4)

Finally, we have
b=k—n+Te((X744TX +20)7"). @)

Thus, the optimal A is given by solving the following
problem:

min Tr(()?TAATX' + )\I)_l). )

This completes the proof.
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