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Abstract—In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution

from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rateOð1=�T Þ,
but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization

(SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability

bounds can only attainOð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ with d is the failure probability, which is much worse than the expected convergence rate. To

address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel

powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete

algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the

theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of

sparse learning and at the meantime we can improve the high probability bound to approximately Oðlog ðlog ðT Þ=dÞ=�T Þ.

Index Terms—Sparse learning, stochastic optimization, stochastic composite optimization

Ç

1 INTRODUCTION

STOCHASTIC Composite Optimization (SCO) methods
have attracted considerable interests over the past few

years [1], [2], [3], [4], [5]. They have already constituted an
important class in Convex Optimization family, due to their
inherently different flavor than traditional convex optimiza-
tion and their desirable features in large scale machine
learning, such as low computational complexity (per itera-
tion) and low memory requirement. They aim to efficiently
solve the following problem in a stochastic manner:

min
w2W

fðwÞ ¼ F ðwÞ þCðwÞ; (1)

where F ðwÞ ¼ Ez¼ðx;yÞ�PXY
fðw; zÞ½ �, W is a convex domain

for the feasible solutions, fðw; zÞ is a convex loss function in

W, CðwÞ is a regularizer that controls the complexity of the
learned predictor w, and PXY is a joint distribution for the
input pattern x and the output variable y. SCO methods are
first-order methods [6, Section 1.1.2] and they are designed
for the cases when calculating the gradient of F ðwÞ is intrac-
table, such as when PXY is unknown.

In this paper, we focus on one important special case of
SCO, in whichCðwÞ is a sparsity-inducing regularizer, such
as the ‘1 norm for sparse vectors and the trace norm for low
rank matrixes. The goal of this problem is similar to that of
sparse learning or sparse online learning [7], which means
only one training example is processed at each iteration.

Since SCO is included in the general Stochastic Optimiza-
tion (SO) ([8], [9], [10]) family, SO methods for

min
w2W

fðwÞ (2)

can also be used for SCO problems. Unlike SCO methods,
SO methods [8], [9], [11], [12] treat fðwÞ as a whole and
update the intermediate solutions based on the standard
Stochastic Gradient Descent (SGD) method. That is to say,
they obtain a stochastic gradient based on a randomly
sampled training sample and update the solution by

wtþ1 ¼ PW wt � htĝt
� �

at each iteration, where ĝt is the sto-

chastic gradient of fðwÞ, and P is the projection operator of
W. Since SO methods are not designed for sparse learning,
they are short in delivering sparse solutions.

The key idea of most SCO methods [1], [2], [3], [13], [14],
[15] is to introduce the Composite Gradient Mapping [16]
into each iteration. Specifically, given the current intermedi-
ate solution wt, SCO methods update wt by successively
solving a series of problems as follows:

wtþ1 ¼ argmin
w2W

LtðwÞ þ htCðwÞ; (3)
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where LtðwÞ ¼ ðw�wtÞT ĝt þ 1
2 kw�wtk22. Here ĝt is a sto-

chastic gradient of F ðwÞ at wt and it is usually computed as
ĝt ¼ @fðwt; ztþ1Þ, where @ is the gradient (resp. subgradient )

operator for differentiable functions (resp. general convex
function), ztþ1 ¼ ðxtþ1; ytþ1Þ is a randomly sampled training
sample. The main advantage of these approaches is that they
can make use of the structure of the objective function fðwÞ,
by which they can enforce the intermediate solutions to be
what the regularizerCðwÞ prefers. For example, whenCðwÞ
is a sparse regularizer, the intermediate solutions obtained
by (3) are likely to be sparse. Many approaches [3], [17] out-
put the average of the intermediate solutions as the final
solution. Compared to SO methods, it seems that the itera-
tions of SCO are more complex, however, their computa-
tional complexities are comparable, since the subproblem (3)
has a close form solutionwhenCðwÞ is simple [4].

There is a potential problem in the existing SCO meth-
ods: even when CðwÞ is a sparsity-inducing regularizer, the
final solution would not be sparse, especially not exactly
sparse. As we mentioned above, in most of the traditional
SCO methods, the final solution is obtained by taking the
average of the intermediate solutionswt, a procedure which
is referred to as online-to-batch conversion [18], [19]. Thus
even if all the intermediate solutions are sparse, the final
solution may be not sparse, at least not exactly sparse. To
this end, some algorithms [2], [13] were designed recently
by taking the solution in the last iteration as the final solu-
tion. They are always referred to as sparsity-preserving
algorithms [13]. However, they are short in enforcing the
final solution to be exactly sparse. The reason is that they
have to reduce the magnitude of CðwÞ; i.e., ht, rapidly over
the iterations to make the intermediate solutions converge
to the optimal one, thus the effect ofCðwÞ is weakened.

To demonstrate our point, we conduct a simple experi-
ment on a synthetic dataset (see section 5.1 for details). In
Fig. 1, we give the exact sparsity (left), i.e., the percentage of
non-zero entries and ‘1 sparsity (right) curves of the solu-
tions obtained by two well known approaches SO and SCO:
a-SGD [8] that obtains the final solution by a-suffix averag-
ing and ORDA [2] that takes the last solution as the final
prediction model. It is clear that neither of them is able to
obtain exactly sparse solutions, although the ‘1 sparsity of
the solutions is improved over iterations.

In addition, we should note that a simple rounding
method may not help to avoid the limitations above due to
two reasons: 1) the solution wt obtained by SCO is already

subjected to the rounding effect of CðwÞ in the steps of
Composite Gradient Mapping over the iterations, 2) due to
the low convergence speed, SCO methods usually stop
much earlier than they reach optimality. As a result, remov-
ing some of the small entries in the final solution which are
important for the prediction task would make the rounded
solution unreliable. This phenomenon will be demonstrated
in our empirical study (Table 7).

In this paper, we devote ourselves to address the limita-
tions described above. First, we propose a new two-phase
scheme for SCO by introducing a novel sparse online-to-
batch conversion step. Specifically, in phase one, we run a
general SO algorithm to obtain an approximately optimal
solution �w. In phase two, we convert �w into an exactly
sparse solution ew by using our sparse online-to-batch con-
version procedure. And then, we design three concrete algo-
rithms for SCO under this proposed scheme. Compared to
the Composite Gradient Mapping in the existing SCO meth-
ods, our sparse online-to-batch conversion procedure is
much more powerful at enforcing the solution to be exactly
sparse. The best high probability bounds of our methods is
approximately Oðlog ðlog ðT Þ=dÞ=�T Þ, which is much better
than those of the existing SCO methods.

2 RELATED WORK

In this section, we will briefly review the recent work on SO,
SCO and Sparse Online Learning. Just like most of the exist-
ing studies, we will concentrate on not only the sparse
learning abilities of the approaches, but also the two forms
of the convergence rates of these methods when fðwÞ or
F ðwÞ is �-strongly convex, i.e., the expected convergence
rate and the high probability bound (defined in Section 3).

2.1 Stochastic Optimization and Stochastic
Composite Optimization

Most existing SOmethods are derived from the standard SGD
method, which computes the final solution by taking the aver-
age of the intermediate solutions to achieve faster conver-
gence rate. There is a well known expected convergence rate
Oðlog ðT Þ=�T Þ for the standard SGD in [9]. The authors in [9]
improved this rate toOð1=�T Þ by designing a novel algorithm
called “epoch gradient descent” (Epoch-GD), which was
derived from SGD as well. Thus, the standard SGD seems to
be suboptimal. In the recent investigation [8], the researchers
show that when fðwÞ is smooth, the standard SGD can also
attain the optimal rate Oð1=�T Þ, however, in non-smooth
cases, the rate might really beOðlog ðT Þ=�T Þ. Amuch simpler
algorithm called “a-suffix average” was present in [8], which
can reach the optimal convergence rate Oð1=�T Þ. Compared
to the standard SGD, the only difference is that a-suffix aver-
age takes the average of the last part of the intermediate solu-
tions instead of all the solutions as the final output.
Incidentally, in both Epoch-GD and a-suffix average, the high
probability bounds areOðlog ððlogT Þ=dÞ=�T Þ, where 0 < d < 1
is the failure probability. Although both of them achieve the
optimal convergence rate for strongly convex objective func-
tions, they are not designed for sparse learning.

A multitude of SCO methods [2], [3], [13], [15] for Sparse
Learning have been proposed based on the Composite Gradi-
ent Mapping in the recent years. In 2010, Xiao developed a
algorithm called regularized dual average (RDA) [3] to obtain

Fig. 1. The exact sparsity (i.e., the percentage of non-zero entries) (left)
and ‘1 sparsity (right) of the solutions obtained by a-SGD and ORDA
over iterations with � ¼ 0:1; r ¼ 0:1; s2

e ¼ 1.

1224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 6, JUNE 2017



sparse intermediate solutions. He proved that �wT converges
to the optimality w� with the expected convergence
rate Oðlog ðT Þ=ð�TÞÞ and high probability bound

Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ, where �wT ¼ ðPT

t¼1 wtÞ=T , which would

not be sparse. However, there was no theoretical guarantee
on the convergence of wk in [3]. In 2011, Lin [13] proposed a
sparse preserving algorithm SSG and gave the theoretical
guarantee on wk with the expected convergence rate
Oð1=ð�TÞÞ and the high probability bound Oð1=ðd�TÞÞ (for

�-strongly convex F ðwÞ) or Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ (for general

F ðwÞ). However, Oð1=ðd�TÞÞ is no better than

Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ, due to its bad dependence on d. The recent

study [2] improved the expected convergence rate of [3] to
Oð1=ð�TÞÞ and strengthened its sparsity preserving ability by
presenting a similar algorithm termed ORDA, which returns
the last solution as the final predictionmodel. The high proba-
bility bound of ORDA is the same with that of SSG. So we can
see that the high probability bounds of these SCO methods

are all Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ or Oð1=ðd�TÞÞ even when F ðwÞ is

�-strongly convex, which are much worse than those of the
recent SO methods. Although both SSG and ORDA avoid
the problem of taking the average of intermediate solutions,
the learned prediction model is likely to be approximately
sparse instead of exactly sparse.

2.2 Sparse Online Learning

Sparse Online Learning focuses on obtaining a convergent
sequence of sparse solutions that can minimize the learner’s
regret and it is closely related to the sparse recovery prob-
lem [20]. The main difference between them is that sparse
recovery methods [21], [22] are designed for full gradients
instead of stochastic gradients, and therefore are inapplicable
to our case.Most of the existing approaches [7], [23] for Sparse
Online Learning try to obtain sparse solutions by composite
gradient mapping or other rounding processes. However,
they always fail to learn an exactly sparse predictor due to the
limitations of the online-to-batch conversion. More impor-
tantly, low-frequency features would tend to be truncated in
most of the existing methods, which make it difficult to use
these features for prediction [24]. In addition, although the
goals of Sparse Online Learning and our problem are similar,
their settings are slightly different, for example Online Sparse
Learning does not require any distributional assumptions.

At last, we should point out that this journal paper is an
extension of our own previous work [5].

3 PRELIMINARY AND NOTATION

Definitions. The following widely used definitions in SCO
works are adopted to analyze our methods properly:

� Expected convergence rate: the convergence rate of
EðfðwoutÞ � fðw�ÞÞ, where wout is the output of an
algorithm after T iterations and w� ¼
argminw2WfðwÞ.

� High probability bound: a positive variable �ðT; dÞ
satisfies ProbðfðwoutÞ� fðw�Þ > �ðT; dÞÞ < d.

Notations and Assumptions. First, similar to most of the exist-
ing work, like [5], we assume that the loss function fðw; zÞ is
G-Lipschitz continuous, �-strongly convex and also
L-smooth throughout this work. Then, our study is done

under the SCO scheme, which means that we will randomly
sample a training sample z ¼ ðx; yÞ at each iteration, and
obtain a Stochastic Gradient ĝ ¼ @fðw; zÞ based on the sam-
pled example.We update our solution ew after receiving each
training sample zt.

Goal. We want to find the predictor ew efficiently having
the property that on one hand minimizes the objective fðwÞ
and on the other hand is as sparse as possible.

4 OUR STOCHASTIC OPTIMIZATION SCHEME FOR

SPARSE LEARNING

As we mentioned in the introduction section, our SCO
scheme is comprised of two phases: 1) learn an approxi-
mately optimal solution �w by using a SO method, 2) refine
�w into the final exactly sparse solution ew through a novel
online-to-batch conversion procedure. In this section, we
will present three specific approaches, OptimalSL, LastSL
and AverageSL, under this scheme and analyze their per-
formances respectively. The first one is a general algorithm,
which can be combined with all the existing methods. The
other two are based on the standard SGDmethod.

Before giving the detail steps of our methods, we would
like to note here that the convergence of EðfðwoutÞ � fðw�ÞÞ
can not guarantee the quality of the solution of a single run,
sincewe can construct a sequence of nonnegative randomvar-
iableswhosemeans converge to zero but variances go to infin-
ity. The high probability bound is much more accurate and
meaningful since it evaluates the reliability of an algorithm in
a probabilistic way. And it can be used to evaluate the vari-
ance since the holding of the inequality VarðfðwoutÞÞ �
EððfðwoutÞ � fðw�ÞÞ2Þ. For this reason and the space limita-
tion,we only give the high probability bounds in ourwork.

Algorithm 1. Sparse Learning Based on Existing SO
Methods

1: Input: strong convexity � > 0, smoothness L > 0, tradeoff

parameter 0 < a < 1, training examples fzt ¼ ðxt; ytÞgTt¼1,
and a Stochastic Composite Optimization algorithm A.

2: Run A with the first ð1� aÞT training examples to obtain
approximately optimal solution �w1�a, i.e., �w1�a ¼
Að�; L; ð1� aÞT Þ.

3: // Sparse online-to-batch conversion:
4: Compute the average gradient at �w1�a using the remaining

aT training examples

�ga1�a ¼ 1

aT

XT
i¼1þð1�aÞT

rfð �wð1�aÞ; ziÞ

5: Compute the final solution ew as

ew ¼ argmin �ga1�a;w
� �þ L

2
w� �w1�ak k2þCðwÞ (4)

6: Return: ew
4.1 Sparse Learning Based on Existing SO Methods

Our first approach is a general algorithm that canmake use of
existing methods to get an approximately optimal solution
and we named it OptimalSL. Its detailed steps are given in
Algorithm 1. In phase one, we run an existing SO algorithmA
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to get an approximately solution �w1�a with ð1� aÞT training
examples. Phase two is a novel sparse online-to-batch conver-
sion. It first calculates the gradient of F ðwÞ at �w1�a based on
the rest aT training examples. Then it refines �w1�a into ew by a
composite gradient mapping (4), which has an explicit solu-
tionwhen the regularizerCðwÞ is simple, such as ‘1 norm.

As shown in Algorithm 1, there is a parameter a in
our approach. It is introduced to balance SO and online-
to-batch conversion. The mechanism of how it acts is
given in the theoretical analysis below.

One important thing we should note here is that we use
the original sparse regularizer CðwÞ without reducing its
size in the composite gradient mapping (4), while in most
existing SCO methods it vanishes rapidly over iterations.
This difference would lead to an exactly sparse solution ew.
It is particularly clear when CðwÞ ¼ bkwk1. If we note
v ¼ L �w1�a � �ga1�a, then the solution of (4) can be given by

½ew�i ¼
0; if j½v�ij < b

1
L ½v� bsgnðvÞ�i; else

�
½ew�i would be exactly 0 when j½v�ij < b, our point is thus
confirmed.

Another important thing is that the online-to-batch
conversion step is quit different from a simple rounding
approach and the gradient �ga1�a is important to ensure
that the final sparse solution ew also minimizes the objec-
tive function fðwÞ. This is justified by the theorem
below.

Before giving the main theoretical bound, we require
that the method A we used in our algorithm has the
recent optimal high probability bound. In particular, we
choose lemma 2 in [8] as our requirement:

Requirement 1. For any d 2 ð0; 1=eÞ and T � 4, then it
holds with probability at least 1� d, that for any t � T ,

we have fð �w1�aÞ � fðw�Þ �
�
C2 log ðlog ðð1� aÞT Þ=dÞG2

�
=
�
�ð1� aÞT� for some constant C2.

Theorem 1. Suppose the loss function fðw; zÞ is G-Lipschtiz
continuous, �-strongly convex and L-smooth. Assume A is an
optimal SCO algorithm that satisfies our Requirement 1 above.
Let d 2 ð0; 1=eÞ and assume T � 4. Then it holds with proba-
bility at least 1� 2d that

fðewÞ � fðw�Þ

� C2 log ðlog ðð1� aÞT Þ=dÞG2

�ð1� aÞT þ 64G2ðlog ð2=dÞÞ2
aT

:

We need the following two lemmas from [9] and [25]
respectively to derive Theorem 1,.

Lemma 1. Let fðWÞ be a �-strongly convex function over the
domain W, and w� ¼ argminw2WfðwÞ. Then, for any
w 2 W, we have

fðwÞ � fðw�Þ � �

2
kw�w�k2:

Lemma 2. Let H be a Hilbert Space and let � be a random vari-
able on ðZ; rÞ with values inH. Assume k�k � B < 1 almost
surely. Let f�igmi¼1 be independent random draws of r. For any
0 < d < 1, with a probability at least 1� d,

��� 1

m

Xm
i¼1

�
�i � E½�i�

���� � 4Bffiffiffiffiffi
m

p log
2

d
:

Proof of Theorem 1.
First, due to the L-strongly convex of the function

hðwÞ , �ga1�a;w
� �þ L

2 w� �w1�ak k2þCðwÞ and the defini-

tion of ew, by applying Lemma 1 to hðwÞ, we can get:

�ga1�a; ew� �þ L

2
ew� �w1�ak k2þCðewÞ

� �ga1�a; �w1�a

� �þCð �w1�aÞ � L

2

�� �w1�a � ew��2: (5)

Then, since F ðwÞ is L-smooth, we have:

fðewÞ ¼ F ðewÞ þCðewÞ
� F ð �w1�aÞ þ rF ð �w1�aÞ; ew� �w1�ah i
þ L

2

��ew� �w1�a

��2 þCðewÞ

¼ F ð �w1�aÞ þ �ga1�a; ew� �w1�a

� �þ L

2

��ew� �w1�a

��2
þCðewÞ þ rF ð �w1�aÞ � �ga1�a; ew� �w1�a

� �
�
ð5Þ

F ð �w1�aÞ þCð �w1�aÞ � L

2

�� �w1�a � ew��2
þ rF ð �w1�aÞ � �ga1�a; ew� �w1�a

� �
� F ð �w1�aÞ þCð �w1�aÞ � L

2

�� �w1�a � ew��2
þ 1

2L

��rF ð �w1�aÞ � �ga1�a

��2 þ L

2

��ew� �w1�a

��2
¼ fð �w1�aÞ þ 1

2L

��rF ð �w1�aÞ � �ga1�a

��2:
Since

��rF ð �w1�aÞ � �ga1�a

��2 ¼ �� 1
aT

PaT
i¼1ðrF ð �w1�aÞ � ĝð �w1�a; iÞÞ

��2,
by using lemma 2 under our G-Lipschitz assumption, we
get, it holds with probability at least 1� d that��rF ð �w1�aÞ � �ga1�a

��2 � �64G2ðlog ð2=dÞÞ2=ðaT Þ�:
Finally, we have with probability at least 1� 2d:

fðewÞ � fðw�Þ

� C2 log ðlog ðð1� aÞT Þ=dÞG2

�ð1� aÞT þ 64G2ðlog 2
d
Þ2

aT tu
Theorem 1 tells us that the high probability bound of

our Algorithm 1 roughly equals to Oðlog ðlog ðT Þ=dÞ=�T Þ,
which is the same with the SO methods [8], [9] and
much better than the recent SCO works [2], [13]. Just as
we mentioned above, the parameter a indeed plays a
balance role between the loss of A and the loss of sparse
online-to-batch conversion: a small a will lead to a small
error in SO but a large error in phase two.

4.2 Sparse Learning Based on the Last Solution

There is a potential drawback in Algorithm 1 that the train-
ing examples are underused, which is verified in Fig. 6.
Only a portion of training examples are used by the SO
method A to compute �w1�a, and the rest training examples
are only used to estimate the gradient at �w1�a. In this
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subsection, we propose a new approach called LastSL to
address this limitation.

This approach is also under our two-phase scheme.
The detailed steps are given in Algorithm 2. In phase one,
we run the SGD algorithm using all the training exam-
ples, and save wT in the last iteration as the approximate
solution. In phase two, we apply an online-to-batch con-
version procedure, similar to Algorithm 1, based on the
last aT stochastic gradients in phase one to compute the
final sparse solution ew. a here is introduced to decide
how many training examples are used in phase two.

The main difference with Algorithm 1 is that Algorithm 2
uses all the training examples to learn the approximate solu-
tion wT while Algorithm 1 only utilizes the first ð1� aÞT
training examples to learn �w1�a. It would lead to a better
usage of training examples. In addition, since a similar con-
version procedure is applied in phase two, we have reasons
to believe that our final solution ew would also be exactly
sparse. These properties are confirmed by the theorembelow.

Algorithm 2. Sparse Learning Based on the Last Solution

1: Input: strong convexity � > 0, smoothness L > 0, ratio

0 < a < 1, and training examples fzt ¼ ðxt; ytÞgTt¼1,
2: Initializew1 ¼ 0
3: for t ¼ 1 to T do
4: Compute the stochastic gradient ĝt ¼ rfðwt; ztÞ
5: Update

wtþ1 ¼ PW wt � htðĝt þ @CðwtÞ
� �

where ht ¼ 1=ð�tÞ.
6: end for
7: // Sparse online-to-batch conversion:
8: Compute

ew ¼ argminhĝa;wi þ Lkw�wTk2 þCðwÞ
where

ĝa ¼ 1

aT

XT
t¼ð1�aÞTþ1

rfðwt; ztÞ

9: Return: ew
Theorem 2. Let d 2 ð0; 1=eÞ, d is the length of vector gt and

assume T � 4. Suppose the loss function fðw; zÞ isG-Lipschtiz
continuous, �-strongly convex and L-smooth. Then, with a
probability at least 1� 2d, we have

fðewT Þ � fðw�Þ � 2C3 log ðlog ðT Þ=dÞG2L

�2T

þ C3 log ðlog ðT Þ=dÞG2L

2ð1� aÞ�2T
þ 4G2 log ððdþ 1Þ=dÞ

aTL
:

To derive Theorem 2, we need the following Lemma 3 [26].

Lemma 3. (Rectangular Matrix Freedman) Consider a matrix
martingale fYk : k ¼ 0; 1; 2; :::g whose values are matrices
with dimension d1 	 d2, and let fXk : k ¼ 1; 2; 3:::g be the dif-
ference sequence. Assume that the difference sequence is uni-
formly bounded in the sense that

kXkk � R almost surely for k ¼ 1; 2; 3 . . . :

Define two predictable quadratic variation processes for this
martingale:

Wcol;k :¼
Xk
j¼1

Ej�1ðXjX
�
j Þ and

Wrow;k :¼
Xk
j¼1

Ej�1ðX�
jXjÞ for k ¼ 1; 2; 3 . . .

Then, for all p � 0 and s2 > 0, we have

Pf9k � 0 : kYkk � p and maxfkWcol;kk;
��Wrow;kkg � s2g �

ðd1 þ d2Þexpf�ðp2=2Þ= ðs2 þRp=3Þg
Proof for Theorem 2.

Due to the L-strongly convex of the function hðwÞ ,
hĝa;wi þ Lkw�wTk2 þCðwÞ and the definition of ew,
by applying Lemma 1, we have

hĝa; ewT i þ L
��ewT �wT

��2 þCðewT Þ
� hĝa;w�i þ L

��w� �wT

��2 þCðw�Þ � L
��w� � ewT

��2:
(6)

Analyze as we did in Theorem 1, we have:

F ðewT Þ þCðewT Þ
� F ðw�Þ þ hg�; ewT �w�i þ L

2

��ewT �w�
��2 þCðewT Þ

¼ F ðw�Þ þ hĝa; ewT �w�i þ L

2

��ewT �w�
��2

þ hg� � ĝa; ewT �w�i þCðewT Þ
� F ðw�Þ þ hĝa; ewT �w�i þ L

��ewT �wT

��2
þ L

��wT �w�
��2 þ hg� � ĝa; ewT �w�i þCðewT Þ

�
ð6Þ

F ðw�Þ þCðw�Þ þ L
��w� �wT

��2 � L
��w� � ewT

��2
þ L

��wT �w�
��2 þ hg� � ĝa; ewT �w�i

� F ðw�Þ þCðw�Þ � L
��w� � ewT

��2 þ 2L
��wT �w�

��2
þ ��g� � ĝa

����ewT �w�
��

� F ðw�Þ þCðw�Þ � L
��w� � ewT

��2 þ 2L
��wT �w�

��2
þ 1

4L

��g� � ĝa
��2 þ L

��ewT �w�
��2

¼ F ðw�Þ þCðw�Þ þ 2L
��wT �w�

��2 þ 1

4L

��g� � ĝa
��2:

Then, denoting gt ¼ rF ðwtÞ, we have:

fðewT Þ � fðw�Þ

� 2L
��wT �w�

��2 þ 1

2L

	��� 1

aT

XT
t¼ð1�aÞTþ1

ðg� � gtÞ
���2

þ
��� 1

aT

XT
t¼ð1�aÞTþ1

gt � ĝt

���2


� 2L
��wT �w�

��2 þ L

2aT

XT
t¼ð1�aÞTþ1

��w� �wt

��2
þ 1

2L

��� 1

aT

XT
t¼ð1�aÞTþ1

gt � ĝt

���2:
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Since gt � ĝt is a martix martingale difference sequence
with R ¼ 2G, so we can use lemma 3. We can see that

maxf��Wcol;k

��; ��Wrow;k

��g � 4aTG2, for any k � aT , we set

s2 ¼ 4aTG2 and p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8G2aT log ððdþ 1Þ=dÞp

, we have��PT
t¼ð1�aÞTþ1 gt � ĝt

��2 � p2 ¼ 8G2aT log ððdþ 1Þ=dÞ
holds with probability at least 1� d.

At last, using [8, Proposition 1] to bound the first two
items, we get it holds with probability at least 1� 2d:

fðewT Þ � fðw�Þ

� 2L
C3 log ðlog ðT Þ=dÞG2

�2T
þ L

2

C3 log ðlog ðT Þ=dÞG2

ð1� aÞ�2T

þ 1

2L

8G2 log ððdþ 1Þ=dÞ
aT

� �
¼ 2C3 log ðlog ðT Þ=dÞG2L

�2T
þ C3 log ðlog ðT Þ=dÞG2L

2ð1� aÞ�2T

þ 4G2 log ððdþ 1Þ=dÞ
aTL tu

The form of the high probability bound in Theorem 2 is
similar to that in Theorem 1. From the proof above, we can see
that the parameter a allows us to balance the tradeoff among
the variance, prediction accuracy and the computational cost.
The larger a, the lower accuracy, the smaller variance and the
higher computational cost in online-to-batch conversion.

Algorithm 3. Sparse Learning Based on the Average
Solution

1: Input: strong convexity � > 0, smoothness L > 0, ratio

0 < a < 1, and training examples fzt ¼ ðxt; ytÞgTt¼1,
2: Initializew1 ¼ 0
3: for t ¼ 1 to T do
4: Compute the stochastic gradient ĝt ¼ rfðwt; ztÞ
5: Update

wtþ1 ¼ PW wt � htðĝt þ @CðwtÞ
� �

where ht ¼ 1=ð�tÞ.
6: end for
7: // Sparse online-to-batch conversion:
8: Compute

ew ¼ argminhĝa;wi þ L

2
kw� �wak2 þCðwÞ

where

ĝa ¼ 1

aT

XT
t¼ð1�aÞTþ1

rfðwt; ztÞ;

and �wa ¼ 1

aT

XT
t¼ð1�aÞTþ1

wt

9: Return: ew
Nevertheless, there is a potential drawback in Algo-

rithm 2 as well: there is a factor ��2 in the bound of
Theorem 2, while the corresponding factor in Theorem 1 is

��1. It seems that when the parameter � is small, this factor
would make Algorithm 2 worse than Algorithm 1. This phe-
nomenon will be discussed in detail in the next section.

4.3 Sparse Learning Based on the Average Solution

Firstly, wewould like to give some discussion about the limi-
tations in Algorithm 2 in the perspective of the algorithm self
and the theoretical bounds. Then we will design a new
approach calledAverageSL to deal with these weaknesses.

The limitations of Algorithm 2 are:

� The final solution depends heavily on the last solu-
tionwT , which leads to a relatively large variance.

� The factor ��2 in the bound of Theorem 2 is signifi-

cantly worse than the factor ��1 in Theorem 1.
Aiming at the shortages above, we design a new algo-

rithm, whose the detail steps are described in Algorithm 3.
Algorithm 3 is also under our two-phase scheme and

very similar to Algorithm 2. Unlike Algorithm 2, we average
and return a suffix as the approximate solution instead of
returning the last solutionwT , namely

�wa ¼ ðwð1�aÞTþ1 þwð1�aÞTþ2 þ 
 
 
 þwT Þ=ðaT Þ
for some constant a 2 ð0; 1Þ, which plays a similar role as the
corresponding parameter in Algorithm 2. Then, we apply the
online-to-batch conversion procedure based on the average
gradient ĝa to �wa to reach an exactly sparse solution ew.

We present the convergence performance of this algo-
rithm in the theorem below:

Theorem 3. Let d 2 ð0; 1=eÞ, d be the length of vector w� and
assume T � 4. Suppose F ð
Þ is �-strongly convex, L -smooth
and let M be a smooth parameter satisfies that

kr2½rF ðwÞ�ik2 � M, jj 
 jj2 here is the spectral norm. In addi-

tion, we assume f’s stochastic gradient at wt denoted as @f̂t

satisfies that jj@f̂tjj2 � ~G2. Then it holds with probability at
least 1� 2d that for any t � T ,

fðewÞ � fðw�Þ

� C4 log ðlog ðT Þ=dÞ ~G2

�aT
þ C5 log ðlog ðT Þ=dÞ ~G2

�ð1� aÞT

þ C6 log ð1=ð1� aÞÞ ~G2

a�T
þ 8G2 log ððdþ 1Þ=dÞ

aLT

þ C2
3 ðlog ðlog ðT Þ=dÞÞ2G4dM2

�4ð1� aÞ2a2LT 2
:

To derive Theorem 3, we need the lemma bellow, which
is an extension of Lemma 2 in [8].

Lemma 4. Let d 2 ð0; 1=eÞ and assume T � 4. Suppose f is
��strongly convex over a convex set W, and its stochastic gra-

dient @f̂t ¼ rfðwt; ztÞ þ @CðwtÞ satisfies that jj@f̂tjj2 � ~G2.
Then if we pick ht ¼ 1=�t, it holds with probability at least
1� d, that for any t � T ,

fð �waÞ � fðw�Þ � C4 log ðlog ðT Þ=dÞ ~G2

�aT

þ C5 log ðlog ðT Þ=dÞ ~G2

�ð1� aÞT þ C6 log ð1=ð1� aÞÞ ~G2

a�T
;

where C4; C5 and C6 are three constants.

Proof for Lemma 4.
Here, we use @ft to be the gradient of fðwtÞ. Since��wtþ1 �w�

��2 ���wt �w�
��2 � 2ht @ft;wt �w�h i

þ h2t
~G2 þ 2ht @ft � @f̂t;wt �w�

� �
:
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We have

h@ft;wt �w�i � ht
~G2

2
þ h@ft � @f̂t;wt �w�i

þ wt �w�k k2� wtþ1 �w�k k2
2ht

:

Summing over t ¼ ð1� aÞT þ 1; . . . ; T ,we get:

XT
t¼ð1�aÞTþ1

h@ft;wt �w�i

�
XT

t¼ð1�aÞTþ1

ht
~G2

2
þ

XT
t¼ð1�aÞTþ1

h@ft � @f̂t;wt �w�i

þ
XT

t¼ð1�aÞTþ1

��wt �w�
��2 � ��wtþ1 �w�

��2
2ht

:

(7)

Then, we have

fð �wa
T Þ � fðw�Þ

� 1

aT

XT
t¼ð1�aÞTþ1

�
fðwtÞ � fðw�Þ

�
� 1

aT

XT
t¼ð1�aÞTþ1

h@ft;wt �w�i

�
ð7Þ 1

aT

XT
t¼ð1�aÞTþ1

 
ht

~G2

2
þ h@ft � @f̂t;wt �w�i

þ
��wt �w�

��2 � ��wtþ1 �w�
��2

2ht

!

� 1

2aT

 
1

hð1�aÞTþ1

��wð1�aÞTþ1 �w�
��2

þ
XT

t¼ð1�aÞTþ1

��wt �w�
��2� 1

ht
� 1

ht�1

�

þ 2
XT

t¼ð1�aÞTþ1

~G2ht
2

þ h@ft � @f̂t;wt �w�i
!
:

To bound the last term, we consider Zi ¼ hgi � @f̂i;wi�
w�i: gi � @f̂i

�� �� � 2 ~G, so Vari�1ðZiÞ � 4 ~G2 wi �w�k k2.
Also, we have wi �w�k k � 2 ~G=�, thus jZij � 4 ~G2=�.
Using [8, Lemma 3] , we have, as long as T � 4 and
d 2 ð0; 1=eÞ, then with probability at least 1� d; for all
t � T , it holds that

XT
i¼ð1�aÞTþ1

Zi � 8 ~GD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

log ðT Þ
d

� �s
; where

D ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt
i¼ð1�aÞTþ1

wi �w�k k2
vuut ;

~G

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

�
log ðT Þ

d

�s8<:
9=;;

Just by using [8, Proposition 1] to bound the first two
terms, we can immediately get: it holds with probability
at least 1� d that for any t � T��wt �w�

��2 � �624 log ðlog ðT Þ=dÞ þ 1
�
~G2=ð�2tÞ:

In addition, since
PT

t¼ð1�aÞTþ1 ht � log ð1=ð1� aÞÞ=�, and
by combining all the analysis above, we can get:

fð �wa
T Þ � fðw�Þ

� 1

2aT

	 ð624 log ðlog ðT Þ=dÞ þ 1Þ ~G2

�
þ log ð1=ð1� aÞÞ

�

þ aT
ð624 log ðlog ðT Þ=dÞ þ 1Þ ~G2

�ðð1� aÞT þ 1Þ
þ 4GD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ðlog ðT Þ=dÞ

p 

¼ C4 log ðlog ðT Þ=dÞ ~G2

�aT
þ C5 log ðlog ðT Þ=dÞ ~G2

�ð1� aÞT

þ C6 log ð1=ð1� aÞÞ ~G2

a�T
:

tu
Proof for Theorem 3.

First, from the definition of ew and Lemma 1, we have

hĝa; ewi þ L

2

��ew� �wa
��2 þCðewÞ

� hĝa; �wai � L

2

�� �wa � ew��2 þCð �waÞ:
(8)

So, we can get

F ðewÞ þCðewÞ
� F ð �waÞ þ hrF ð �waÞ; ew� �wai þ L

2

��ew� �wa
��2 þCðewÞ

¼ F ð �waÞ þ hĝa; ew� �wai þ L

2

��ew� �wa
��2 þCðewÞ

þ hrF ð �waÞ � ĝa; ew� �wai

�
ð8Þ

F ð �waÞ þCð �waÞ � L

2

�� �wa � ew��2
þ hrF ð �waÞ � ĝa; ew� �wai

� F ð �waÞ þCð �waÞ � L

2

�� �wa � ew��2
þ 1

2L

��rF ð �waÞ � ĝa
��2 þ L

2

��ew� �wa
��2

� F ð �waÞ þCð �waÞ þ 1

2L

��rF ð �waÞ � ĝa
��2:

(9)

Thus, we have:

fðewÞ � fðw�Þ
� fð �waÞ � fðw�Þ þ 1

2L

��rF ð �waÞ � ĝa
��2

� fð �waÞ � fðw�Þ þ 1

a2T 2L

	�� XT
t¼ð1�aÞTþ1

gt � ĝt
��2

þ �� XT
t¼ð1�aÞTþ1

�rF ð �waÞ � rF ðwtÞ
���2
:

(10)

Then, we try to bound the item
���PT

t¼ð1�aÞTþ1

�rF ð �waÞ�
rF ðwtÞ

����2 below. For simplicity, we note fiðwÞ ,
½rF ðwÞ�i from now on and thus�� XT

t¼ð1�aÞTþ1

�rF ð �waÞ � gt
���2

¼
Xd
i¼1

XT
t¼ð1�aÞTþ1

�
fið �waÞ � fiðwtÞ

�0@ 1A2

:
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Without loss of generality, we consider the component

di ,
 XT

t¼ð1�aÞTþ1

�
fið �waÞ � fiðwtÞ

�!2

: (11)

We conduct Taylor Expansion on fið �waÞ and fiðwtÞ at the
optimal solution w�, and note ��t ¼ wt �w� and

��� ¼ 1
aT

PT
t¼ð1�aÞTþ1 ��t ¼ �wa �w�. We can get:

fið �waÞ ¼ fiðw� þ ���Þ ¼ fiðw�Þ þ rfiðw�ÞT���
þ 1

2
���Tr2fiðw� þ �u���Þ��� for some �u 2 ð0; 1Þ

(12)

fiðwtÞ ¼ fiðw� þ ��tÞ ¼ fiðw�Þ þ rfiðw�ÞT ��t
þ 1

2
��Tt r2fiðw� þ ut��tÞ��t for some ut 2 ð0; 1Þ:

(13)

Plug equations (12) and (13) into (11), we can get:

di ¼ aT

2
���Tr2fiðw� þ �u���Þ���� 1

2

XT
t¼ð1�aÞTþ1

��Tt r2fiðw� þ ut��tÞ��t
0@ 1A2

� aTM

2

�� �wa �w�
��2 þM

2

XT
t¼ð1�aÞTþ1

��wt �w�
��20@ 1A2

:

(14)

Plugging the last inequation into (10), we have:

fðewÞ � fðw�Þ

� fð �waÞ � fðw�Þ þ 1

a2T 2L

��� XT
t¼ð1�aÞTþ1

gt � ĝt

���2

þ dM2

4a2LT 2
aT
�� �wa �w�

��2 þ XT
t¼ð1�aÞTþ1

��wt �w�
��28<:
9=;

2

:

Thus, we can use [8, Lemma 1 and Proposition 1] to
bound the items

�� �wa �w�
��2 and ��wt �w�

��2.
Finally, by using Lemma 4 to bound fð �waÞ � fðw�Þ,

and analyse the second item
��PT

t¼ð1�aÞTþ1 gt � ĝt
��2 by

using Lemma 3 as we did in Theorem 2, we can get, it
holds with probability at least 1� 3d that,

fðewÞ � fðw�Þ

� C4 log ðlog ðT Þ=dÞ ~G2

�aT
þ C5 log ðlog ðT Þ=dÞ ~G2

�ð1� aÞT

þ C6 log ð1=ð1� aÞÞ ~G2

a�T
þ 8G2 log ððdþ 1Þ=dÞ

aLT

þ C2
3 ðlog ðlog ðT Þ=dÞÞ2G4dM2

�4ð1� aÞ2a2LT 2 tu
In Theorem 3, we assume the stochastic gradient of f is

bounded by ~G. This assumption is widely used in the exit-
ing work such as [8] and it is acceptable since the magnitude
of the regularizerCðwÞ is always small.

Theorem 3 implies that we can improve one item in
the high probability bound of our Algorithm 2 from

Oðlog ðlog ðT Þ=dÞ=ð�2T ÞÞ to Oðlog ðlog ðT Þ=dÞ=ð�T ÞÞ þ Oððlog
ðlog ðT Þ=dÞ2Þ=ð�4T 2ÞÞ � Oðlog ðlog ðT Þ=dÞ=ð�T ÞÞ. It would be

much better than the bound in Theorem 2 when the itera-
tion number T is large enough. This success is benefited
from the fact that ĝa is a better approximation for @F ð �waÞ
than for @F ðwT Þ. Precisely, ĝa is a second-order approxima-
tion for @F ð �waÞ, which can be seen from (14), while only a
first-order approximation for @F ðwT Þ. So the online-to-batch
conversion in Algorithm 3 in much more accurate.

At last, we point out that our methods are much bet-
ter than the recent methods like ORDA at the high prob-
ability bound, which is demonstrated in Table 1.

5 EXPERIMENTS

Having demonstrated the convergence performances of the
proposed approaches, we now turn to the empirical study.

As we mentioned above, many methods have been pro-
posed in the optimization and machine learning literatures
for minimizing Eq.(1). The baseline algorithms for compari-
son are chosen with the following considerations: they
should cover the recent well-known works on SO, SCO,
online sparse learning and etc. At last, we choose the follow-
ing three well-known algorithms as baselines.

� ORDA [2]: a SCO algorithm that yields the optimal
expected convergence rate Oð1=�T Þ and high proba-

bility bound Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ. And it attaches great

importance to the sparsity of the final solution.
� a-SGD [8]: a simple but effective SO algorithm with

the expected convergence rate Oð1=�T Þ and high
probability bound Oðlog ðlog ðT Þ=dÞ=�T Þ.

� FOBOS [23]: an online sparse learning algorithm
focuses on the sparsity of the solution.

We take a-SGD as the algorithm A in OptimalSL and
divide our experiment section into two parts: experi-
ments on the synthesized datasets and on the real-word
datasets. We evaluate the performance of our approaches
on two aspects: (i) whether the learned ew is close to the
optimal solution, (ii) whether the learned ew is sparse
and recovers most of the relevant features.

5.1 Experiments on the Synthesized Datasets

5.1.1 Experimental Model

Similar to work [2], [27], we solve the optimization problem,
whose object function is comprised of three items: least
square item, ‘2-norm regularizer and ‘1-norm regularizer,

i.e., minw2RdfðwÞ ¼ fðwÞ þ hðwÞ; where fðwÞ ¼ 1
2Ea;bððhw;

ai � bÞ2Þ þ r
2 kwk22 and hðwÞ ¼ �kwk1. a is a random vector

valued in Rd. The response b is generated by b ¼ ha;w�i þ �,

where � is a random noise and w� is a constant vector in Rd.

TABLE 1
Summary of the High Probability Bounds

Methods High Probability Bounds

ORDA Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ð1=dÞ=Tp Þ or Oð1=ðd�T ÞÞ

OptimalSL O log ðlog ðT Þ=dÞ
�T

	 

þO ðlog ð1=dÞÞ2

T

	 

LastSL O log ðlog ðT Þ=dÞ

�2T

	 

þO log ð1=dÞ

T

	 

AverageSL O log ðlog ðT Þ=dÞ

�T

	 

þO log ð1=dÞ

T þO ðlog ðlog ðT Þ=dÞÞ2
�4T2
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The parameters r and � are two constants used to balance
the bias and the simplicity of the model.

5.1.2 Parameter Setting

To describe the parameters clearly, we separate them into
three parts, i.e., for model f�; r; seg, for training dataset
fa; b;w�g and for algorithms fag. First, for the model, we set
the weights � ¼ 0:1; r ¼ 0:1, and vary se in the range of
½1; 2; 3; :::; 10�. Secondly, for the training dataset, we let the
entries of a be independent identically distributed variables
which are sampled from the same uniform distribution

Uð�1; 1Þ. The noise � of the response b is Nð0; s2
eÞ distrib-

uted, and the vector w� satisfies that ½w��i ¼ 1 for 1 � i � d
2

and 0 otherwise. We set d ¼ 100 and 1; 000 to evaluate our
methods both when the dimension is low and relatively
high. In addition, we sample the random variable pair ða; bÞ
from this model 200,000 times when se ¼ 1; d ¼ 100 and
400,000 times otherwise, so the training dataset size N in
our experiment is 200; 000 or 400; 000. At last, we set the
a ¼ 0:3 for a-SGD and our methods.

5.1.3 The Optimal Solution of Our Model

It is easy to verify that under our assumptions above, we
have 1

2Ea;bððaTw� bÞ2Þ ¼ 1
6 kw�w�k22 þ 1

2 s
2
e . Fortunately,

we can calculate both the exact objective function value and
the exact optimal solution w� in this special case, i.e.,

fðwÞ ¼ 1
6 kw�w�k22 þ 1

2 s
2
e þ r

2 kwk22 þ �kwk1 and ½w��i ¼ 7
13

for i � d=2 and 0; otherwise.

5.1.4 Evaluation Metrics

Similar to [13], we evaluate the performances of our algo-
rithms mainly from the following three aspects:

1) the efficiency of our algorithms.
2) the sparsity of the solutions over iterations.
3) the recovery of the support set ofw�.
Specifically, for the efficiency, we calculate the objec-

tive values of all the algorithms over iterations and
give the running time in Tables 2 and 3. For the spar-
sity, we use the following two metrics: the exact den-
sity ratio (ED for short), which is computed as
1
d

Pd
i¼1 Ið½w�i 6¼ 0Þ, and the truncated sparse ratio (TD

for short) computed as 1
d

Pd
i¼1 Iðj½w�ij > �rÞ, where �r is

set to be 10�6. For the recovery of the support set of
w�, we use the widely used metric SSRðwÞ. It is
defined as SSRðwÞ ¼ 2jSðwÞ \ Sðw�Þj=ðjSðwÞj þ jSðw�ÞjÞ,
where SðwÞ is the support set of w composed of the
nonzero components of w, jSðwÞj means the cardinality
of SðwÞ. We run each experiment 100 times and report
the averaged results.

TABLE 2
Numerical Results on ‘1 Regularized Linear Regression

Problem with d=100, � ¼ 0:1; r ¼ 0:1

s2
e ¼ 1 d ¼ 100; N ¼ 200000

Obj ED TD SSR Var time

FOBOS 5.7 0.99 0.99 0.67 3.2e-08 14.8
a-SGD 5.7 1 0.99 0.67 3.3e-08 13.5
ORDA 5.7 0.99 0.5 0.67 1.2e-07 20.8
LastSL 5.7 0.5 0.5 1 7.8e-08 14.2
OptimalSL 5.7 0.5 0.5 1 4.5e-08 13.3
AverageSL 5.7 0.5 0.5 1 3.0e-08 14.2

s2
e ¼ 4 d ¼ 100; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 7.2 1 1 0.67 1.1e-07 29.5
a-SGD 7.2 1 0.99 0.67 2.7e-08 27.2
ORDA 7.2 1 0.5 0.67 1.9e-07 41.9
LastSL 7.2 0.5 0.5 1 4.7e-08 28.3
OptimalSL 7.2 0.5 0.5 1 2.2e-08 26.5
AverageSL 7.2 0.5 0.5 1 3.3e-08 28.3

s2
e ¼ 25 d ¼ 100; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 17.7 1 1 0.67 7.4e-07 29.5
a-SGD 17.7 1 1 0.67 3.0e-07 27.1
ORDA 17.7 1 0.5 0.67 1.6e-06 41.8
LastSL 17.7 0.5 0.5 1 7.2e-07 28.3
OptimalSL 17.7 0.5 0.5 1 2.2e-07 26.4
AverageSL 17.7 0.5 0.5 1 2.4e-07 28.2

s2
e ¼ 100 d ¼ 100; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 55.2 1 1 0.67 1.6e-05 29.6
a-SGD 55.2 1 1 0.67 4.3e-06 27.2
ORDA 55.2 1 0.74 0.67 4.8e-05 41.7
LastSL 55.2 0.57 0.57 0.93 4.9e-06 28.3
OptimalSL 55.2 0.5 0.5 1 4.8e-06 26.4
AverageSL 55.2 0.5 0.5 1 4.5e-06 28.3

TABLE 3
Numerical Results on ‘1 Regularized Linear Regression

Problem with d=1000, � ¼ 0:1; r ¼ 0:1

s2
e ¼ 1 d ¼ 1000; N ¼ 400; 000

Obj ED TD SSR Var time
FOBOS 52.5 1 1 0.67 2.4e-05 41.1
a-SGD 52.5 1 1 0.67 7.0e-06 36.4
ORDA 52.5 1 0.54 0.67 2.5e-05 59.4
LastSL 52.5 0.5 0.5 1 5.5e-06 37.5
OptimalSL 52.5 0.5 0.5 1 5.3e-06 34.9
AverageSL 52.5 0.5 0.5 1 7.4e-06 37.7

s2
e ¼ 4 d ¼ 1000; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 54.1 1 1 0.67 1.9e-05 41
a-SGD 54 1 1 0.67 5.3e-06 36.1
ORDA 54 1 0.55 0.67 4.9e-05 59.1
LastSL 54 0.5 0.5 1 5.6e-06 37.2
OptimalSL 54 0.5 0.5 1 6.6e-06 34.7
AverageSL 54 0.5 0.5 1 6.4e-06 37.4

s2
e ¼ 25 d ¼ 1000; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 64.6 1 1 0.67 9.7e-05 41.3
a-SGD 64.5 1 1 0.67 1.4e-05 36.6
ORDA 64.6 1 0.62 0.67 1.3e-04 59.6
LastSL 64.5 0.52 0.52 0.98 2.1e-05 37.6
OptimalSL 64.5 0.5 0.5 1 9.8e-06 35.1
AverageSL 64.5 0.5 0.5 1 1.1e-05 37.8

s2
e ¼ 100 d ¼ 1000; N ¼ 400000

Obj ED TD SSR Var time
FOBOS 102.4 1 1 0.67 1.8e-04 41.1
a-SGD 102.1 1 1 0.67 9.8e-05 36.3
ORDA 102.3 1 0.84 0.67 6.4e-04 59.5
LastSL 102.2 0.63 0.63 0.88 1.8e-04 37.5
OptimalSL 102.1 0.5 0.5 1 6.7e-05 34.9
AverageSL 102 0.5 0.5 1 4.6e-05 37.6
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5.1.5 Experimental Results

Our experiment results are mainly comprised of two parts:
the quality of the solutions with different iteration times
and the numerical results with the maximal iteration times.

For the first part, we show the objective function’s value,
ED, TD and SSR of the solutions obtained by these algo-
rithms under different noise level se and different dimen-
sions after different iteration times in Figs. 2, 3, 4, and 5.

From Fig. 2, we observe that the three proposed algo-
rithms are comparable to, if not better than, the baselines in
reducing the value of the objective function over iterations.

In Figs. 3 and 4, the curves of our methods decrease rap-
idly, while the compared algorithms decrease much more
slowly or even do not decrease at all. So our algorithms out-
perform the baselines at sparse recovery ability.

The SSR curves in Fig. 5 show that our methods can not
only make the solutions more and more sparse over itera-
tions, but also recover most of the elements in Sðw�Þ.

More importantly, the results in Fig. 4 show that our
methods are much more robust to noise than others. The
difference between the figures (a) and (b) also reflects that
our methods are more insensitive to data dimension.

For the second part, we summarizes the evaluation
results of different algorithms with the maximal iteration
times in Tables 2 and 3. They show that besides yielding
comparable value for the objective function, the solutions
found by our algorithms are significantly sparser than the
ones found by the baseline algorithms. The variances of our
methods OptimalSL and AverageSL are much smaller than
ORDA and FOBOS, which is consistent with our high prob-
ability bounds in the last section.

Tables 2 and 3 also demonstrate that our methods are
more powerful when dealing with the data with high noise
level. The baseline algorithms can not learn sparse solutions
when the data is noisy, especially in high dimensional prob-
lems, while ourmethods still workwell.

Fig. 2. Objective values over iterations with parameter r=0.1, �=0.1 and d=100 (a) and d=1,000 (b).

Fig. 3. Exact density ratio over iterations with parameter r=0.1, �=0.1 and d=100 (a) and d=1,000 (b).

Fig. 4. Truncated density ratio over iterations with parameter r=0.1, �=0.1 and d=100 (a) and d=1000 (b).
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As we discussed in the subsection “Sparse Learning
based on the Last Solution” that our approach Opti-
malSL can not make use of the training examples to the
fullest, this phenomenon will be more obvious in high
dimensional problems. To confirm this point, we conduct
an extra experiment to compare the performances of our
three approaches when d ¼ 1; 000; N ¼ 10; 000. Other
parameters are the same with the experiments above.
We show the results in Fig. 6. It is obvious that the
objective value of OptimalSL decreases more slowly than
AverageSL and LastSL, which is consistent with our
analysis.

In a word, our methods are superior to other methods at
the aspect of sparse recover ability and they are much more
robust to the noise and dimension. In addition, our three
methods have similar performances and it is hard to say
which is the best, especially for OptimalSL and AverageSL.
It may results from the fact that our model here is relatively
simple, so our methods are all adequate for this task.

5.2 Experiments on Real-World Dataset

5.2.1 Dataset

To further demonstrate the effectiveness of our methods, we
conduct binary classification experiments on some widely
used real-word datasets with high dimensions. We gather
these data sets from the project page of LibSVM[28]. The
brief descriptions of the datasets are given in Table 4.

Since we intend to conduct binary classification experi-
ments, for MNIST, we select some pairs of digits 0-9 as a
new datasets. In addition, the training dataset of rcv1.binary
is much smaller than its testing dataset, so we use testing
data for training and training data for testing.

5.2.2 Data Preprocessing

Some components of the data points are relatively large, like
more than 100. Since there is an exponential function in our
model, it would be easily to overflow if we just use the raw
data directly. To address this problem, we normalize all the
components of the feature vectors into the interval [0,1]
before training.

5.2.3 Experimental Model and Parameter Setting

We adopt the logistic regression model in our experiments to
do binary classification for its good performance inmany real
applications. Following the experiment design of [3], [29], we
use the ‘1-norm regularized logistic regression model to eval-
uate the sparse leaning abilities of our methods. Specifically,
we set the loss function as fðew; zÞ ¼ log ð1þ exp

ð�yðwTxþ bÞÞÞ þ r
2 kewk22, where w 2 Rd, b is the model bias

and ew ¼ ½w; b�. It is straightforward to verify that fðew; zÞ is a
r-strongly convex and smooth loss function. We set the spar-
sity-inducing regularizer CðwÞ ¼ �kwk1. The parameter a is
set to be 0:3 for both a-SGD and our algorithms. At last, we
choose different r and � for different datasets to make the
model reaches a good classification performance for each
dataset. The concrete values of the parameters including r, �
can be seen in the result figures and tables.

5.2.4 Evaluation Metrics

We use objective value (Obj), test error (TE), exact den-
sity ratio, truncated density ratio (TD) and the variance
of the experimental loss (Var) to evaluate the prediction
models learned by different methods. The threshold of
TD here is also 10�6. We iterate at most 100,000 times
and run each algorithm 100 times with independent ran-
dom shuffles of training examples and at last report the
averaged results.

To show the relevance between the selected features and
our classification task, we visualize the sparse patterns of
the learned prediction models of MNIST in gery-level

Fig. 5. SSR over iterations with parameter r=0.1, �=0.1 and d=100 (a) and d=1000 (b).

Fig. 6. The performance comparison of our three methods when
d=1,000, r=0.1, �=0.1 and se=1 (left) and 10 (right).

TABLE 4
Descriptions of the Datasets

Datasets Dimensions # of training # of testing classes

rcv1.binary 47,236 20,242 677,399 2
gisette 5,000 6,000 1,000 2
MNIST 784(28	 28) 60,000 10,000 10
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images. Specifically, we create a new vector ew0 for a learned
solution ew as follows

½ew0�i ¼
0:5 ½ew�i < 0
1 ½ew�i > 0
0 ½ew�i ¼ 0:

8<:
We then reshape ew0 into a matrix in the size of 28	 28 and
visualize it as a grey-level image. Evidently, the larger the
black area in the grey-level image, the sparser the solution
is. At last, we show the images for the prediction models
learned by different algorithms under different parameters
for classifying the digits 2 and 3 in Fig. 7.

5.2.5 Experimental Results

Due to the space limitation, we only report the results for
classifying digits 2 and 3 in MNIST and rcv1.binary. All the
other results can be found in the supplementary document.

On one hand, ED and TD in Tables 5 and 6 show that our
methods can improve the sparsity of solutions significantly,
and achieve comparable test errors. It is further confirmed
by the grey-level images shown in Fig. 7, in which the solu-
tions obtained by our methods have significantly larger
black areas than those by the other algorithms. Fig. 7 also
gives us a deep impression that the features selected by our
methods are indeed the most relevant features for our clas-
sification task. The variances of AverageSL and OptimalSL
in the Var column are much smaller than those of LastSL

Fig. 7. The visualization for the prediction models learned by different
methods when classifying the digits 2 and 3 in MNIST. Columns (a)-(d)
are the results for r=0.01 and � ¼ 0:02; 0:03; 0:04; 0:05.

TABLE 5
Results When Classify the Digits 2 and 3

of MNIST with Fixed r ¼ 0:01

Alg Obj TE ED TD Var time

� ¼ 0:02

FOBOS 0.392 0.052 0.39 0.39 1.1e-04 0.34
a-SGD 0.382 0.045 1.00 0.99 2.1e-07 0.26
ORDA 0.377 0.052 0.41 0.36 5.6e-06 0.64
LastSL 0.389 0.051 0.33 0.33 8.2e-05 0.27

OptimalSL 0.381 0.044 0.31 0.31 4.7e-07 0.21

AverageSL 0.378 0.045 0.28 0.28 1.7e-07 0.28
� ¼ 0:03

FOBOS 0.462 0.057 0.38 0.38 1.7e-04 0.34
a-SGD 0.448 0.051 1.00 1.00 2.8e-07 0.26
ORDA 0.440 0.057 0.38 0.34 5.4e-06 0.64
LastSL 0.456 0.056 0.29 0.29 1.1e-04 0.27

OptimalSL 0.444 0.051 0.24 0.24 3.6e-07 0.21

AverageSL 0.441 0.052 0.21 0.21 1.7e-07 0.28
� ¼ 0:04

FOBOS 0.519 0.064 0.36 0.36 2.3e-04 0.34
a-SGD 0.502 0.055 1.00 1.00 3.7e-07 0.25
ORDA 0.491 0.061 0.36 0.32 5.6e-06 0.63
LastSL 0.508 0.062 0.25 0.25 1.2e-04 0.27

OptimalSL 0.495 0.055 0.18 0.18 3.4e-07 0.21

AverageSL 0.492 0.056 0.16 0.16 1.4e-07 0.29
� ¼ 0:05

FOBOS 0.564 0.070 0.33 0.33 3.7e-04 0.34
a-SGD 0.547 0.059 1.00 0.99 5.9e-07 0.25
ORDA 0.534 0.065 0.34 0.30 6.0e-06 0.64
LastSL 0.550 0.066 0.21 0.21 1.5e-04 0.28

OptimalSL 0.537 0.059 0.14 0.14 3.3e-07 0.21

AverageSL 0.535 0.060 0.12 0.12 1.0e-07 0.28

TABLE 6
Results of rcv1.Binary with Fixed r ¼ 0:001

Alg Obj TE ED TD Var time

� ¼ 0:002
FOBOS 0.533 0.118 0.042 0.042 2.6e-07 78.8
a-SGD 0.532 0.116 1.000 0.853 2.9e-09 58.8
ORDA 0.553 0.120 0.469 0.447 7.6e-07 161.7
LastSL 0.533 0.118 0.040 0.040 2.4e-07 62.7
OptimalSL 0.531 0.116 0.047 0.047 1.9e-09 46.5
AverageSL 0.530 0.116 0.035 0.035 7.8e-10 63.8

� ¼ 0:003
FOBOS 0.576 0.147 0.034 0.034 1.4e-07 78.0
a-SGD 0.575 0.147 1.000 0.889 3.5e-09 58.9
ORDA 0.588 0.149 0.278 0.254 1.9e-06 160.1
LastSL 0.576 0.147 0.031 0.031 1.3e-07 62.7
OptimalSL 0.573 0.146 0.027 0.026 1.7e-09 46.5
AverageSL 0.572 0.147 0.020 0.020 1.3e-09 63.8

� ¼ 0:004
FOBOS 0.605 0.168 0.028 0.028 2.6e-07 77.4
a-SGD 0.604 0.168 1.000 0.901 7.7e-09 58.9
ORDA 0.609 0.173 0.151 0.128 1.2e-06 158.3
LastSL 0.604 0.168 0.025 0.025 2.4e-07 62.8
OptimalSL 0.601 0.167 0.018 0.018 1.8e-09 46.5
AverageSL 0.600 0.168 0.013 0.013 6.6e-10 63.9

� ¼ 0:005
FOBOS 0.625 0.193 0.024 0.024 5.1e-07 77.2
a-SGD 0.624 0.191 1.000 0.914 2.4e-08 58.8
ORDA 0.624 0.195 0.079 0.058 3.3e-06 157.3
LastSL 0.624 0.193 0.021 0.021 4.7e-07 62.8
OptimalSL 0.620 0.191 0.012 0.012 2.7e-09 46.5
AverageSL 0.620 0.192 0.009 0.009 8.2e-10 63.9
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and ORDA. It may come from the lower high probability
bound of AverageSL and OptimalSL.

On the other hand, we can see that among our three
methods, AverageSL can find the most sparse solution with
comparable objective value and test error.

At last, we investigate the performance of simple round-
ing by conducting an extra experiment on MNIST and give
the results in Table 7. We first find a threshold for rounding
that can make the rounded prediction model as sparse as the
model learned by AverageSL. Then we calculate the test
error of the rounded model. Form Table 7, we can observe
that the simple rounding process sometimes will make the
test error increase dramatically. So it is unreliable, which
demonstrates our analysis in the introduction section.

6 CONCLUSION

In this paper, we propose a new scheme by introducing a
novel sparse online-to-batch conversion procedure to the
existing SO methods to learn an exactly sparse solution for
SCO problems with a sparsity-inducing regularizer.
Three concrete algorithms under this scheme are devel-
oped, one based on the existing SO algorithms and the
other two based on SGD algorithm. We verify, both theo-
retically and empirically, that the proposed algorithms
are significantly superior over the existing SCO methods
at yielding exactly sparse solutions and they can
improve the high probability bound to approximately
Oðlog ðlog ðT Þ=dÞ=�T Þ. In the future, we plan to investi-
gate sparse online-to-batch conversion for loss functions
that are only strongly convex but not necessarily smooth.
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