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Abstract—We consider the problem of image representation from the perspective

of statistical design. Recent studies have shown that images are possibly sampled

from a low dimensional manifold despite of the fact that the ambient space is

usually very high dimensional. Learning low dimensional image representations is

crucial for many image processing tasks such as recognition and retrieval. Most of

the existing approaches for learning low dimensional representations, such as

principal component analysis (PCA) and locality preserving projections (LPP), aim

at discovering the geometrical or discriminant structures in the data. In this paper,

we take a different perspective from statistical experimental design, and propose a

novel dimensionality reduction algorithm called A-Optimal Projection (AOP). AOP

is based on a linear regression model. Specifically, AOP finds the optimal basis

functions so that the expected prediction error of the regression model can be

minimized if the new representations are used for training the model. Experimental

results suggest that the proposed approach provides a better representation and

achieves higher accuracy in image retrieval.

Index Terms—Dimensionality reduction, optimal design, image representation
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1 INTRODUCTION

IMAGE representation has been a fundamental problem for efficient
and effective classification [1], [2], [3] clustering [4], [5], and
retrieval [6], [7], [8], [9]. Visual features, such as color, texture,
shape, are usually extracted to represent the image. However, the
low level feature space is usually of very high dimensionality.
Thus, various techniques have been developed for reducing the
dimensionality of the feature space, in the hope of obtaining a
more manageable problem. If the image space is a linearly embed-
ded manifold, PCA is guaranteed to uncover the intrinsic
dimensionality of the manifold and produces a compact represen-
tation. However, a number of research efforts have shown that the
images possibly reside on a nonlinear submanifold [6], [10]. Partic-
ularly, manifold learning techniques, such as Isomap [11], Locally
Linear Embedding [12], [13], and Laplacian Eigenmap [14] are
proposed to discover the nonlinear structure of the manifold.

All the aforementioned methods try to discover either geometri-
cal or cluster structure hidden in the data. However, they are not
directly related to the learning task such as regression. In this
paper, we propose a novel dimensionality reduction algorithm
called A-Optimal Projection, which aims to improve the regression
performance in the reduced space. Our approach is motivated
by the recent progress on manifold regularized regression, i.e.,

Laplacian Regularized Least Squares (LapRLS, [15]). Specifically,
the loss function of the regression model imposes a locality pre-
serving regularizer into the standard least-square-error based loss
function. It finds a classifier which is locally as smooth as possible.
Using techniques from optimal experimental design (OED, [16]),
we first compute the parameter covariance matrix of the regression
model in the reduced space. Then the best projections are learned
such that the model parameter variances and the expected predic-
tion error can be minimized. In this work, we adopt A-optimality,
which minimizes the trace of the parameter covariance matrix, so
the obtained projections are called A-optimal. We further introduce
two optimization schemes to solve the objective function. One is
based on Semi-Definite Programming (SDP) [17] and the other is
based on iterative updating.

It is worthwhile to highlight several aspects of the proposed
approach here:

� Similar to many existing manifold learning algorithms,
our approach explicitly considers the manifold structure
by using a locality preserving regularizer. Our approach
can be performed under either unsupervised, supervised,
or semi-supervised mode. When there is label informa-
tion available, it can be naturally encoded in the Lapla-
cian matrix.

� Most of the existing dimensionality reduction algorithms
are applied as pre-processing of the data. Similar to [18],
[19], [20], our approach takes a different perspective to
directly improve the performance of a regularized
regression model in the reduced space. Specifically, the
model’s parameter covariance matrix is minimized in
the reduced space, so that the learned regression model
can be as stable as possible.

� In this work we adopt the A-optimality to measure the
size of the parameter covariance matrix in the reduced
space. However, one can also use other optimality crite-
ria such as D-optimality and E-optimality.

2 RELATED WORK

In this section, we give a brief review of related work.

2.1 Linear Dimensionality Reduction

Recently, graph based dimensionality reduction [10], [21], [22] has
received considerable interest due to its effectiveness and flexibil-
ity. Given a graph G with m vertices, each vertex represents a data
point. Let S be a symmetric m�m matrix with Sij having the

weight of the edge joining vertices i and j. The purpose of graph
embedding is to represent each vertex of the graph as a low dimen-
sional vector that preserves similarities between the vertex pairs,
where similarity is measured by the edge weight.

Let y ¼ ðy1; . . . ; ymÞT be the map from the graph to the real line,

and yi ¼ wTxi wherew is a transformation vector. The locality pre-
serving projections (LPP, [21]) algorithm finds the optimal w by
minimizing [21]:

min
Xm
i;j¼1

ðwTxi �wTxjÞ2Sij

s:t: wTXDXTw ¼ 1;

(1)

where D is a diagonal matrix whose entries are column (or row,
since S is symmetric) sums of W , Dii ¼

P
j Sij. The constraint

wTXDXTw ¼ 1 removes an arbitrary scaling factor in the
embedding.
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2.2 Laplacian Regularized Least Squares

We consider a linear model

y ¼ wTxþ �; (2)

where y is the observation, x 2 Rn is the independent variable, w is the
weight vector, and � is an unknown error with zero mean. Different
observations have errors that are independent, but with equal var-

iances s2. We define fðxÞ ¼ wTx to be the learner’s output given
input x and the weight vector w. Given a set of training points

fxi; yig‘i¼1, the maximum likelihood estimate for the weight vector,bw, is that which minimizes the sum of squared error

JsseðwÞ ¼
X‘
i¼1

wTxi � yi
� �2

: (3)

This problem has a closed form solution given by

bw ¼ ðXXT Þ�1Xy; (4)

whereX ¼ ðx1; . . . ;x‘Þ and y ¼ ðy1; . . . ; y‘ÞT .
LapRLS extends the ordinary linear regression by incorporat-

ing geometrical information into the loss function. It constructs
a nearest neighbor graph with weight matrix S to model the
geometrical structure of the data manifold. Let N kðxÞ denote the
k nearest neighbors of x. There are many choices of the weight
matrix S. A simple definition is as follows:

Sij ¼ 1; if xi 2 N kðxjÞ or xj 2 N kðxiÞ;
0; otherwise.

�
(5)

LapRLS seeks for a function which varies as smooth as possible on
the manifold by solving the following problem

min
w

Xm
i¼1

ðwTxi � yiÞ2 þ �1

2

Xm
i;j¼1

ðwTxi �wTxjÞ2Sij þ �2kwk2;

The solution is given by

bw ¼ ðXXT þ �1XLXT þ �2IÞ�1Xy; (6)

where L ¼ diagðS1Þ � S is called graph Laplacian [23] and 1 is a vec-
tor of all ones.

2.3 Optimal Experimental Design

Consider the same linear model in (2) and the estimation in (4). By
Gaussian-Markov theorem, we know that ŵ�w has a zero-mean

and a covariance matrix given by s2H�1
sse, where Hsse is the

Hessian of the sum squared error Jsse in (3):

Hsse ¼ @2Jsse
@w2

� �
¼

X‘
i¼1

xix
T
i

 !
¼ XXT :

The goal of Optimal Experimental Design [16] is to seek an optimal
distribution of the labeled sample points in the sense that the size
of covariance matrix of ŵ�w is minimized. There are three most
common scalar measures of the size of the covariance matrix in
optimal experimental design:

� D-optimal design: determinant of the matrix;
� A-optimal design: trace of the matrix;
� E-optimal design: maximum eigenvalue of the matrix.

3 A-OPTIMAL PROJECTION

In this section, we introduce our A-Optimal Projection for linear
dimensionality reduction.

3.1 Problem Definition

LetX ¼ ðx1; . . . ;xmÞ be a n�m data matrix, where n is the number
of features andm is the number of data points. Our goal is to find a

transformation matrix A 2 Rn�k that maps these m points to a set

of points y1; . . . ;ym 2 Rkðk � nÞ, where yi ¼ ATxi.
Particularly, we consider the situation of using yi to train a lin-

ear regression model:

z ¼ bbTyþ �; (7)

where z is the observation, y is the independent variable, bb is the weight

vector and � is an unknown error with zero mean and variance s2.

3.2 The Objective Function

Consider learning a graph regularized regression model by using
the new representations y1; . . . ;ym and their labels z1; . . . ; zm:

JLapRLSðbbÞ ¼
Xm
i¼1

�
zi � bbTyi

�2 þ �1

2

Xm
i;j¼1

�
bbTyi � bbTyj

�2
Sij þ �2kbbk2:

It is easy to check that the solution is given by

bbb ¼ �YY T þ �1YLY
T þ �2I

��1
Y z; (8)

where L is the Laplacian matrix defined on the graph, Y ¼
ðy1; . . . ;ymÞ is the new data matrix and z ¼ ðz1; . . . ; zmÞ is the vec-
tor of labels. We define

H ¼ YY T þ �1YLY
T þ �2I;

and

L ¼ �1YLY
T þ �2I:

By noticing that CovðzÞ ¼ s2I where I is the identity matrix, the
covariance matrix of the parameter bb can be computed as follows:

CovðbbbÞ ¼ CovðH�1Y zÞ ¼ H�1Y CovðzÞY TH�1

¼ s2H�1YY TH�1 ¼ s2H�1ðH � LÞH�1

¼ s2ðH�1 �H�1LH�1Þ:
Since �1 and �2 are usually set to be very small, we have

CovðbbbÞ � s2H�1: (9)

Recall that Y ¼ ATX, we have

CovðbbbÞ � s2ðATXXTAþ �1A
TXLXTAþ �2IÞ�1

¼ s2ðATXðI þ �1LÞXTAþ �2IÞ�1:
(10)

Given a data point y in the new representation space, its expected

prediction error has the expression yTCovðbbbÞy. In order to mini-
mize the expected prediction error, one has to minimize the size of
the parameter covariance matrix.

In statistics, there are many different ways to measure the size
of the parameter covariance matrix [16]. In this work, we apply A-
optimality [16] which minimizes the trace of the parameter covari-
ance matrix. Thus, the optimal transformation matrix A can be
obtained by solving the following objective function:

min
A

Tr
�ðATXðI þ �1LÞXTAþ �2IÞ�1�: (11)

It is easy to check that the matrix I þ �1L is symmetric and positive
definite. Thus, we can decompose it as follows:

I þ �1L ¼ SST :

We define eX ¼ XS:
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The optimization problem (11) can be rewritten as follows:

min
A

Tr
�ðAT eX eXTAþ �2IÞ�1�: (12)

We have the following theorem:

Theorem 3.1. The optimization problem (12) is equivalent to the following:

min
A

Tr
�ð eXTAAT eX þ �2IÞ�1�: (13)

The proofs of all the theorems can be found in the supple-
mental material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2015.2439252.

Notice that for dimensionality reduction, we only care about the
direction of the projection, and the scale of the projection is not
important. Thus, it is necessary to remove the freedom of scaling in
(13), which can be achieved by imposing an constraint that

kAkF � r or adding a regularizer gkAk2F in the objective function.

3.3 Relations to Other Methods

Although our algorithm is formulated based on a linear model for
supervised learning, we can compute the projectionmatrix in a fully
unsupervised manner. When the label information is available, it
also can be easily incorporated into our approach. For example,
when constructing the Laplacian matrix L, we can use the provided
label information to build the weight graph S. Specifically, we con-
nect the points xi and xj if they share the same label. This is the stan-

dard way of incorporating the label information into the geometric
characterization of the datamanifold [24]. In this way, the projection
subspace gets a strong dependency on the regression variable z.

Besides the linear dimensionality reduction algorithms we men-
tioned in Section 2.1, there are several other related subspace
regression algorithms. Among them, the simplest one is principal
component regression (PCR) [25]. It simply performs the principal
component analysis (PCA) to project the data to a lower dimensional
subspace and then performs linear regression in the subspace. In
our algorithm, if we set both of the regularization coefficients �1

and �2 to be zero in the objective function (11), we get

min
A

TrððATXXTAÞ�1Þ: (14)

It can be easily seen that this is equivalent to the objective function
of PCA.

PCR does not use the label information when computing the
subspace. Partial least squares regression (PLS) [26] projects both
the input variable x and the regression variable z to subspaces of
the same dimension by maximizing the covariance between them
after projection. Unlike PCR and our method, PLS computes pro-
jection and regression simultaneously.

Finally, sliced inverse regression (SIR) [27] seeks for a subspace of
x that captures all the dependency between the response z and the
input x. In other words, it tries to ensure that z ? xjy, where y is
the variable for the projected input x. The basic idea of the SIR
algorithm is to “reverse” the role and perform regression of the
input x on the label z. However, this kind of inverse regression
generally requires making assumptions with respect to the proba-
bility distribution of the input x, which can be difficult to justify
[28]. Our model, on the other hand, tries to minimize the covari-
ance of the model parameters as well as the expected prediction
error in the reduced subspace.

4 OPTIMIZATION

In this section, we introduce two optimization schemes to solve the
objective function (13).

4.1 Convex Optimization

In this section, we describe how to solve the optimization problem
(13) by using semi-definite programming [17], [29].

It is well-known that AAT is symmetric and positive semi-
definite. On the other hand, for any symmetric and positive

semi-definite matrix, it can be decomposed to the form of AAT .

Let M ¼ AAT . Let Sþn denote the set of symmetric and positive

semi-definite n� n matrices. The associated generalized inequal-
ity �Sþn is the usual matrix inequality: A �Sþn B means A�B is a

positive semi-definite matrix. Thus, the optimization problem
(13) can be reduced to

min Trðð�I þ eXTM eXÞ�1Þ;
s:t: M �Sþn 0:

(15)

The following theorem shows that the optimization problem
(15) is convex with variableM 2 Rn�n.

Theorem 4.1. The optimization problem (15) is convex with variable
M 2 Rn�n.

By introducing a new variable P 2 Rn�n, the optimization prob-
lem (15) can be equivalently rewritten as follows:

min TrðP Þ
s:t: P �Sþn ð�I þ eXTM eXÞ�1

M �Sþn 0

(16)

with variables P andM .

Theorem 4.2. The optimization problem (16) is equivalent to the optimi-
zation problem (15).

In the following, we discuss how to use Schur complement the-
ory [17] to cast the optimization problem (16) as a semi-definite
programming. Suppose A, B, C are respectively p� p, p� q and
q � q matrices, and A is invertible. Let

Q ¼ A B
BT C

� �
:

The Schur complement of the block A of the matrix Q is the p� p

matrix C � BTA�1B. Schur complement theorem states that Q is

positive semi-definite if and only if C �BTA�1B is positive semi-
definite [17]. By using Schur complement theorem, the optimiza-
tion problem (16) can be expressed as

min TrðP Þ

s:t:
�I þ eXTM eX I

I P

 !
�Sþn 0

M �Sþn 0:

(17)

Similar to the discussion in the end of Section 3.2, we also need to
control the size of M . Since M ¼ AAT and kAk2F ¼ TrðAAT Þ, we
can impose an constraint that TrðMÞ � r or add a regularizer
gTrðMÞ.

The above optimization problem can be solved by using inte-
rior-point methods [17]. Once we obtain M, we can compute the
eigen-decomposition ofM , which expresses

M ¼ UVUT ; (18)

where U ¼ ðu1; . . . ;unÞ is an n� n orthonormal matrix, i.e.,

UUT ¼ UTU ¼ I, and V ¼ diagðv1; . . . ; vnÞ is a diagonal matrix. The
column vectors of U are the eigenvectors of M and the diagonal
entries of V are the corresponding eigenvalues of M. Without loss
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of generality, we assume v1 	 
 
 
 	 vn 	 0. Thus, the optimal trans-
formation matrix A is given by

A ¼ ða1; . . . ; akÞ; ai ¼ ffiffiffiffi
vi

p
ui: (19)

4.2 Iterative Optimization

Although the optimization scheme described above is guaranteed
to find the global optimum, SDP is computationally very expensive
and thus may not be applicable to real world applications. In this
section, we discuss an alternative optimization scheme which is
much more efficient.

We have the following theorem:

Theorem 4.3. The optimization problem (13) is equivalent to the follow-
ing optimization problem:

min
A;B

kI � AT eXBk2 þ �kBk2; (20)

where A 2 Rn�k and B 2 Rm�k are the two variables.

Theorem 4.3 tells us that the optimal A can be obtained by itera-
tively computing A and B. Suppose B is given. Denote the objec-
tive function in (20) by f. Suppose B is given. By requiring the

gradient of fwith respect to BT vanish, we have

@f

@BT
¼ 0

) BT eXTAAT eX þBT � AT eX ¼ 0

) B ¼ ð eXTAAT eX þ �IÞ�1 eXTA:

(21)

Suppose B is given. In order to compute A, we take the partial
derivative of fwith respect to A and require it vanish:

@f

@A
¼ 0

) �2
@TrðAT eXBÞ

@A
þ @TrðAT eXBBT eXTAÞ

@A
¼ 0

) �2 eXBþ 2 eXBBT eXTA ¼ 0

) A ¼ ð eXBBT eXÞ�1 eXB:

(22)

The algorithmic procedure of computing the projection matrix A

can be summarized as follows:

1) Initialize the matrix A by computing the PCA of the data,
that is, the principal eigenvectors of the covariance matrix;

2) Compute the matrix B according to Eq. (21);
3) If we control the size of A via an constraint kAkF � r

� Update the matrix A according to Eq. (22),
� Normalize A to satisfy this constraint;

else if we control the size of A via a regularizer gkAk2F
� Update the matrix A according to

A ¼ ð eXBBT eX þ gIÞ�1 eXB:

4) Repeat steps 2 and 3 until convergence.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
approach on image retrieval. We apply different dimensionality
reduction algorithms to project the images into a lower dimen-
sional subspace in which LapRLS is applied to rank the images.

5.1 Relevance Feedback Image Retrieval

Relevance feedback is a well established and effective framework
for narrowing down the gap between low-level visual features and

high-level semantic concepts in content-based image retrieval
(CBIR) [30]. In this experiments, we compare the following state-
of-the-art algorithms:

� Locality preserving projections (LPP, [21]), as described in
Section 2.1.

� Augmented relational embedding (ARE, [10]). Unlike LPP
[21], ARE uses an additional graph to encode the label
information provided by user’s relevance feedbacks.

� Semantic subspace projection (SSP, [22]). Similar to ARE,
SSP also uses an additional graph to encode the label
information.

� Our proposed AOP algorithm. In our algorithm, the label
information is incorporated into the weight matrix by
assigning a higher weight to the image pair from the same
semantic class:

SAOP
ij ¼

a; if xi 2 FFþ and xj 2 FFþ;
1; if xi 2 N kðxjÞ or xj 2 N kðxiÞ;
0; otherwise,

8<: (23)

where a is a suitable constant. Notice that the Laplacian
matrix is computed before dimensionality reduction and
used in both AOP and LapRLS. For optimization, we
choose the iterative scheme developed in Section 4.2, and
we use a small regularizer to control the norm of A.

5.2 Data Preparation

The image database consists of 5,000 images of 50 semantic catego-
ries from the COREL data set. It is a large and heterogeneous image
set. In this work, we combine a 64-dimensional color histogram
and a 64-dimensional color texture moment (CTM) [31] to repre-
sent the images. The color histogram is calculated using 4� 4� 4
bins in HSV space. CTM, which was proposed by Yu et al. [31],
integrates the color and texture characteristics of the image in a
compact form. CTM adopts local Fourier transform as a texture
representation scheme and derives eight characteristic maps for
describing different aspects of co-occurrence relations of image
pixels in each channel of the (SVcosH, SVsinH, and V) color space.
Then, CTM calculates the first and second moments of these maps
as a representation of the natural color image pixel distribution.
Please see [31] for details.

5.3 Evaluation Settings

We use precision-scope curve and precision rate [32] to evaluate the
effectiveness of the image retrieval algorithms. The scope is speci-
fied by the number N of top-ranked images presented to the user.
The precision is the ratio of the number of relevant images pre-
sented to the user to the scope N . The precision-scope curve
describes the precision with various scopes and thus gives the
overall performance evaluation of the algorithms. On the other
hand, the precision rate emphasizes the precision at a particular
value of scope. In general, it is appropriate to present 20 images on
a screen, and thus the precision at the top 20 is especially
important.

We perform five fold cross validation to evaluate the algo-
rithms. More precisely, we divide the whole image database
into five subsets with equal size. Thus, there are 20 images per
category in each subset. At each run of cross validation, one sub-
set is selected as the query set, and the other four subsets are
used as the database for retrieval. The precision-scope curve
and precision rate are computed by averaging the results from
the five-fold cross validation.

We designed an automatic feedback scheme to model the
retrieval process. For each submitted query, our system retrieves
and ranks the images in the database. The top 10 ranked images
were selected as the feedback images, and their label information
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(relevant or irrelevant) is used for re-ranking. Since relevance feed-
back image retrieval is essentially a semi-supervised learning prob-
lem, we apply the LapRLS algorithm [15] to rank the images.
Specifically, for a particular query, when the user feedback of
“relevant” and “irrelevant” tags are given on some images, they
are labeled as þ1 and �1, respectively. Then the LapRLS algorithm
is trained with those labels to distinguish between relevant and
irrelevant images. In other words, the regression outputs are used
to rank the candidate images. Note that the images that have been
selected at previous iterations are excluded from later selections.
For each query, the automatic relevance feedback mechanism is
performed for four iterations.

In order to reduce the computational complexity, we do not
take all the images in the database to compute the projection
matrix. Instead, we only take the top 300 images at the previous
retrieval iteration, plus the labeled images, to find the optimal pro-
jection. We empirically set the two parameters �1 and �2 to 10�4.
The same �1 and �2 are used in AOP and LapRLS. For dimension-
ality, we run the algorithms for all the 2 to 50 dimensions and
report the best results.

5.4 Image Retrieval Performance

In the real world, it is not practical to require the user to provide
many rounds of feedback. The retrieval performance after the first
round of feedbacks is the most important. Table 1 shows the

precision at the top 20 after the first round of feedbacks for all the
50 categories. The baseline method describes the initial retrieval
result without feedback information. Specifically, at the beginning
of retrieval, the Euclidean distances in the original 128-dimen-
sional space are used to rank the images in the database. After the
user provides relevance feedbacks, the AOP, ARE, SSP, and LPP
algorithms are then applied to re-rank the images in the database.
As can be seen, among all the 50 categories, AOP performs the
best on 43 categories. The average retrieval precisions for AOP,
ARE, SSP and LPP are 65.3, 57.7, 56.2, and 49.4 percent, respec-
tively. Comparing to the second best algorithm, that is, ARE, our
AOP algorithm achieves 7.6 percent improvement. Moreover, it
would be important to note that, on all the 50 categories, our algo-
rithm performs better than the baseline approach. However, for
the other algorithms, on some categories, they may perform even
worse than the baseline approach which does not use any rele-
vance feedbacks. The reason is because AOP is explicitly designed
for LapRLS, and thus when combined with LapRLS, it delivers the
best result.

Fig. 1 shows the average precision-scope curves of the different
algorithms for the first four feedback iterations. As can be seen, our
AOP algorithms performs much better than the other three algo-
rithms on the entire scope. After the first feedback iteration, LPP
performs the worst. ARE performs slightly better than SSP, espe-
cially when the scope is small. After the second feedback iteration,

TABLE 1
Precision at Top 20 Returns of the 4 Algorithms after the 1st Feedback Iteration (Mean%)

Category Baseline AOP ARE LPP SSP Category Baseline AOP ARE LPP SSP

KungFu 99.3 99.8 99.8 99.8 99.8 Stamp 38.2 70.5 61.7 52.0 66.2
Cards 94.0 99.3 98.3 99.8 99.3 Bus 38.5 58.2 45.8 35.0 43.0
Dinosaur 87.8 98.7 98.5 97.2 99.3 Race Car 39.0 60.3 47.5 27.2 48.2
Fitness 85.8 95.8 90.8 96.7 91.0 Doll 37.5 50.0 45.5 32.0 32.0
Easter Egg 83.3 95.7 70.7 88.7 66.7 Old Car 35.3 55.5 49.8 36.5 47.3
PostCard 73.0 94.8 93.8 89.5 94.2 Tropical fish 40.0 58.2 46.5 40.5 42.7
Dish 67.5 92.5 79.5 90.0 87.5 Sunset 33.5 56.5 54.8 44.3 52.8
Horse 74.0 95.0 88.5 90.8 89.8 Leopard 51.0 71.5 48.7 44.0 45.8
owl 79.2 80.3 80.3 80.3 80.3 elephant 32.2 49.5 43.3 43.2 39.8
Flag 55.5 82.0 78.5 70.0 82.0 Surfing 32.5 47.0 45.8 25.5 45.8
Rodeo 53.3 82.8 59.7 58.5 67.5 Butterfly 28.5 55.0 50.3 33.5 46.3
Indoor decorate 51.7 74.8 53.0 45.7 48.0 Cat 24.8 45.0 46.8 31.3 38.8
Fruit 43.5 74.8 61.0 57.0 66.8 Lion 32.5 52.5 45.8 40.5 42.8
Cuisine 62.0 78.8 63.3 63.0 63.3 Bobsled 21.5 42.3 36.0 18.5 36.5
Antique 44.3 66.8 56.3 48.5 51.2 Ship 39.0 57.0 54.5 35.3 45.5
Tools 44.7 75.3 57.7 43.0 57.3 Bonsai 31.3 49.0 43.5 33.5 40.5
drink 36.3 71.3 68.0 40.5 69.5 Marble 26.3 49.3 53.5 40.5 44.0
Mosaic 44.3 67.2 61.0 57.5 60.5 Waves 31.5 55.3 52.3 22.0 48.8
Pyramid 43.0 70.0 67.3 58.0 63.5 Canvas 28.0 46.8 45.0 40.0 39.5
Firework 45.0 77.8 74.3 64.3 68.7 Tiger 38.5 47.3 35.5 26.0 24.8
flower 28.5 67.0 54.8 44.0 55.8 Orbit 23.8 40.8 36.0 28.0 39.5
Gun 46.2 63.0 51.0 47.7 52.0 Balloon 22.2 36.5 29.8 19.7 30.0
Mask 52.5 72.3 57.3 45.0 64.5 Train 25.5 39.3 33.0 15.5 30.2
Cell 38.5 71.0 62.5 47.2 62.2 Eagle 19.0 31.5 34.3 18.3 27.3
Mountain 53.3 62.5 45.3 39.5 48.5 Wolf 37.8 38.2 33.8 35.0 25.3

Fig. 1. The average precision-scope curves of different algorithms for the first four feedback iterations. The AOP algorithm performs the best on the entire scope.
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the performance of both AOP, ARE and LPP increases signifi-
cantly. ARE consistently outperforms SSP and LPP is only slightly
worse than SSP. After the third and forth iterations, both ARE and
LPP outperform SSP. All of these four algorithms AOP, ARE, SSP,
and LPP are significantly better than the baseline, which indicates
that the user-provided relevance feedbacks are very helpful in
improving the retrieval performance. By iteratively adding the
user’s feedbacks, the corresponding precisions (at the top 10, top
20, top 30, and top 50) of the four algorithms are, respectively,
shown in Fig. 2. We can see that our AOP algorithm performs the
best for all the cases. The performance improves significantly as
the number of relevance feedbacks increases. For precision at
top 20, the retrieval precision increases from 45.7 to 90.1 percent
after six feedback iterations. For ARE and LPP, the retrieval preci-
sions increase from 45.7 to 80.7 percent and 81.3 percent, respec-
tively. For SSP, there is no convincing evidence that it can take full
advantage of more relevance feedbacks.

5.5 Parameter Selection

In this section, we evaluate the sensitivity of our algorithm with
respect to the two parameters �1 and �2. We run the same five-fold
cross validation with different values of the parameters. The aver-
aged precisions at top 20 are shown in Figs. 3a and 3b. Specifically,

in Fig. 3a, we fix �2 ¼ 10�4 as in previous experiments and let �1

vary; In Fig. 3b, we fix �1 ¼ 10�4 as in previous experiments and
let �2 vary. As we can see, our algorithm is quite stable with respect
to the two parameters in a wide range.

6 CONCLUSIONS

This paper presents a novel linear dimensionality reduction algo-
rithm, called A-Optimal Projection, from the perspective of statisti-
cal design. Unlike traditional linear dimensionality reduction
algorithms which are not directly related to the classification task,
our approach aims to minimize the prediction error of a regression
model while reducing the dimensionality. In comparison with
three state-of-the-art methods, the experimental results validate
that the new method achieve significantly higher accuracy for
image retrieval.
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